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THEORY AND USE

or

ASTRONOMICAL INSTRUMENTS,

CHAPTER I
THE TELESCOPE.

1. TrE complete theory of the telescope considered simply as
an optical instrument is too extensive a subject to be condensed
into a chapter of the present work: it must be sought for in the
larger works on optics.* I shall, therefore, confine myself to
such points as appear to be immediately needed by the observer
for the intelligent use of his instruments. The following expla-
nations, at once elementary and practical, some of which are
not to be found in optical works, are chiefly derived from
SawrrschH.t

2. T he simple astronomical telescope.—The astronomical telescope,
ta its simplest form, consists of two bi-convex lenses ; the larger,

Fig. 1.
s 4 &
/ g k
8 r ¢
c
s \ ra 4
/

)
AB (Fig. 1), which is turned towards the object, is called the

# See Hxmsonnr’'s Treatise on Light; PreonTBL’s Practische Dioptrik; Bror's As-
tromomie Physigue, Vols. 1. and II.; Poranr’s Optics; CoppINaTON'S Optics; Lroyp's
Treatise on Light and Vision; Lirrrow’s Analytische Dioptrik; PEARSON'S Practical
Astronomy.

+ Abriss der practischen Astronomie, von Dn. A. SAWITSOR, aus dem Russischeniibersetst
ven D2, W. C. Gerzx. Hamburg, 1850.
‘ 9



10 TELESCOPE.

objective, or, more commonly, the object glass; and the smaller, gg’.
through which the observer looks, is called the ocular, or, more
commonly, the eye glass or eye piece. The two surfaces of both
these lenses are segments of spherical surfaces of different radii.
The optical axis of a lens is the straight line which passes through
the centres of the two spherical surfaces which bound the
lens. The optical axis of the telescope is coincident with that
of the object glass. When the telescope is well constructed, the
optical axis of the ocular should always be parallel to that of
the objective, even when (as is usual in the larger instruments)
the ocular is movable, this motion being in a plane at right
angles to the axis of the telescope. 'Where the ocular has no
motion, its axis should coincide with that of the objective, and,
consequently, with that of the telescope.

8. Let us now suppose that our telescope, or rather its optical
axis, is directed towards a star S. Then, on account of the great
distance of the star, we can assume that all the rays from it to
various points of the object glass, as SA4, SC, SB, are parallel to
each other. The ray SC, which passes along the optical axis
itself, suffers no deviation from the refractive power of the lens,
since it enters and leaves the lens at right angles to the refracting
surfaces; but all other rays, as S4 and SB, are refracted both
when entering the lens and when leaving it, and, when the lens
is small in proportion to the radii of curvature of its surfaces,
these rays will all converge to a common point F in the axis of
the telescope. This common point in which a system of parallel
rays meet is the principal focus, usually called simply the focus,
of the lens, and the distance F'C from the centre C of the lens
is called the focal length of the lens. If the radiant point S is so
near to the telescope that the lines S4, SB are sensibly divergent,
the lens will not bring them together at the principal focus, but
at a point more remote; that is, the actual focus will be farther
from the lens than F. If the radiant point is at a distance from
the lens equal to the principal focal distance, the divergent rays
from this point will simply be rendered parallel by the lens, or
the actual focus will be removed to an infinite distance. For all
astronomical purposes we need consider only the principal focus,
regarding the rays, even from the nearest celestial body, the
moon, as sensibly parallel. The telescopes used in surveying
instruments (where the terrestrial objects observed are at various
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distances from the lens, and these distances all small) are pro-
vided with a ready means of adjusting the position of the object-
ive, by sliding the part of the telescope tube containing it out
and in: so that the actual focus may always occupy the same
absolute position in the optical axis, and, consequently, always
be at the same distance from the ocular. The same result is
also obtained by giving the portion of the tube containing the
ocular a sliding motion.

4. All the parallel rays from a distant radiant point, as a star
S, which are converged to the focus F, form an image of the
star in that focus. Conversely, if the radiant point be placed at
F, all the divergent rays S4, SB, &c. will emerge from the lens
in parallel lines A8, BS, &c. 'We shall hereafter have occasion
to make several important applications of this property of a lens:
here we shall apply it at once to show how a distinct view of
the image of a star at #'is obtained. The eye lens gg’, being
placed in the line CF produced, at a distance Fe equal to its own
principal focal distance, it follows, from the property of a lens
just stated, that the divergent rays Fy, Fy’' will emerge in
parallel lines gk, ¢’4’, and will, consequently, enter the eye of the
observer in parallel lines, thus giving a distinct view of the star;
for the eye, in persons who are neither far-sighted nor near-
sighted, is naturally adapted for distinct vision when the rays
entering it are parallel. Without the telescope we should see
only those rays from the star which fall upon the pupil of the
eye; but when we look at the image of the star at the focus of
a telesoope, we see it with greater distinctness, because we then
receive into the eye all the rays which have entered the object
glass and have been united at the focus. In this consists the
Jirst great advantage in the use of the telescope.

5. Let a very fine thread be stretched in the focus F of the
telescope at right angles to the optical axis. This thread will
be visible through the ocular when the latter is so placed that
its focus coincides with F': consequently, when the telescope
is directed towards a star, we shall have distinct vision of
both the star and this thread at the same time. If two threads
are placed at the focus at right angles to each other, their inter
section will determine a fixed point in the field of view, which
by moving the telescope may be brought upon the object to be
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observed. By bringing this point successively upon different
celestial objects, their relative positions can be measured with
the greatest precision; and in this consists the second great ad-
vantage in the use of the telescope. Since the apparent thick-
ness of these threads is increased by the magnifying power of
the ocular it is necessary to use a very fine material: the spider’s
web is that which is almost universally used.

The line of sight is the straight line drawn from the thread
through the optical centre of the objective; for this line repre-
sents the direction of a distant point (as a star), when the tele-
scope is so directed that an image of the point is formed at the
thread. This line is also called the line of collimation; but we
shall hereafter, for the sake of brevity, call it the sight-line.

6. The spider lines, or threads, are usually stretched across a
ring, or diaphragm, which is placed in a tube which slides in the
principal tube of the telescope. The ocular also slides without
affecting the threads: so that by means of these two motions we
can bring the threads exactly into the common focus of the ob-
jective and ocular. It is to be observed that the motion of
the ocular is necessary merely for adaptation to the eyes of
different observers. The threads, being once accurately placed
in the focus of the objective, must not be disturbed; but the
ocular may be drawn out or pushed in by each observer until
he obtains a distinct view of the threads. To ascertain whether
the threads are accurately placed in the focus of the objective,
first adjust the ocular for distinct vision of the threads, then,
bringing & thread upon a very distinct point, as a slow moving
star, observe whether a motion of the eye in any direction
towards the edge of the eye lens causesthe star to leave the thread;
for, if the image of the star is exactly on the thread, it ought to be
seen on it even from a side view; but, if it is before or behind
the thread, it will be seen on it only from a direct front view.

7. Magnifying power.—Let us suppose the telescope to be
directed towards a very distant object DL (Fig. 2). From its
upper extremity D a multitude of rays proceed which fall upon
all parts of the objective A B, and which (in consequence of the
great distance of the object) may all be regarded as parallel to the
line DCd which passes through the middle point of the lens. All
these rays are brought to a focus in this line D Cd at a pointd whose
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distance from thelensis equal to the focal length of the lens. There
exists then at the point d a distinct image of the point D. In a

Fig. 2.

similar manner an image of every point of the object is found at
the same distance behind the object glass : so that there will exist
at the focus of the lens a complete, though very small, image of the
object. This image will be inverted ; for,-while the image of the
upper point D is formed at d, that of the lowest point L is formed
at [, the axes of the systems of rays from the several points of the
object crossing at the middle point C of the lens. If the focus of
the ocular is coincident with that of the objective, and, con.
sequently, also with the image d/, the rays which diverge from
a point d of the image and fall upon the ocular g¢’ will emerge
from the latter in lines parallel to each other and to the line
dck which is drawn from d through the centre of the ocular;
and, the same being true of rays from every point of the image,
those from the extreme point ! emerge in lines parallel to the
line lcn, Hence the rays from the two extreme points d and !
of the image enter the eye of the observer at an angle with each
other equal to nck or led ; and this angle is the apparent angular
magnitude of the image to the eye. But without the telescope
the apparent angular magnitude of the object, the eye being at
C, would be DCL = d(C!l; which angle may be assumed to be
the sameasthat underwhich

the object is seen from the &
actual position of the eye be-
hind the ocular, the length
of the telescope being in-
considerable in relation to
the distance of the object.
Now, the apparent linear
magnitudes of the object v
and its image seen thus under different angles can be com-
pared by referring them to the same absolute distance. Thus,
referring the image dl (Fig. 3) to the actual distance of the

Tig. 3.
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object DL, by the lines Edd’, Ell’ drawn from the eye at E, we
have
dlV:DL=d'M: DM — tan $ dEl: tan $ DEL
Hence, denoting the magnifying power by G, we have
'V tan}dEl

¢=DL = wniDEL .

whence the proposition, (A), The magnifying power of the telescope
is equal to the tangent of half the apparent angular magnitude of the
tmage seen through the ocular, divided by the tangent of half the ap-
parent angular magnitude of the object seen without the telescope.
Referring again to Fig. 2, we have the apparent magnitude of
the image as seen through the ocular = lcd, and that of the
object as seen by the naked eye = I(Cd, and
im Im
me : m_(f

m

tan 3 lcdstan 3 1Cd = =mC:me

or
__tan tled mC

~tantiCd me ®
whence the proposition, (B), The magnifying power of the telescope
is equal lo the quoticnt of the focal length of the objective divided by the
focal length of the ocular.

This principle serves for the calculation of the magnifying
power when the focal lengths of the glasses are known, at least
for the simple astronomical telescope here considered. A mode
of obtaining the magnifying power of any telescope by direct
observation will be given below.

We see then that with the same objective we can have various
magnifying powers by simply varying the ocular; and the less
the focal length of the ocular, the greater will be the magni-
fying power. The more the telescope magnifies, the nearer will
the object appear to us, and, consequently, the more distinctly
will its scveral parts be seen. Herein consists the third essential
advantage in the employment of the telescope.

8. The field of view.—By the field of view is meant the space
Fig 4 which can be viewed with the tele-

4 " scope at one and the same time. The
magnitude of the field depends upon

__,_’--/'TT’- the angle gCy’ (Fig. 4), which is con-
,, tained by two rays from the centre

of the objective to the cxtremities
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of a diameter gg’ of the ocular ; and consequently it depends upon
the magnitude of the ocular and its distance from the objective.
Most telescopes have diaphragms, or opaque rings, placed within
the tube to cut off rays from the extreme edges of the objective,
as well as stray light falling down the tube. If the inner edge
of any diaphragm trenches upon the lines (g, Cy’, the magni-
tude of the field will be diminished, and will then depend upon
the free aperture of the diaphragm, or upon that portion of the
ocular upon which rays from the centre of the objective can fall.

As it is difficult to construct large eye pieces which shall give
as perfect images near their edges as in the centre, it is usual to
obtain a large field with a small eye piece by giving the latter
a sliding motion at right angles to the axis of the telescope. In
this case the whole available field depends also upon the quantity
of motion possessed by the eye piece. Usually this motion can
be given only in one direction, in which case the whole available
field is oblong, its breadth being limited by the dimensions of
the eye piece, and its length by the quantity of motion. Some-
times, however, two motions are provided, at right angles to each
other, and then the whole of the free circular aperture of the
diaphragm becomes available for the field.

9. Brightness of images produced by the telescope, and the intensity
of their light. The image which the telescope gives of an object
must possess a sufficient degree of brightness to make an impres-
sion upon our eye. Let us suppose two telescopes, the object
glasses of which are of different diameters, to have the same mag--
nifying power. Then the brightness of the two images formed
will be proportional to the quantity of light which falls on the
surface of the two objectives respectively; but these surfaces are
proportional to the squares of the diameters of the objectives,
and hence the brightness of the images is proportional to the
square of these diameters. On the other hand, let us suppose
two telescopes, with object glasses of equal diameters, to have
different magnifying powers; then one and the same quantity of
light is distributed over the larger and over the smaller image,
and, consequently, in this case the brightness of the image is
inversely proportional to the square of the magnifying powers.

It is to be observed, however, that not all the rays which fall
upon the object glass reach the eye, partly on account of the
want of absolute transparency of the glass, and still more on
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account of the reflection of a number of rays from the surfaces
of the lens. Some light is also lost occasionally, when the
breadth of the eye glass is not sufficient to embrace all the rays
which proceed in a eone from the image of a radiant. point formed
at the foeus, or when the pupil of the eye is not large enough to
receive the whole cylinder which these rays form after passing
through the eye glass. Thus, in Fig. 1, let S4ABS be the cylinder
of rays from a very distant point, falling upon the free opening
of the object glass; g'k’kg, the cylinder of light which emerges
from the eye glass; F'the common focus of the two glasses. On
account of the similarity of the triangles ABF and g'gF, we

have
4AB:¢g'q = CF: Fe

But the magnifying power G is (Art. T) equal to FF, consequently,

also,
AB
G ==
g9
Now, all the rays which fall upon the object glass will enter the
pupil of our eye only when ¢g is either equal to the diameter d

of the Bupﬂ or is less than d. In the first case we shall have

=—; in the second, G > d But if @ <

have gg’ > d, or the diameter of the cylinder of hght. emerging
from the eye glass greater than the diameter of the pupil: in
that case, therefore, some of the light must be lost to the eye.

Since every point of an object seen through a telescope must
appear as a point, whatever may be the magnifying power of the
telescope, it follows that the intensity of the illumination of the
several points of the image in the telescope depends upon the
quantity of light which proceeds from each point of the object
and reaches our eye. We must, therefore, not confound intensity
with the brightness which results from the impression of the whole
image upon the eye. The intensity of the light is independent
of the magnifying power, while the brightness is, as we have
seen, inversely proportional to the square of the magnifying
power. According to these principles, the following explanation
of the working of the telescope, given by the distinguished
OLsErs, will be readily understood :

“Let B be the brightness, I the intensity of light of an object
seen through the telescope; both being supposed to be, for the
naked eye, equal to unity. Let D be the diameter of the object

» W& must
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glass, d that of the pupil of the eye, G the magnifying power
of the telescope, and 1:m the ratio in which the light is dimin-
ished by its passage through all the glasses of the telescope;
then we have

D Dr

I=m.——

B=m. y YT & ®

Now, so long as G < —gr which, however, occurs only in tele-

scopes of large objective apertures and low magnifying power,
the quantity B must remain constant and = m; for, if G is less

than g the diameter of the cylinder of emergent rays from the

ocular will be greater than can be received by the pupil; the
eye then receives no more of the light than it would if the ob-
jective had the diameter Gd. Hence, the greatest value of B is
m, and can never be greater in the telescope. Since in the best
achromatic telescopes m = 0.85, we see that the brightness of
an object is always greatest with the naked eye. Assoon as G

is greater than IE)» the brightness rapidly diminishes as the square

of G.
¢ On the other hand, , or the intensity of the light, is constant

as soon a8 G =or > g, provided that the field of view always

includes the whole of the magnified object. I can therefore
become very great when D is great; and this is the reason why
exceedingly faint stars can be seen through a telescope with a
large objective. The diameter d of the pupil (which may be
assumed to be about 0.2 of an inch) is not only different in
different observers, but also varies with the absolute intensity of
the light of the object viewed,—e.g. it is less when we view the
moon, greater when we view Saturn; less when we view the
moon through a telescope of five inches aperture than through
one of two inches aperture.

“The sky, or ¢ground of the heavens,” has & certain degree
of brightness, not only in daytime, in twilight and moonlight,
but even at night in the absence of the moon. This brightness

of the sky also diminishesin the telescope asm. d_%' and therefore

the ratio of the brightness of an observed object to the bright-

ness of the sky remains constant for all magnifying powers.

This is the reason why for considerable magnifying powers we
Vov. IL—2



18 TELESCOPE,

do not observe a correspondingly great decrease of brightness.
But, if we call this brightness of the sky 6, although the ratio
B:b remains constant, our eye can, nevertheless, no longer dis-
tinguish the difference B — b of the brightness of the. object and
the sky when this difference is very small. Hence, faint nebule,
tails of comets, &c. become invisible under high magnifying
powers. The intensity of the light of the portion of the sky
which we see in the telescope varies inversely as G nearly.*
This intensity of the light of the field may be so great as
wholly to prevent our seeing objects of feeble intensity. This
is the reason why with the comet-seeker (a telescope of large
aperture and small magnifying power) we cannot see stars, even
of the first magnitude, in the daytime, when we can see them
without difficulty with telescopes of much smaller apertures and
greater magnifying powers. This also explains why with high
magnifying. powers we often discover very faint stars which are
wholly invisible in the same telescope with lower powers.”

The more perfect the telescope is, the more nearly will the
image of a star resemble a bright point; and, according to the
above, we may without hesitation always employ for the obser-
vation of fixed stars the highest magnifying powers,

10. Spherical and Chromatic Aberration.— A telescope of the
simple construction above described would possess serious defects.
All the parallel rays from an object which fall upon a simple
spherical lens cannot be brought exactly to & common point in
any case; and not even approximately unless the léns is small
or of relatively great focal length. The image of a fixed star
will, therefore, not be a well defined point, but rather an ill defined
spot of light; and the images of all objects will be the more dis-
torted the greater the objective is in proportion to the focal
length. This deviation of the rays from a common point in the
telescope is called the spherical aberration.

In the simple astronomical telescope, still another difficulty
exists: for white rays of light, after they are refracted by a simple
lens, are resolved into the colors of the prismatic spectrum, or
of the rainbow, and, consequently, the image of any object will
appear surrounded and disfigured by colored light. This arises

* That is, the effect upon the eye of the whole of the light of that portion of the
sky which is visible under the magnifying power @ varies nearly as '(}T; a3 is evi-
dent, since the field is diminished in this ratio.
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from the different degrees of refrangibility of the different colors.
The deviation of the rays of different colors from a common focus
is called the ckromatic aberration.

‘With regard to the means by which the telescope is rendered
almost wholly free both from spherical and from chromatie
aberration, that is, rendered both aplanatic and achromatic, it
wmust here suffice to state, in general terms, that the result is
obtained by substituting for the simple lens a compound one of
which the component lenses are made of glass of different degrees
of refractive and dispersive powers. There are generally two
zomponent lenses, as in Fig. 5; one of which, 4B, is a biconvex

i

lens of crown glass, and is that which is turned towards the object;
the other, AA’BB’,is a meniscus or concavo-convex lens of flint
glass. The latter kind of glass usually contains at least 83 per
cent. of oxyde of lead, from which crown glass is wholly free;
and both its refractive and its dispersive powers exceed those of
crown glass. By giving the four spherical surfaces of the com-
ponent lenses suitable curvatures, both the spherieal and the
chromatic aberrations produced by the crown glass lens are very
nearly corrected by the flint glass lens.

Even in the best telescopes an absolutely perfect compensation
of the errors has not been reached. Some idea of the relative
excellence of the instrument may readily be obtained as follows.
The correction for spherical aberration is well made when the
fmage of a star, in favorable states of the atmosphere, is a very
small, well defined, round disc. Having adjusted the eye piece,
by sliding it out or in, until this disc is reduced to its least dimen-
sions and most perfectly defined, the slightest motion of the eye
piece from this position, either out or in, should disturb the per-
fection of the image: a telescope in which the character of the
image remains sensibly the same during a considerable motion
of the eye piece is imperfectly corrected for the spherical aber-
ration. The correctness of the general figure of the lens is

Fig. 5.
AI

4

B

B



20 TELESCOPE.

judged ot by sliding the eye piece in beyond the perfect focus,
whereby the image becomes enlarged; but if the lens is sym-
metrical throughout, the image will remain circular, and in very
perfect telescopes will present a number of complete concentric
circular rings of light; a similar result should follow when the
eye piece is drawn out. An imperfect, unsymmetrical lens, with
the eye piece out of tucus, will give an image composed of incom-
plete and distorted rings, or only a confused and irregular mass
of variously colored light. If the glass of which the lens is com-
posed is not perfectly homogeneous (one portion having greater
refractive power than another), the images of bright stars of the
first or second magnitudes will have what opticians call a wing on
one side, which no perfection of figure or of adjustment can re-
move. But the defective portion of the glass may be discovered
by covering up successively different parts of the lens by means
of caps of variable apertures in various positions; and some im-
provement in the performance of the lens may be obtained by
excluding this defective portion, at the expense of light.

The achromatism is judged of by pointing the telescope to
some bright object, as the moon or Jupiter, and alternately push-
ing in and drawing out the eye piece from the place of most per-
fect vision : in the former case, if the lens is good, a ring of purple
will appear round the edge of the image, in the latter, a ring of
pale green (which is the central color of the prismatic spectrum);
for these appearances show that the extreme colors of the spec-
trum, red and violet, are corrected.

11. Achromatic eye pieces.—The eye pieces now most commonly
used are of two kinds: the Huygenian and the Ramsden.

The Huygenian eye piece consists of two plano-convex lenses

of crown glass, 4 and B

Fig. 6. (Fig. 6), the convex sur-

faces of both being turned

— towards the object. The

NG first lens 4 receives the

— converging rays Sa, Sb,

g coming from the object

glass, before they have

8 reached the principal fo-

cus F of the object glass,

and brings them to a focus F” half-way between the two lenses
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4 and B. The focal length of the lens B being made equal to
BF’, the image formed at F” is distinctly visible to an eye be-

hind B. Since this eye piece is adapted to rays already converg-

ing, instead of diverging rays, it is commonly called the negative
eye piece. ,

The Ramsden eye piece is shown in connection with the tele-
scope in Fig. 5. It also consists of two plano-convex lenses;
but the plane surface of the lens nearest the object is turned
towards the object. The diverging rays from an image F are
rendered less divergent by the first lens, and finally parallel by
the second lens; after emerging from the latter, therefore, they
are adapted for distinct vision to an eye placed behind it. This
eye piece being adapted for diverging rays, like the simple double
convex lens, is called the positive eye piece. It is universally
used wherever spider threads are placed in the focus of the object
glass for the purposes of measurement, as in the transit instrument,
&c.; for the permanency of the position of these threads is of
the first importance, and this could not be insured unless the
threads were so placed as to be independent of any motion of
the eye piece. Threads are, however, often placed in the focus
of a Huygenian eye piece merely to mark the centre of the field,
as in the eye pieces of the telescopes of a sextant.

The optical qualities of the Huygenian eye piece are, however,
superior to those of the Ramsden, the spherical aberration being
more perfectly corrected; and it is, therefore, preferred for the
mere examination of celestial objects when no measurements
are to be made.

Neither of these eye pieces changes the apparent position of
the image, which therefore remains inverted. Achromatic eye
pieces designed to show objects in their erect positions usually
consist of four lenses. They are used chiefly for land objects, and
only in small telescopes. The great loss of light from the addi-
tional lenses is an insuperable objection to them for astronomical
purposes.

The lenses composing the eye piece are fixed, at the proper
distance from each other, in a separate tube, which has a sliding
motion in another tube fixed to the telescope, so that it can be
pushed in or drawn out and thus adapted for different eyes.
For near-sighted persons it must be pushed in; for far-sighted
persons, drawn out.
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12. Diagonal eye pieces.—When a telescope is directed towards
an object near the zenith, it is always inconvenient, and often,
with small instruments, impossible, for the observer to bring
his eye directly under the telescope. The inconvenience is
obviated by employing an eye piece which bends the rays at

right angles to the optical axis of the telescope,
‘B as in Fig. T, where the lens A receives the rays
=71, in the direction of the axis of the telescope and
4 x // partially refracts them; they are then reflected
/ by the plane surface M (placed at an angle of
- 45° with the axis) to the lens B, by which they
.are rendered parallel and adapted for distinct vision to the eye
at B looking in the direction BM. The surface M may be either
a plane metallic mirror, or the interior face of a right prism of
glass, the section of which is shown in the figure by the dotted
lines. The prism is usually preferred, as less light is lost by
reflection from its interior face than from a metallic speculum.

Fig. 7.

13. 76 measure the magnifying power of a telescope.— First Method.—
‘The magnifying power depends upon the focal lengths of the
object glass and eye piece (Art. T), and hence for the same tele-
scope different eye pieces will give different magnifying powers.
‘We suppose, then, that the eye piece whose magnifying power
is to be found is placed upon the telescope and very carefully
adjusted for distinct vision of very distant objects. If we then
direct the telescope in daytime towards the open sky, we shall
see near the eye piece, and a little way beyond it, a small illumi-
nated circle, which is nothing more than the image of the
objective opening of the telescope. Let the diameter of this
circle be measured by a very minutely divided scale of equal
parts; then the magnifying power is equal to the quolient arising from
dividing the diameter of the object glass by the diameter of this illumi-
nated circle.* For example, let the diameter of the object glass

* The demonstration of this rule is mot usaally given in our optical works. Let
ANB, Fig. 8, be the objective; C the
Fig. 8. ocular, which we can regard as in effect

4 a single lens; N the middle of the ob-
b Seotive; a the middle of the emall il-

v = luminated circle an, which is the image
of the objective opening formed beyond

B the ocular. If we remove the object

glass from the telescope tube, the image anb of the opening will still remain the same
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be 4 inches, that of the small illuminated circle ¢; of an inch;
the magnifying power is 4 + 4 = 80.

The chief difficulty in this method lies in the exact measure-
ment of the diameter of the small illuminated circle. Various
methods have been contrived for this purpose; but the most
effective iz by means of the instrament known as Ramsden's
Dynameter.

Second Method (proposed by Gauss).—If we reverse the tele-
scope and direct the ocular towards any distant object, we shall,
when looking through the objective, see the image of the object
as many times diminished as we see it magnified when looking
through the ocular. Select, therefore, two well defimed points,
lying in a horizontal line, and direct the telescope so that, look-
ing into the objective, these points may appear to lie at about
equal distances on each side of the optical axis. Then place a
theodolite in front of the objective, level the horizontal circle,
and bring the optical axis of its telescope nearly into coincidence
with that of the larger telescope, so that looking inté the object-
ive of the latter, through the telescope of the theodolite, the
selected points may be dlstmctly seen. Measure the apparent
angular distance of the images of the points with the theodolite,
by bringing the vertical thread successively upon these images
and taking the difterence a of the two readings of the horizontal
circle. Remove the larger telescope, and measure in the same
manner with the theodolite the angular distance 4 of the points
themselves. Then the magnifying power G is given by the
formula

a8 when the glass is in its place. Now, it is known, from the eléments of optics, that
if » is the distance of a bright objeot from a convex lens, v the distance of the
image from the lens, f the fooal length of the lens, we bave the equation

ei-)
Let Fbe the focal length of the objective, f that of the ocular, u the distance between
them; then we have NC = u = F 4 f; Cn = v; and, consequently,
1 1 1 F
I FFITIFED
AB _NC F+4y F

@b - w0 v S

Also,

But, by Art. 6, -J;expmea the magnifying power of the telescope: hrence, also, AT?
expresses the magnifying powen, as in the method of the text.
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__tant 4
T tania (C)]

G

or, it the angles 4 and a are very small, G = %.

If the observed points are not very distant, we should in strict-
ness measure the angle 4 by placing the theodolite at the point
first occupied by the ocular; for 4 is the angle contained by the
rays from the two points to the ocular, and a the angle contained
by these rays after they have passed through the ocular and have
been refracted by it.

If the telescope cannot be removed conveniently, the angle 4
may be obtained by measuring the linear distance D of the middle
point between the two observed points from the ocular, and the
horizontal linear distance d between the points; then

d
tan $ 4 = 2D ®)
When the latter method is practised, however, it is necessary to
observe that if the telescope of the theodolite, in measuring the
angle g, is inclined to the horizon by the angle I, we must employ
instead of a the angle a’ given by the formula

sin 3a’ =sin }acos I
or, with sufficient precision,

tanda’'=tandacos I

8 reduction which was unnecessary where both 4 and a were
measured by the theodolite, since the factor cos I would enter
into both numerator and denominator of (4). But the reduction
may also be neglected here, if by D is understood, not the direct
distance from the ocular to the observed points, but the projec-
tion of this distance on the horizontal plane, and then the formula

becomes G = Dend with sufficient precision, since a is always

very small.
For accuracy, the angular distance of the points observed
should be as great as can be embraced within the field of the

telescope.

ExampLE 1.—The angles 4 and a were directly measured with
a theodolite, in the case of an equatorial telescope with a certain
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eye piece, and were 4 = 5° 10’ 30"/, a = 8’ 10’’. 'We have,
therefore, for this eye piece,

o U /"
o _ tan 2°86'15

= = 98.1
tan 0° 1’ 85" 812

ExamprLe 2.—For verification of the preceding measure, the
angle A was also obtained without the theodolite, for which pur-
pose there was measured the distance of the observed points
from the ocular, D = 808.2 feet, and the distance between the
points, d = 26.98 feet. The inclination of the telescope of the
theodolite was here observed to be = 10° 40’, and as before by
direct measure ¢ = 8’ 10’’. 'We have first,

26.98
A=——
tan } 4 = o564
and hence
26.98

G = = 98.80
606.4 tan 1’ 35” cos 10° 40

The horizontal distance D was here 298 feet, with which, by the
last formula above given, we have

26.98

=———— =98.29
298 8in 8'10”

The magnifying power of this eye piece may therefore be taken
at 98.3, or simply 98.

Third Method (proposed by H. B. VaLz, in the Astronomische
Nachrichten, Vol. vii). This very convenient method consists in
directing the telescope towards any object of known angular
diameter, and measuring the angle formed by rays from the
extremities of a diameter after these rays have emerged from the
eye piece. The sun, the angular diameter of which is always
known, is especially adapted for the purpose. The image of the
sun may be received upon a screen placed in the prolongation
of the axis of the telescope with its flat surface carefully adjusted
at right angles to that axis. The telescope is to remain fixed,
being properly directed so that the sun shall pass over the centre
of its field; and as the image passes over the screen its lineai
liameter d is to be measured. Also the perpendicular distance
D from the middle of the eye piece to the screen. Then, if a is
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the true angular diameter of the sun, A the angular diameter of
the image on the screen, subtended at the eye piece, we have

_4d
taniA__—D—

and the magnifying power G, as before, is

G__taniA__ d
" tanta 2Dtan ta

®

Fourth Method.—For small instruments, and whete great accu-
racy is not required, the following process will answer. Let a
staff, which is very boldly divided into equal parts by heavy lines,
be placed vertically at any convenient distance from the telescope,
for example, fifty yards. While one eye is directed towards the
staff through the telescope, the other eye may observe the staff by
looking along the outside of the tube. One division of the staff
will be seen by the eye at the eye piece to be magnified, so as to
cover a number of divisions of the staff, and this number, which
is the magnifying power required, may be observed by the other
eye looking along the tube. The staff here not being very distant,
the focal adjustment of the telescope is not the same as for stars;
the focal length is, in fact, somewhat greater than the “principal”
focal length (Art. 8), and the magnifying power obtained is pro-
portionally greater than that which applies to very distant or
celestial objects, the rays from which are sensibly parallel. If we
call the magnifying power obtained from the terrestrial object G,
that for a celestial object G, F the focal length employed, F the
principal focal length, we have

Fi:F=G0:@4&

For example, a telescope whose principal focal length was
24 inches, being directed towards a graduated staff, it was found
that for distinct vision of the staff it was necessary to draw
out the eye piece 0.75 inch. Then, one division of the staff
seen by the eye at the eye piece was observed by means of
the other eye to cover 40 divisions. Here we have F = 24,

"= 24.75, G’ = 40, and hence

F 24

¢=a¢.L 0y 2 _
Iz X 3q75 =388
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Instead of using the divisions of a staff, which may not be suffi-
ciently distinct, & disc of white paper may be placed against a
black ground, and the size of the magnified image may be marked
on the same ground by an assistant from signals made by the
observer at the telescope.

14. It was shown in Axrt. 7 that the magnifying power is equal
to % F being the focal length of the objective, and f that of the

ocular. To apply this rule when the eye piece is composed of
two lenses, it is necessary to find the focal length, f, of a single
lens which is equivalent to the two lenses. This is effected by
the formula of optics
_ flfll
I=rir—i

in which f7, f”’ are the focal lengths of the component lenses,
and d the distance between them. This formula, however, is but
approximative (it gives f somewhat too great): it is better to

measure the magnifying power directly by one of the methods
above given.

15. Reflecting telescopes.—As these are rarely used for the pur-
poses of measurement, we shall content ourselves with merely
stating the forms of the two kinds which have been in most
common use. The simplest, and now most commonly used, is
the Herschelian telescope, introduced by Sir WiLLiaM HERSCHEL.
A polished concave speculum, ab, Fig. 9, is placed at the bottom

Fig. 9.

BW
C _EB'—J

of a tube, ABCD. It is ground to the form of a paraboloid, the
focus of which is near the mouth of the tube; it is slightly in-
clined, so that the focus falls near one side of the tube, as at D,
where the reflected rays from the speculum form an image which
is viewed through an eye piece, E, of the usual form. The head
of the observer may intercept a small portion of the rays from
a celestial object to the speculum; but this is of little conse-




b1 ] TELESCOPE.

quence, as the speculum is usually very large. In Lord Rosse's
Herschelian, the diameter of the speculum is six feet.

The reflecting telescope next in most common use is the New-
tonian, which differs from the Herschelian only in receiving the
reflected rays from the speculum upon a small plane mirror, ¢,
Fig. 10, placed in the middle of the tube near its mouth, which
reflects these rays at right angles to the axis of the tube to an

Fig. 10.
B(lla A
P\ 7 D

E

eye piece at . In this form, the small plane mirror intercepts
a portion of the light from the object; moreover, light is lost in
the double reflection ; but a slight advantage is gained in having
the axis of the speculum coincide in direction with the axis of
the tube. The reflected rays reach the mirror ¢ before they are
brought to a focus: they converge after reflection to the point f,
where is produced the image which is examined through an eye
piece by the eye at E.

16. Finding telescopes.—A telescope of great focal length and
high magnifying power has a very small field, in consequence
of which it becomes very difficult to find a small object in the
sky. This inconvenience is obviated by attaching to the outside
of the tube a smaller telescope, called a finder, of low magnifying
power and large field, with its axis adjusted parallel to that of
the larger telescope. The search for the object is made with
the finder (both telescopes having a common motion), and,
when found, it is brought to the middle of the field of the
finder; it is then somewhere in the field of the larger telescope.
The middle of the field of the finder is indicated by the inter-
gection of two coarse threads in the focus; or, still tetter, by
four threads forming a small square, the middle point of which
is the centre of the field.
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CHAPTER IL

OF THE MEASUREMENT OF ANGLES OR ARCS IN GENERAL—
CIRCLES—MICROMETERS—LEVEL.

17. Graduated Circles.—The most obvious mode in which an
angle may be measured is that in which we employ a circle, or
portion of a circle (constructed of metal or other durable material),
the limb of which is mechanically divided into equal parts, as
degrees, minutes, &c. The centre of the circle being placed at
the vertex of the angle to be measured, the arc of the circum-
ference intercepted between the two radii which coincide in
direction with the sides of the angle is the required measure.* .
To give this mode precision when the angle is found by lines
drawn to two distant points, the aid of the telescope is invoked.
This is connected with the circle in various ways, according to
the nature of the instru-
ment of which it forms
a part; but, in general,
we may conceive it to be
essentially as follows.
To the tube of the tele-
scope, AB, Fig. 11, is
attached a pivot, C, at
right angles to the op-
tical axis, which turns
in a circular hole in the
centre of the graduated
circle MN. An arm aCb, extending from the centre C'to the
graduations on the limb, is permanently attached to the telescope,
and revolves with it. To measure an angle subtended by two
distant objects at the point C, the circle is to be brought into the
plane of the objects and firmly fixed. Then the telescope is

*In the sextant and other instruments of ‘double reflection,” the vertex of the
angle to be measured is not in the centre of the arc used to measure it. See article
“Sextant.”
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directed successively upon the two objects, and in each case
the number of degrees indicated by a mark on either extremity
of the arm ab is to be read off’; the difference of the two readings,
which is the number of degrees passed over by the arm, and,
consequently, also by the telescope, will be the required measure
of the angle. The same result is reached by permanently con-
necting the circle and telescope, which then revolve together,
while. a fixed mark near the limb of the circle serves to indicate
the number of degrees through which the telescope revolves.

In order to point the telescope with ease and accuracy upon
an object, a clamp and tangent screw are commonly employed.
This contrivance, which may be seen upon almost every astro-
nomical instrument, takes a great variety of forms, but in all cases
the operation of it is as follows: when the telescope is approxi-
mately pointed upon the object by hand, it is clamped in its posi-
tion by a slight motion of the clamp screw, after which the
telescope admits of no motion except that which is common to
it and the clamp : hence, by a fine screw which moves the clamp
a slow delicate motion can be given to the telescope, whereby the
sight-line marked by a thread in the focus is brought accurately
upon the object.

The great increase of accuracy in pointing a telescope which is
obtained by the introduction of the spider threads in its focus
brings with it the necessity of a corresponding increage of accu-
racy in reading off the number of degrees and fractions of a degree.
on the divided limb of the circle. A single reference mark upon
the extremity of an arm, as in Fig. 11, enables us to determine
only the number of entire divisions of the limb passed over; but,
as this mark will generally be found between two divisions,
some additional means are required for measuring the fraction
of a division. Two methods are now exclusively employed.
The first of these, in the order of invention, is

THE VERNIER.¥

18. Let MN, Fig. 12, be a portion of the divided limb of a
circle; CD the arm which revolves with the telescope about
the centre of the circle. The extremity of this arm is expanded

# 80 called after its inventor, Perer VerNIER, of France, who lived about 1630.
By some it is called s nonius, after the Portugucee Nuiizs or Nosius; but the im-
vention of the latter (who died in 1577) was quite different.
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into an arc ab, which is con- Fig. 12.
centric with the circle and is W/
graduated into & number of c

divisions » which occupy the
space of n — 1 divisions of
the limb. Thus graduated,
this small arc receives the
name of a vernier. The first
stroke @ is the zero of the
vernier, and the reading is al-
ways to be determined by the
position of this zero on the 8 6 4 2 %

limb. Let us put F\_’/
P

d = the value of a division of the limb,
d’ = the value of a division of the vernier,

then we have
n—1d=nd
whence
a="=14
n
and
1
[ ——
d—d ._”d )

The difference d — d’ is called the least count of the vernier, which
i, therefore, %th of a circle division. If now the zero a falls

between the two circle graduations P and P+ 1, the whole
reading is Pd plus the fraction from P to a. To measure this
fraction, we observe that if the mth division of the vernier is in
coincidence with a division of the limb, the fraction is m X (d — d’)

m . . c e A
or;d. For example, if, as in our figure, the vernier is divided

into 10 equal parts, occupying the space of 9 divisions of the
limb, and if the 4th division is in coincidence, the whole reading

s P+ 25d; and if d=10' and P corresponds to 20° 20
(P being the 122d division from the zero of the limb), then the
whole reading is 20° 20’ + —1% X 10/ = 20° 24’. In this case the

least count is 1’. In practice, no calculation is necessary to
obtain the fraction, for this is indicated by proper numbers
against the graduations of the vernier-itself.
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If the least count is given, to find n, we have
d

n————

d—d
d and d — d’ being, of course, expressed in the same unit. For
example, if the limb is divided to 10/, and the least count is to
be 10", we have

d = 600"
d—d = 10"
whence
n— 60

and we must make 60 divisions of the vernier equal to 59 divi.
sions of the limb.

When a large number of divisions are made on the vernier,
and the least count is very small, the graduations must be
exceedingly delicate; otherwise, several consecutive divisions
of the vernier may appear to be in coincidence with divisions of
the limb. The reading is then to be assisted by a microscope, or
reading glass, placed over the vernier and having a lateral motion,
whereby its optical axis can be brought immediately over that
division of the vernier which is in coincidence.

To increase the accuracy of a reading still more, two or more
arms, each carrying a vernier, are employed, and the mean of
the indications of all is taken. The effect of reading off a circle
at various points, in eliminating errors of the circle, will be
treated of hereafter.

The arm carrying a vernier, or the frame bearing severa:
verniers, is often called the alidade. Sometimes the several
verniers are attached to a circle, which then receives the name
of the alidade circle.

19. We have assumed above that the divisions on the vernier
are smaller than those on the limb. This is the most common
arrangement; but we may also have them greater by making n
divisions of the vernier occupy the space of n +4- 1 divisions of
the limb: so that we have

(n+1)d =nd’
whence the least count is, as before,

d'—d=-1—d
n
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The only difference will be, that when the graduations of the
limb proceed from right to left, those of the vernier must pro-
ceed from left to right; that is, the zero of the vernier must be
the extreme left-hand stroke.

20. In case a vernier has been used which is found to be too
long or too short, the reading may be corrected as follows. Let
the error in its length be denoted by z, then (in the verniers of
the ordinary form) we have (Art. 18)

(n—1Dd=rnd"+g
whence

, 1 x

Hence a reading in which the fraction was m(d — d’) becomes
gd +m- % The correction of the reading is, therefore, 4 m -1:-

when the vernier is too short by z; and — m% when it is too

long by z. For example, if the limb is divided to 10’ and the
vernier gives 10’/ (in which case » = 60), and we find that the
vernier is too short by z = 5", then we must add to every

reading the correction + m- g O since ‘every 6th graduation

of the vernier gives one minute, we must add 0”7.5 for every
minute read on the vernier.

The actual length of the vernier is found by bringing its zero
into coincidence with a division of the limb and observing where
the next coincidence occurs. If this second coincidence occurs
at the last division of the vernier, its length is correct ; but if the
¢oincidence occurs at + p divisions from the-last, it is too short
or too long by p times the least count. This should be done
at various points of the limb, und the mean of all the results
taken, in order to eliminate the effect of accidental errors in the
graduations of the limb.

The vernier is now used chiefly on small circles and portable
tmstruments; but when the highest degree of accuracy is sought
for in reading off a circle, we have recourse to

THE READING MICROSCOPE.

21. Let us conceive the arm which carried the vernier, instead
of lying close to the plane of the circle, to be raised at some

distance from it, and in place of the vernier let the extremity of
Vor. IT—38
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the arm carry a microscope 4 C (Plate II. Fig. 1), the optical axis
of which is perpendicular to the plane of the circle MN and
intersects the divisions on the limb. The telescope and circle
are to be supposed to revolve together, while the microscope
remains fixed. An image of the divisions is formed at the focus
D of the object lens . Two lenses, B and A4, constitute a posi-
tive eye piece through which this image is viewed. HG is a
micrometer, the interior of which is shown, enlarged, in Plate IL.
Fig. 2. A fine screw, cc, with a large graduated head, EF,
carries the sliding frame aa, across which are stretched two inter-
secting spider threads. These threads lie exactly in the focus
of the microscope, and are consequently visible at the same time
with the image of the divisions of the limb. On one side of the
field is a notched scale of teeth (which does not move with the
cross-threads), the distance between the teeth being the same as
that between the threads of the screw. The middle notch is
distinguished by a hole opposite to it, and every fifth notch is
cut deeper than the rest. At ¢ (Fig. 1) is an index to which the
divisions of the micrometer head are referred. Since one com-
plete revolution of the micrometer head must carry the cross-
threads a distance equal to the thickness of the thread of the
screw, if the head is graduated into 100 parts we have the means

of measuring a space equal to 1—(1)—6th of the thickness of the thread

of the screw. Either by making the screw very fine, or increasing
the number of graduations on the head, or by both, and at the
same time increasing the optical power of the microscope, we
can carry this subdivision of space to almost an unlimited extent.

In order to understand the mode of reading the circle by this
apparatus, let us conceive the intersection of the cross-threads to
stand against the central notch, the zero of the micrometer being
also exactly opposite the index. T'he point of the field then occu-
pied by the intersection of the cross-threads i3 to be regarded as a fized
point of reference, and, as the telescope revolves from ome position to
another, the number of divisions of the limb which pass by this point
will be the measure of the angular motion of the telescope. Suppose,
then, the revolution has brought this point, not upon a graduation
of the limb, but at a fraction of a division beyond a certain
graduation P; then, to measure this fraction, we have only to
move the cross-thread from the point of reference into coincidence
with the graduation P, and read the number of divisions of the
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micrometer head. If more than one revolution of the screw is
required, the whole number of revolutions will be shown by the
number of notches in the field passed over by the cross-threads,
and the fraction of a revolution by the micrometer head. Then,
knowing the relation between a division of the micrometer head
and one of the circle, the value of the required fraction is at
once found. For example, suppose a division of the circle is
equal to 5, and that five revolutions of the micrometer screw
just carry the cross-threads from one circle graduation to the
next; and, further, that the micrometer head is divided into 60
equal parts; then each revolution of the screw represents 1/, and
each division of the micrometer head represents 1’’. If then we
have made three whole revolutions, and the micrometer head
reads 25.8, the required fraction is 8’ 25/”.8. If the graduation
P was 289° 85/, the whole reading is 289° 88’ 25'.8.

The coincidence of the point of intersection of the threads
with a graduation of the limb is made in the manner shown in
Fig.2. In many of the German instruments, instead of a cross-
thread, two very close parallel threads are used, the middle
point between which is the point of reference, and a coincidence
is made by bringing the circle division to bisect the space
between them. This bisection is, of course, estimated; but it
may be effected with very great accuracy where the threads are
very close. Their distance should be very little greater than
the breadth of the graduations of the limb. BessEL preferred
the parallel threads; but it is, perhaps, doubtful whether they
afford any advantage in the hands of most observers.

The spiral springs bb serve to make the screw bear always on
the same side of the thread, so that in reverse motions of the
screw there is no lost or dead motion, that is, revolution of the
screw without a corresponding movement of the cross-threads.
But, to guard against the possible existence of lost motion, the
coincidence of the cross-threads with a circle division should
always be produced by a motion of the micrometer head in one
and the same direction.

22. Error of Runs.—When a reading microscope is in perfect
adjustment, a whole number of the revolutions of the screw is
equal to the distance of two consecutive graduations of the circle.
To effect this, provision is made for lengthening or shortening
the microscope tube, and also for moving the whole microscope
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farther froin or nearer to the circle. In this way, the magnitude
of the image of a division as seen in the field can be changed
until it corresponds exactly to a whole number of revolutions of
the screw. For example, if a whole number of revolutions is
greater than the image of a circle division, the objective lens
must be brought nearer to the ocular, and at the same time the
whole microscope brought nearer to the circle.

But, as changes of temperature and other causes are found to
produce changes in the value of a division of the microscope, and
it is not expedient to be always changing the adjustment, it is
usual, after making one very exact adjustment, to let it stand, and
then determine from time to time the correction of a reading for
dny change of value which may appear. The excess of a circle
division above a whole number of revolutions is called the error
of runs, and a proportional part of this excess must be allowed
on all readings. This error is to be found by measuring several
divisions in different parts of the circle and taking the mean of
all the results, in order to eliminate the effect of errors in the
circle graduations themselves. For example, if a division exceeds
five revolutions of the screw by + 2/’.2, then for each minute in
the fraction of a division obtained by the ”micrometer we must

apply to the reading the correction — %2—, or — 0”7.44. The

error of runs will take the negative sign, and the correction for
it the positive sign, when a circle division falls short of a whole
number of revolutions of the screw.

28. To increase the accuracy of a reading, several microscopes
are used, having a fixed position relatively to each other, by
which the fraction of a division in the reading is measured at
different points of the circle and the mean of the different mea-
sures is taken. Two microscopes are placed so as to read at
opposite points of the circle, that is, the angular distance of the
microscopes i8 180°, or differs but little from 180°; three micro-
scopes are placed at 120°, four at 90°, &c.; or, in general, what-
ever the number of microscope, they are placed so as to divide
the circle into equal portions. The whole degrees and minutes
are read only at one of the microscopes. In large instruments,
where the field of the microscope takes in but a part of a degree,
the number of degrees and minutes of the nearest circle division
is read off by means of an index outside the microscope, or,
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indeed, wholly separate from it, the microscope being used
exclusively to measure the fraction of a division.

24. The probable error of a reading of one microscope being e,
that of the mean of m microscopes ¢, we have (Appendix,

Method of Least Squares)

that is, the probable error of the mean varies inversely as the

square root of the number of microscopes. For example, if the

probable error of reading of one microscope is 17, that of the
” n

1 l.__ 144 . 1__. /" K.
mean of two will be i 07.71; that of four, i 0’7.5; that of

8ix, 1—}—6 = 07.41, &c.; and the error will decrease but slowly as

the number of microscopes increases. It would require sixteen
microscopes to reduce the error to 0’/.25. On this account, the
advantages of increasing the number of microscopes beyond
four, except in instruments of the largest class, are usually
regarded as outweighed by the greater liability of the apparatus
to derangement.

The use of a number of microscopes or verniers is, however,
not splely to increase the accuracy of reading, but also to elimi-
nate the errors of the circle itself, as will be seen in the following
articles.

ECCENTRICITY OF GRADUATED CIRCLES.

25. The centre of the alidade is seldom, if ever, even in the

best instruments, exaetly coincident with the Pig. 15.

centre of the graduated arc. To investigate P
the effect of such e¢centricity, let C'(Fig. 18) 4
be the centre of the alidade, ¢’ that of the / » @
circle; CA a straight line joining C and the % E

centre of one of the reading microscopes;
C’A’ a parallel to CA. When the micro-
scope reading is at A4, the true reading is at
A’. Let the diameter drawn through C and C’ intersect the
graduation at &, and let O be the zero of the graduation, which
we will suppose is numbered from O towards 4. Put

2 = the microscope reading,

2 = the true reading,

E = KO,

¢ = the eccentricity C'C".
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It is to be assumed that such care has been bestowed upon the
centring of the instrument that e is very small, and, therefore,
that the arc A4’ = 2’ — 2 may be regarded as equal to the per-
pendicular CP: so that we have, since the angle EC'A’ =2z’ 4 E,

Z—z=esin(Z+ E) ®

in which e must be expressed in arc. In the factor sin (2’ + E)
we may substitute 2 for 2z’ without sensible error.

‘When 2/ + E = = 90°, we have 2/ — 2 = = e: so that ¢ is the
maximum error of a reading, and this maximum occurs when
the reading is 90° from E.

26. Now, let ACand A’C’ be produced to meet the gradua-
tion again at the opposite points B and B’, and let the alidade
carry a second microscope at B. The degrees and minutes may
be supposed to be obtained from the microscope A, while B is
used only to give the seconds. Put

z = the division of the circle under A4,
A and B = the readings of the microscopes,
Z = the true reading corresponding to 4.

Then the whole reading given by 4 is z + 4, and by (9) we have
Z=2z+4 A+ esin(z+ E)
and the microscope B gives

180° 4 2 =180° 4 2 4 B + e8in (180° 4 z + E)
or
Z2=2z+ B—esin(z+ E)

The mean of the two microscopes is then
7=2z41(4 + B)

Hence the eccentricity is fully eliminated by taking the mean of
two microscopes 180° apart. In general, an even number of
microscopes are employed, which are arranged in pairs, so that
the mean of each pair, and, consequently, of the whole, will be
free from the eccentricity.

27. The eccentricity may also be eliminated by three micro-
scopes or verniers, whose mutual distance is 120°. If 2 + A,
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120° + z 4 B, 240° 4 z 4 C are the readings of the three
microscopes, the true reading corresponding to 4 will be

?=z+4+A—esin(z+ E)
Z2=2-+4B—esin(120° 4 z 4 K)
?=2+4 C—esin(240° 4 2 4 E)

and since, by Pl. Trig., we have
8in (120° 4 2 4 E) + sin (240° 4+ 2 + E)= —sgin(z + E)
the mean of these three equations is
Z=z+{(4+B+0)

Indeed, it will readily be inferred from the discussion in Arts.
81 and 82 that the eccentricity will be eliminated by taking the
mean of any number whatever of equidistant microscopes.

28. To find the eccentricity.—The two opposite microscopes may
not be perfectly adjusted at the distance of 180°, and hence we
shall here put

180° 4 o = the angular distance of the microscope B from 4 ;
and then, if we put, as before,

2 = the division under the microscope 4,
4 and B = the readings of the two microscopes,

the true readings will be

Z=2z+4 A+ esin(z 4 E) 10
180° 4 o 4 2/ = 180° 4 z + B - ¢ 8in (180° + z + E) } 0

for the second of which we take
?7=2z+4+ B—a—esin(z+ K)

If, therefore, we put
B—A=n

the difference of the two equations gives the equation of condition
n=a + 2¢6in(z 4 E) 1y

in which a, ¢, and E are unknown. Let the values of n be
obtained from the readings of both microscopes at four equidistant
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points ef the cirele, namely, z,, 2+ 90°, 2, + 180,° and z,+ 27Q°,
“and denote these values by n,, n,, n, %, respectively: then, by
putting

P=2z+ E
we have
n, =a + 2¢ sin P = a4 2¢8in P
n,=a+ 2e8in (P4 90°)=a + 2¢cos P
n, = o 4 2e8in (P + 180°) — o — 2e8in P
ty =10 + Zesin (P4 270°) =a — 2¢ cos P
whence

d4esin P = n,— n, ,
4ecos P=n, —n, } 12

which determine both e and P, after which we have E= P—z,
The value of @ is evidently the mean of the values of n.

ExaMPLP.

The readings of a pair of opposite microscopes of the Repsold
Meridian Circle of the U. 8. Naval Academy were as follows:

s A B Values of n =B— A4

0° + 4"0 — 6".7 n, = — 10".7

9 | +6.9 | —138 | n,=—25

180 +56.38 — 16 .5 nyg= — 21 8

210 | —12 | — 12| n,= 0.0

From these we obtain

desin P = + 11”11 log 1.0453
decos P= — 20".5 log n1.8118
P = 151° 84’ log tan P 79.7835
e= b".83 log 44 1.8676

Hence, since 2,==0°, we have E = 161° 84/, and any single
reading of the microscope A4 requires the correction for eccen-
tricity

+ 5".88 sin (z 4 151° 84")

The mean of the values of n gives @ = — 18’%.25, and the angular
distance of the microseope B from A is 179° 59’ 46/'.75.

The same process may be used for any other four equidistant
points of the cirele, and the mean of the various results may be

taken.
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29. With three nearly equidistant microscopes the eccentricity
ean be found from two complete readings at points 180° apart.
Let the angular distances of the microscopes B and C from A4 be
denoted by B and r; and, z being the division under 4, put
P=2 + E; then wa have, for the true reading at. 4, -

Z=2z2+4+ A+ esinP
Z=2z+4+ B —f + esin(P + 120°)
Z2=2z+4 C—yr + esin(P + 240°)

Subtracting the first equation from the mean of the other two,
snd putting

}B+C)—~4d=n
we find

n=4@G+8 +3esinP
and subtracting the second from the third, and putting
3(C—B)=4d

d=3G—F+3y8ecos P

If we read a second time with the microscope 4 over the division
z 4+ 180°, and obtain the readings A’, B’, (¥, we shall have

JB+0)—4 =n
('~ BY=2'

and since we shall have 180 4~ P instead of P, we. shall obtain

=4+ A8 —3esinP
=3 —B—4sy8ecos P

¢sin P= j(n —n)
ecosP=}/3(d—d")

which determine ¢ an@ P. We find also

A=3(B—4+ B —4)
y=3(C—A4 40 —4)

we find

L4

ence

80. In order to determine the eccentricity with greater accu-
racy, and to eliminate, as far as possible, errors in reading and
socidental errors of graduation, the circle may be read at a great
number of equidistant points. Each reading of a pair.of oppor
site verniers or microscopes furnishes an equation of condition
of the form (11), and from all these equations the most probable
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value of the eccentricity will be deduced by the method of least
squares. The computation according to this method is rendered
extremely simple by the application of some theorems relating
to periodic functions, which, on account of their utility in this
and similar investigations, will be here demonstrated.

81. Periodic Functions.—The circumference of a circle being
denoted by 27, any commensurable fractional portion of it may be
expressed by 27 x%’ = 2—’;—, p and ¢ being whole numbers; and

the successive multiples of this fractional portion by m- 2pr, by

supposing m to take successively the values 0, 1, 2, 8, &c. If
now we consider only the multiples from m =0,tom =¢ —1,
we shall have the following theorems:

THEOREM L.— When p is not a multiple of ¢,

Esinm. 25 =0 ‘ 18)

Z'cosm-z—;lr:O 14)
but, when p is a multiple of q, Y

Zsin m.%”= (15)

X cosm. 25 =q 16)

where the summation sign X is used to denote the sum of all
the quantities of the given form between the given limits, namely,
fromm=0tom =¢ — 1.

To prove this, put

cos—-+1/ 1 gin —q’-’—”:T
then, by MoIvre’s formula. [Pl. Trig. (440)],

cos m. —+1/ 1smm2—q— =7

Taking the sum of all the expressions of this form from m = 0,
to m = ¢ — 1, we have
2pr . 2pr  T*—1
Zcosm-—q—-l—v—l)fsmm.—q-_—m (17)
But we have again, by Morvre’s formula,

T*=cos 2pr + 1/ —1sin 2pr =1
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and, consequently, 77— 1=0. The second member of the
above formula, therefore, becomes zero, unless the denominator
T—1is zero, that is, unless 7’=1. Now, we can have I'=1 only

when sin ¥ = 0 and con 2% — 1, that is, only when p is a mul-

tiple of ¢. In all other cases we have, therefore,

Zoosm +V 12'smm2: =0

and, since the real and the imaginary terms must here be sepa-
rately equal to zero, the first part of our theorem is established.

When T'= 1, the second member of (17) becomes g. but is not

really indeterminate ; for, going back to the geometric progres-
sion of which this is the sum, we have

T — —t
T—l + T +..... + TI"1=gq

and hence, when p is a multiple of q, we have
Zoosm-z-jff-l- V—1 L'sinm-g%"=q

which establishes the second part of the theorem.
TarorEM IL.— When 2p is not a multiple of g,

Z| sin m-2—}q’—x)’=!q as)
2pr ’_
Z(cos m-—q——)—iq (19)
but, when 2p is a multiple of q,
. 2pr\
Z‘(mn m. g )_0 20)
2’( cos m-%’)’= q 1

Yor we have, for any angle z,

sintx =4 — Jcos 2z
and, therefore,
. 2p=\* 4pr
z —)=2
(smm q) (5 § cosm. q)

=§q—§2cosm.%’
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which, by Theorem I., gives either (18) or (20). Again

E(cos m-.2—;—-px)’= 2[1 —(sin m-m)’]
=q— (sm m. 2%")
which gives either (19) or (21).

THEOREM IIL.—For all integral values of p and q we have, from

Zsinm-z%”cosm.z—z-n=0 (22)

for this is the same as the quantity

525inm-%’=.=.0

82. Now, let the circle be read off by a pair of opposite micro-
Bcopes, A and B, at any number of equidistant points. The circle
is thus divided into a number of equal parts, each of which may

be denoted by —"- If the first reading corresponds to the d1v1-
sion zo, the subsequent readings will correspond to zo+ —,
2,4+ 2. —q-» 2+ 8- — &c. to 2+ (¢ — 1)—- Each reading fnr-

nishes an equation of condition of the form (11), givipg, therefore,
the following system, where P = z,+ E:

n,=a + 2e¢s8in P
n,=o+2esin(P+ gq:)
n,=o+2esin(P+%~”)

“« 43 €«

14 « «
n_,=a+ 2e¢ sin(P + ?Q_;M)
which are all included in the general form

n —u+2esm(P+2—Z:)

m being taken from 0 to ¢ — 1.
Developing the sine in the second member, we have

n_=a -+ 2¢sin Pcos% + 2e cos Psin 2—:—"5

Al
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In this form, the three unknown quantities are a, esin P, and
ecos P. The final equation in each unknown quantity, according
to the method of least squares, is to be found by multiplying
—each equation of condition by the coefficient of the unknown
quantity in that equation, and adding together the products.
This process gives, by the aid of the theorems of the preceding
article (observing that here p = 1),
go=2n,
2mn)

ge sin P= .‘:(n_ooa——

q (28)

ge cos P= E(n-sin g—?—-ﬂ)
These formuls embrace, as a particular case, the solution already
given in Art. 28 for ¢ = 4.

EXAMPLE.

The following values of n = B — A weére obtained from the

readings of two opposite microscopes of the meridian circle of
the U. 8. Naval :Academy:

2 n H n 2 n 2 n

0° | —10".7] 90°| —20”.5|(180°| — 21”.8 {{270°| — 0".0
10 11 .6!/100 20 .7 {190 18 .8 {1280 18
20 12 .8 ({110 21 .0 (/200 16 .4 |(260 2 4
80 14 .711120 21 .2 | 210 11 .8 {1800 4 .6
40 16 .31(180 22 .8 || 220 7 .811810 5.1
50 17 3| 140 24 .7 |{ 230 4 3820 7 4
60 18 .5 | 150 23 4| 240 1.91330 9 4
70 18 .1|(160 22 511250 | — 2.0(340 11 .7
80 19 .711170 22 .31/260 | 4+ 0 .31850 11 .6

‘We have here ¢ = 86, and -24—" = 10°: so that 2%‘1 is successively

0°, 10°, 20°, &c. We find, first, by taking the sum of all the
values of n,
86 o — — 476".2 o= —13".28
and hence the distance of the microscope B from A was
179° 59’ 46/'.77.
To find gesin P, we multiply each n by the cosine of the angle
to which it belongs, and add the products. In like manner,
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gecos P is found by multiplying each n by the sine of the angle
to which it belongs, and adding the products.* We thus form
the following table, in which, for brevity, we put ncosz

and nsinz for the quantities denoted in our formule (23) by
n coszﬂ and n,, sin Zmr
" q - q

2 n cos 3 n sin z 2 n Co8 2 n sin 2
0°] —10".70 |— 0".00 180° | 4 21”7.80 | 4+ 07.00
10 | —11 42 |— 2.01 190 | +18 02| + 38 .18
20 | —12 .03 | — 4 .38 200 | +15 41| 4+ 5 .61
80 [ —12.78— 7 .85 210 | +10 .22 | 4+ 5 .90
40 { —12 49 |— 10 48 220 | 4+ 5.98| 4+ 5.01
50 | —11 .12 |— 13 .26 230 | 4+ 2.7671 + 8 .29
60 | — 9 .25 |— 16 .02 240 |+ 0 .95 |+ 1.65
70 | — 6.19|— 17 .01 250 | + 0 .68+ 1.88
80 | — 8 42 |— 19 40 260 | — 0.05 — 0.3
90 0 .00 | — 20 .50 270 0 .00 0 .00
100 | + 3 .59 |— 20 .39 280 | — 0.23 (4 1.28
110 { 4+ 7 .18 | — 19 .78 290 | — 0 82|+ 2.26
120 | + 10 .60 | — 18 .36 800 { — 2 .26 |+ 8.9
180 | + 14 66 | — 17 47 810 | — 8.28| + 8 .91
140 | 418 92 | — 15 .88 820 | — 5.67| + 4.76
150 | 420 .26 |— 11 .70 830 | — 8.14| + 4.70
160 ( 421 14 [— 7.70 340 | —10 .99 | + 4 .00
170 | +21 96 |— 8 .87 350 | —11 42| 4+ 2.01
Sums| + 28 .96 | —225 .50 + 82 .97 | 4 58 .04
36esin P = 4 28".96 4 32”97 = 4 61".93 log 1.7919
862 cos P = — 225 .50 - 53 .04 = — 172 46 log n2.2367
P =160° 15 log tan P n9.5552
e= 5".09 log 86e  2.2630

Then, since z,= 0°, we have E= P, and each reading of the
microscope A requires the correction, for eccentricity,

+ 5”.09 sin (z + 160° 15" 29

* The several products may be taken by inspection from a traverse table, by enter-
ing the table with the angle z asa ‘‘ bearing’’ and with n as a ‘“distance,” and taking
out the corresponding ¢ difference of latitude” and ¢ departure,” which will be,
respectively, the products required in forming gesin P and ge cos P.
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ELLIPTICITY OF THE PIVOT OF THE ALIDADE.

33. If the pivot of the alidade is the horizontal axis of a
vertical circle, as in the case of some meridian circles, or if, as
in other cases, the alidade is fixed to a pier while the pivot of
the horizontal axis of the circle revolves in a V, then any defect
in the pivot, which renders a section at right angles to its axis
other than a circle, will cause the centre of the alidade to vary
its distance from the centre of the graduated circle during a
revolution of the instrument. If the section of the pivot is any
regqular figure, the variations in the readings of a single micro-
scope may be regarded as a function of the division (2) which is
under the microscope, and the correction of this reading may be
denoted by ¢ (2). The correction of the reading of the opposite
microscope must be — ¢ (2). In order to investigate the form of
the pivot without involving the errors of eccentricity or of gradua-
tion, let us denote the correction of the division z for both these
errors by 4 (z), and that of the division 180° 4 2, which is under
the opposite microscope, by 4 (180° 4 z). Then, A and B being
the readings of the microscopes, and 180°+ a their constant
distance from each other, we have

Z=z4 A4 + e+ 4
Z=z+4+ B— o —¢(2)+ +(180° 4 2)
whence

0=B—A4—a—2¢p()—4()+ +(180°42)

Now, let the division 180° + 2z be brought under the microscope
A, and let A’ and B’ be the microscope readings; then we have
the true reading 2’/ by the equations

2'=180°4 z 4+ A + p(180° + z)+ ¢ (180° + 2)
2'=180 4 z+ B'—a — ¢(180° 4+ 2)+ 4 (2)

whence )
0=DB'—A'—a —2p(180° + 2) + 4 (2) —4(180° + 2)
therefore, if we put

}JB—A+ B —A)y=n
we have

W =a + ¢(2)+ ¢(180° + 2) (25)

the errors of eccentricity and of graduation being wholly elimi-
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nated. The form of the function ¢ is yet to be determined;
since, however, it necessarily returns to the same value after one
complete revolution, we may assume for it & general periodic
geries, namely :

¢ () =f'sin @z + F') + f"sin (22 + F") 4 f"sin Bz 4 F'") 4 &e.
in which f/, F, f!, F, f'"", F'"", &c. are constants. Hence also
#(180° 4 2) o= — f" 8in (2 F") 4-f" sin (224 F")—f" sin (82-4-F")+ &v.
and

9 (2) + 9 (180° 4 2) =2f" 8in (22 + F") + 2f" sin (424 F™) - &e. (26>

The combination of two readings 180° apart gives, therefore,
the equation of condition

&' == o + 2f"8in (22 4+ F") 4 2f™sin (dz + F") +-&o.  (27)

If we have read the circle at 2¢ equidistant points, so that the
number of such equations is ¢, then the values of 2z are success-

ively 0, u ‘%": L’;ql)—”» and the general form of the equation

of condition is
. 2z . 4r .
W =a4 2f”sm(m. i + F") + Zf"sm( m. 7 + F"\’ + &c.  (28)
m being taken from 0 to ¢ — 1. If we treat these equations by

the method of least squares, we shall readily find, by the aid of
the theorems of Art. 81,

qa = Z’n'_
qf"sin F"= 2‘( n'_cos m-
qf" cos F"' = E( n'_sin m.
qf'sin F'* = 2‘( n'_cosm.

)

) ()
)

)

q f"cos F'* = 2( n'_sin m.
&e. &o.
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ExaxrLR.

To investigate the form of the alidade pivot of the meridian
circle, in the example of Art. 82, the readings there given are
combined as follows:.

4

s |B—A|B—4[ W s (B4 |B—& W |
0° (—10".7| —21”.8|— 16".26 || 90°(—20".5 [— 07.0 |— 10".25
10 11 6{ 18 .3} 14 .95[100| 20.7 18] 11.00
20 12 .8 16 .4/ 14.60) 110 21.0 24| 11.70
80 4.7p 11.8) 13.25) 120 21 .2 4.5 12 8
40 16 .8 78] 1205130 22.8 6.1 18 95
50 17 .8 4.3 10.80) 140 ) 24 .7 74| 16.06
60 18 .6 1.9/ 10.20( 150 | 23 4 94| 16 .40
70 18.1]1— 2.0 10.05)160| 22.5( 11.7| 17.10
80 19 .71+ 0.3 9.70( 1707 22 .81 11.6] 16 .95

Bince here ¢ = 18, the sum of the values of n” gives

188 = — 288".10

& =5 v~ 18"-23

Then, with the aid of a traverse table, we find the values of.

%' cos 2z and ' sin 2z, as below ;

s w oos 32 n'sin 23 F3 n' gos 22 n’sin 22
0| —16"25 | — 0700 || 90° | 410725 | + 07.00
10 | —14.05|—5.32[ 100 | +1084| + 8.78
20 |—11.08| — 988 100 |+ 8904 7.53
30 | — 663 —11.48[ 120 |+ 6.48| 1118
40 | —2.09| —11.87] 130 |+ s42} +18 .74
50 |+ 1.88| —~10.64 f 140 |~ 2.79 | +15 81
60 |+ 5.0 — 8.83 [ 150 | — 8.20 | +14 .20
70 |+ 770 |~ 6.46] 160 [ —18.10 | 410 .98
80 |+ 9.a2| — 32| 170 | —15.98 |+ 5.80 ||
Sums | —26 .40 | —67 .10 — 1.62| +82.95 |
18 f"sin "= — 28”02 tog n1.4475
187" cos F' = + 15 .85 log 1.2000
Fr— 209080 log tan P n0.2475
= 1"19 log 18 /" 1.5078

Vor. IL—4
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In the same manner, we find, from the sums of the products
n’ cos 42 and 7’ sin 42,

18 f*sin F*— 4 0”.15
18 £ cos F'* — 4 2".00

Fr= 4°17
. ff= o1
Hence we have

¢ (2)+9 (180°-+ 2)=3".58 sin (2 2+209°30)-0".22sin (4 2-+4°17") (30)

The term in 4z is so small that we may suppose that it proceeds
from the accidental errors of reading, and irreqularities of the
pivot, and we may, therefore, disregard it, as well as the subse-
quent terms in 62, &c.
. BEsseL has shown* that if the section of a pivot which rests in
a'V is an ellipse, the centre of this ellipse will, as the instrument
revolves, move in the arc of a circle the centre of which is the
angular point of the'V t; that during a complete revolution the
centre of the ellipse describes this arc four times,—twice forwards
and twice backwards; and that the effect of this motion upon
the reading of & single microscope is expressed by a term de-
pending upon 22.

Hence, the last term of (30) being neglected, the remaining
term may be regarded as the effect of ellipticity of the pivot, and,
since we must then have ¢ (2) = ¢ (180° 42 ), it follows that

@ (2) = 1.79 sin (2z + 299° 80") (1)

Upon the hypothesis that the pivot is elliptical, the observed
values of n’ should satisfy the equation (27), which in the
present case becomes

' = — 13".28 4 8".58 sin (22 -+ 209° 80")

at least within the errors of reading. To show that this
hypothesis explains the observations in the present case suffi-
ciently well, the following comparison is made, in which the
value of n' computed by the preceding formula is denoted by
C, the observed value by O, the residual error, or O — C, by v.

* Astronomische Beobachtungen auf der Sternwarte in Konigsberg, Vol. L. p. xii.
+ Provided the angle of the V is ninety degrees,

\
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s o (4 L] w I ] o c L] ov l
0° |— 16”.25|— 16”.86|4- 0”.10{ 0.0100{| 90°|— 10”.25{— 10”.11|— 07.14]0.0196,
10 14 .95 16 .55|4 0 .60| .8600)(100 11 .00 10 .91]—0 .09 .0081
20 14 .60] 14 .48/—0 .12| .0144{110 11 .70 11 .98(4 0 .28] .07
30 18 .25 18 .26|4 0 .01| .0001{120 12 .85 18 .20|4-0 .86 .1225)
40 12 .056| 12 .08|—0 .02| .0004/130 18 .95 14 .438|4- 0 .48| .2804)
b0 10 .80 10 .95+ 0 .15 .0225|1140 16 .05 16 .51|— 0 .64| .2916
60 10 .20 10 .15{—0 .06 .0025|,150 16 .40{ 16 .81}—0 .09| .0081
70 10 .06 9 .71]—0 .84| .1166/!160 17 .10 16 .76|—0 .85 .12
80 9 .70 9 .70 0 .00 .0000|]170 16 .95 16 .76|—0 .19| .0861

If we denote the mean error of a single observed value of n’
by e, we have (Appendix, Method of Least Squares), ¢ being the
number of observations,

e — \ ( "(vv)) \/l 4428 — 0729

and this quantity also expresses the mean error of a single
reading of one microscope of this instrument. This mean error
of a reading was also found by comparing a number of successive
readings of the same microscope on the same division, which
gave 077.86: so that the agreement of the above computed and
observed values of n’ is even closer than is necessary to sustain
the hypothesis of an elliptical form of the pivot. It is also evi-
dent that the addition of the term 0.22 sin (42 + 4° 17’) of (30)
would but slightly reduce the mean error of n'.

84. The error introduced by the ellipticity of the pivot, like
that produced by the eccentricity of the circle, is fully eliminated
by taking the mean of the readings of a pair of opposite micro-
scopes. If, however, the arms of the alidade, carrying the
microscopes, do not preserve a constant inclination to the horizon
during a revolution of the instrument, the readings of both
microscopes will be increased or diminished by the whole
amount of the change of inclination, and, consequently, their
mean will involve the same error. A level placed on the alidade
18 usually employed to determine these changes of inclination,
and the readings are finally corrected according to its indications.

ERRORS OF GRADUATION.

85. Errors of graduation of a divided circle may be either
reqular or accidental.



&2 MEASUREMENT OF ANGLRS.

The regular or periodic errors are those which recur at regular
intervals according to some law, and which may, therefore,
be expreseed as functions of the reading itself. Even the error
of eccentricity, above considered, may be treated as such a
periodioc error of graduation, since its effect upon the reading
(2) is the same as if the graduation everywhere required the
correction esin (2 + E). The sum of all the corrections for such
periodic errors, regarded as a function of the reading (z), and
denoted by v (2), must have the general form

+(2)=w'sin (z+ U") +u"sin (2z+ U")+ u" sin (82 + U™) + &e. (32)

in which «/, U’, v, U", &c. are constants. The shorter the
period of any error, the higher is the multiple of 2 in the term
representing it.

Now, let the eirele be read by ¢ microscopes at ¢ equidistant

points, namely, at all the points expressed by
2x
z =z4m—
* q

m being taken successively 0,1, 2,8..... (g — 1), and z deing
the reading of the first microscope; then we shall have, for the
correction of any one of these microscopes, the general expression

Q(z_):::u'cin(a-{- U+m. 2—;)4- u”si:n(2z+ U"+n-‘-g—')+&.o.

The discussion of this series will be abridged if we express it
under the following general form :

¥)=2 u"’sm(pz+ U» 4 m. Ig”')
in which p is successively 1, 2, 8, &c., and I, denotes the sum
of all the terms thus found. Developing the sine, this gives
¥ (2)=2 u®sin (pz+ U*®)cosm- 3%’5 +Zu®cos(pr+ UP)sinm. ?—g—f

The mean of the ¢ microscopes will, therefore, require the cor-
rection

2"'“‘ (_)._-2' {u"’sin(pz+U"’) z “cos m. 21;'

+ 1):,[“(» cos (pz + U®). T *sin m- gﬂ]
q w=a q
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Bat we have (Art. 31), from m =0 to me=g—1, Esinm-agzsco

in all cases; and also 3 cosm-z—p’— =0, except when p is a mul-

tiple of g, or p = rq, in which case this latter sum is equal to g.
Hence ull the terms of the above expression which do not vanish
are expressed by the formula

;"' Ty (2) = I, uvsin (rgz + Uov) (33)
r being successively the integers 1, 2, 8..... ; whence the fol-

lowing important theorem: The lerms of the periodic series not
eliminated by taking the mean of q equidistant microscopes are thosc
orly whick involve the multiples of gz.

Thus, the mean of two microscopes requires a correction of
the form

w”'8in (22 + U") + u"sin (42 4+ U™) + &e.;
the mean of three microscopes, the correction

u"8in (8z 4 U™) 4 w"sin (62 4 T™) 4 &c.}
the mean of four microscopes, the correction

u'" sin (4z 4 U"™) 4 u™sin (82 + T™) + &o.
&e. &e.

86. The values of the terms of the periodic series which are
eliminated by means of a number of microscopes may be found
from the readings of these microscopes themselves. Thus, for
two microscopes, the readings of which at the divisions 2 and
£ + 180° are 4 and B, and whose angular distance is 180° + a,
we have

d=z+44 ++(d +9(2)
Z=2z+4+B—a+4(z+180°)—¢(2)
*n which ¢ (2) is the correction for the form of the pivet (Art. 83).
Hence, putting B — A = n, we have

n=a 4 4(2) — ¥ (z + 180°) 4 29 (2)
But we have

(@) =1u'sin(z +U") 4 u"sin (22 4+ U") + w"sin B2+ U™ + &o.'
and hence, substituting z + 180° for 2,
¥(2+180°)= —u'8in(z 4 U")+u" sin (224 U")—u" 8in(82 + U"")+-&e.

\
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For ¢ (z) we have already found the form f*’sin (22 + F'’), and
therefore the value of n becomes

n=o-+2wsin(z+ U")-+2f"sin (22 +F")+2u” sin (324 U")+ &e. (34)

The readings being made for successive values of 2z expressed

generally by
2z

we have ¢ equations of condition of the form
n, = o+ 2W/sin (m-%”-l—U’) +2f"qin(m.'.‘-q’-'+p") + & (35)

m being taken equal to 0, 1, 2, 8....¢ — 1, successively. The
solution of these equations by the method of least squares gives

qu=2’n_
qu sin U’ =.’.‘(n_cosm-%—)=2(n cos z.)

o cos U’ ;z(n_dn m.2_ql')=z(n sin z)

gf” sin F" = E(n_cos m.4—q’—r)= Z(n cos2z)

qf" cos F" = E(n_sin m-?): Z (n_sin 22)

qu”' sin U = Z(n'cos m.%—“): Z(n_cos8z)

qu'" cos U= 2‘( n_sin m.¥)= Z (n_sin 82)
&e. &e. &.

ExampPLE.

The values of n given on page 45 for thirty-six readings of the
Meridian Circle of the Naval Academy give, by the preceding
formule, a = — 18,23 and

U’ =160° 1%, F" = 299° 80, U"=68°1Y
w= 5".09, ff= 119, w'= 069

The difference of the readings of the two microscopes 4 and B
of this circle is therefore represented by the formula

= — 18".28 -+ 10.18 sin (z + 160° 15') 4 8".58 sin (22 - 299° 30)
+17.88 sin (32 4 68°19)
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of which the terms in z and 2z of course agree with those before
found for the eccentricity and for the ellipticity of the pivot of
the alidade.

If now we compute the values of n by this formula for every
10°, we shall find that they agree with the observed values given
on page 45 within quantities which in almost every instance
are less than 1”. From this agreement we may presume that
this circle is very accurately graduated throughout.

87. In a similar manner, the terms of the periodic series which
do not involve the multiples of 4z can be found from the read-
ings of four microscopes. If A4, C, B, D are these readings at
the divisions 2z, z + 90°, 2 4 180°, z 4+ 270° respectively, and if
180° 4 a is the distance of the microscope B from A4, while
180° + 7 is that of D from C then the mean of the readings of
A and B gives

Z=z+4+ 144 B)— to+ 1[4(2) + +(z + 180°)]
=2z+4$(4 + B)— ta 4 v"8in (224 U") 4 u"sin (424 U" )+ &e.

and, consequently (exchanging z for z 4 90°), the mean of thé
readings of Cand D gives

Z2=2z+43(C+ D)y—¥r—u"sin(2z2+4U") 4 u""sin (42 4 U") —&o.
Taking the difference of these equations, and putting

n=4%(C+ D)—i(4 + B)
B=12%(G—a)

we have the equation of condition
n=4p 4 2u"sin(2z 4-U") 4 2u"sin (624 U™) 4 &c. (36)

and from the ¢ equations of this form we derive g, u”, U", &e.
by the process already employed.

The terms in z and 8z may be found from either pair of micro-
scopes as in the preceding article.

88. The accidental errors of graduation are those which follow
no regular law, and may with equal probability occur at any
given division with either the positive or the negative sign. An
error of this kind in any division is to be regarded as peculiar to
that division, and, therefore, as having no analytical connection
with other errors of the same kind. The use of a number of
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microscopes tends to reducs the effect of such errors, without
antirely eliminating them ; for (as in Art. 24) if ¢ is the probable
accidental error of a division, the probable accidental error in
the mean of m microscopes will be ;m-

The general character of the graduation, as to its freedom
from accidental errors, may be judged of by comparing the
values of the n of the preceding articles, computed from the
terms of the periodic series, with their observed values. The
differences will be composed of both errors of reading and acci-
.dental errors, which may be separated by employing an inde-
pendent determination of the probable error of reading. Thus,
if we have n = B — A, and have found the probable error of an
observed value of » to be ¢, and then, if we put

¢, = the probable error of a single reading,
= ¢ “ “ “ division,

the probable error of either 4 or B will be /(¢! 4 ¢Y), and that
of B— 4 will be 1/2(¢7 + ¢,'), whence

a=2(e24 ¢
which will determine ¢, when ¢ and ¢, have been found.

89. The accidental error of any division of the circle may be
directly found by means of an additional microscope which can
be set and securely clamped at any given distance from the
regular or fixed microscopes. Let us denote this movable
microscope by M, and let it be proposed to determine the error
of the division 2. Bring the division 0° under the microscope
A, and clamp the movable microscope M over the division z.
Let the true angular distance of M from A (which is as yet
unknown) be denoted by 2z + g, and let the readings of the two
microscopes, referred to the divisions 0 and z respectively, be
called A and M, then, z denoting the nominal value and 2’ the
true value of the arc from 0 to 2, we shall have

. Z+#=Z'+M—A
and the correction of the graduation 2 will be
Z—z=p—(M—A4)

or rather, since every division (and, therefore, 0° included) may
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be regarded as in error, this will be the difference of the correc-
tions of the graduations 0 and z, and we may write

(@ —e(0)=p—(M—4) (C1p)

in which ¢ () denotes the total correction of a division for both
periodic and accidental errors. The periodic errors being known
from previous investigation, the accidental error may be separated.

Now, to find the constant distance g, we resort to the well
known method of repetition. First, bring any arbitrarily selected
division Z under the microscope A4, then Z + 2 will be under
M; let the readings of the two microscopes be A’ and M’ re-
spectively. Then bring the division Z + 2 under 4, and, con-
sequently, the division Z + 2z under M, and let the readings be
A’ and M. 1In this way, let m repetitions be made, the micro-
scope A being successively placed upon the divisions Z, Z + z,
L+2y.00.... Z + (m — 1)z, and M successively upon Z + z,
4+ 22,Z 4 8,..... Z + mz; then we have, as in (37),

v(Z42)—o(D) —p (M —A")
?(Z+22)—p(Z 4 2)=p—(M" —~A")
o(Z+82)—9(Z+22)=p—(M"—4")

P(Z + M)~ 9(Z + (M —1) 2) = g — (M= — A=)

The mean of all these equations is
1 1
o [9(Z+m2) — (D] =p— 2(M—4)

If the number m is large, the mth part of the difference of the
sccidental errors of the extreme divisions Z and Z + mz may be
regarded as evanescent, and then, if we regard the first member
a8 composed only of the periodic errors already found, we shall

have
p=AEM—H+E0Zm—w2] @8

where the function 4 denotes a periodic error, as in Art. 35. If
this process be repeated a number of times, each time commencing
at a different division, the mean of all the values of x may be
regarded as entirely free from the effect of the accidental errors
of the first and last divisions. Thus, ¢ being found, the correc-
tion of the division (z) becomes known by (87).

If z is an aliquot part of the circumference = 2—7:—:‘, we shall have
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¢ (Z + mz) = ¢ (Z), since we have returned to the same division. ;
and the value of u is then rigorously

1
== (M — 4)

Thus, the fixed microscopes themselves, whose distance is 2=

may be at once employed in this manner (without an additional
microscope) to determine the errors of the divisions whose

. . 2 :
mutual distance is T”- If then we have four fixed microscopes

and one movable one M placed at the distance z from A, we shall
be able to find: 1st, the errors of the four cardinal divisions 0°,
90°, 180°, and 270°, by the fixed microscopes; 2d, the errors of
the divisions z, 90° + z, 180° 4 2, 270° + 2, by placing the micro-
scope A successively upon 0°, 90°, 180°, and 270°, and reading M;
3d, the errors of the divisions 90° — 2, 180° — 2z, 270° — 2z, and
360° —z, by placing M successively upon 90°, 180°, 270°, and
860°, and reading 4. Thus, after the errors of the four cardinal
divisions are known, the operation just described gives the errors
of eight divisions. A second operation with the microscope M
at the distance 2, from 4 gives in like manner the errors of eight
more divisions, =+ z,, 90° & 2,, 180° + z,, 270° =+ z;; and, more-
over, the errors of the divisions *+ z 2, 90° + z + 2, 180° & 2
*+ z,, 270° + 2 + z,, by placing the microscope A over =+ z,
90° + 2z, &c. successively while M is over + z + 2, 90° + z + z,,
&c., or placing M over =+ z, 90° = 2z, &c. successively while 4 is
over + 2 — 2, 90° &+ z — 2, &c. By judiciously combining all
the observations of this kind, the corrections of each degree of
the circle may be found.

In order to eliminate the effect of changes in the angular
distance of the fixed and movable microscopes occurring during
the observations and produced chiefly by changes of temperature,
it is proper to repeat each series of observations at a given dis-
tance 2z backwards, commencing this repetition by placing the
movable microscope M over the last division Z + mz and the
fixed one A over Z + (m — 1)z, and so returning to the first
assumed division Z. Also the readings on the eight divisions to
be determined should be made several times, say, once before
the first or forward repetition series, again, between the two
repetition series, and finally, after the second or backward repe-
tition series. Thus, the whole operation will embrace
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1st. Observations on the eight divisions,
2d. Repetition series forwards,

8d. Observations on the eight divisions,
4th. Repetition series backwards,

5th. Observations on the eight divisions.

By this symmetrical arrangement, the mean of the three deter-
minations of the errors of the eight divisions corresponds to the
mean state of the apparatus as found from the mean of the two
repetition series.*

THE FILAR MICROMETER.

40. For the measurement of small angles, not greater than
the angular breadth of the field of the telescope, graduated cir-
cles may be wholly dispensed with, and a micrometer attached
to the eye end of the telescope may be substituted with great
advantage both in respect of accuracy and facility of manipula-
tion. Indeed, for many purposes to which the micrometer is
adapted, divided circles are entirely out of the question; for
example, the measurement of the angular distance between the
two components of a double star.

Micrometers, however, are very frequently used in combina-
tion with graduated circles; as in the meridian circle.

41. The filar micrometer is the same in principle as the micro-
meter employed in the reading microscope (Art. 21), only more
elaborate and complete when intended to be used at the focus
of a large telescope. It is variously constructed, according to
the instrument with which it is to be connected. A very com-
mon form which involves the essential features of all the others
is sketched in Plate II. Fig. 8, where the outside plate and the
eye piece are removed and the field of view exhibited. The
plate aa is permanently attached to the eye end of the telescope
tube at right angles to the optical axis. The plate b, carrying
the thread mm, slides upon aa, and is moved by the screw B.
The plate cc, carrying the thread nn, slides upon bb, and is
moved by the screw C. The threads are at right angles to the

* This process, which is due to Brsser, will be found more fully discussed in the
Konigsberg Observations, Vol. VIL., and in the Astron. Nach., Nos. 481 and 482. See
also C. A. F. Perers, Untersuchung der Theilungsfehler des Ertelschen Verticalkreises
der Pulkowaer Sternwarte (St. Petersburg, 1848); and Haxsex in the Astron. Nach.,
No. 838.
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direction of the motion produced by the screws. Their dis-
tance apart is changed only by the screw C, which carries a large
graduated head, by means of which this distance is measured.
The screw B merely shifts the whole apparatus b, so that the
threads may be carried to any part of the field of view. A
notched scale in the field of view, the notches of which are at
the same distance apart as the threads of the screw C, is at-
tached either to the plate bb, or to the plate cc (in the figure, to
the latter); in either case the number of notches between the
threads indicates the whole number of revolutions of the screw
by which the threads are sepmrated, while the graduated head
of C indicates the fraction of a revolution. Finally, at least
one thread is stretched across the middle of the field at right
angles to the micrometer threads: sometimes three or more
equidistant and parallel threads; these are usually attached to
the plate b6. In micrometer measures the thread mm usually
remains fixed while nn moves: the former is therefore usually
called the fized thread, and the latter the movable thread. The
threads at right angles to these are called {ransverse threads;
sometimes {ransit threads.

That portion of the telescope to which the micrometer is im-
mediately attached is a tube which both slides and revolves
within the main tube of the telescope, so that (by sliding) the
plane of the threads may be accurately placed in the focus of
the object glass, and (by revolving) the threads may be made to
take any required direction.

To measure directly the angular distance between two objects
whose images are seen in the field, we have first to revolve the
whole micrometer until the middle transverse thread passes
through the two objects; then, bringing the fixed thread upon
one of the objects and the movable thread upon the other, the
distance is at once obtained in revolutions and parts of a revolu-
tion of the micrometer screw. This measure is then to be re-
duced to seconds of arc, for which purpose the angular value
of a revolution of the screw must be known.

- 42, To find the angular value of a revolution of the micrometer
serew.—This value evidently depends not only upon the distance
of the threads of the screw, but also upon the focal length of
the telescope, since the greater the fooal length, the larger will
be the image of any given object.
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A rmst METHOD of finding the value of the screw is, there-
fore, to measure the focal length, F, of the object glass, and the
distance, m, between the threads of the screw (which is done by
counting the number of threads to an inch); then, if R denotes
the sngular value of a revolution, we have

im m
tan R = i or R = Feinl’ (C1))
as is evident from Fig. 2, p. 18, where we may suppose d, at
the focus of the lens AB, to be the space through which the
micrometer thread is moved by a revolution of the screw, and
the angular breadth of the object DL, of which d! is the image,
to be DCL = (4, and Cm = F, dl =m,

48. Seconp METHOD.—Measure with the micrometer any pre-
viously known angle A, and let M be the number of revolutions
of the screw in the measure; then, assuming that the middle
point of A4 is observed in the middle of the field,

2tan 34

tan R =
" I3

or, nearly, R= 40

Rix

The sun’s apparent horizontal diameter (see Vol. I. Art. 1384)
may be used for the angle A, if the field is sufficiently large to
embrace the whole image of the sun, which, however, is the
case only with small instruments, or with low magnifying powers,

The constellation of the Pleiades furnishes pairs of stars at
various distances, suited to instruments of various capacities:
and BesseL determined their distances with very great accuracy
with a view to this as well as other applications.*

The angle 4 in (40) is the apparent angular distance measured,
so that, when two stars are employed, their apparent distance
must be computed by subtracting the eorrection for refraction,
for which see Chapter X.

44, Tairp MeTHOD.—Point the telescope at a star, and let the
micrometer be revolved so that the transverse thread will coin-
cide with the apparent path of the star in its diurnal movement,
and the fixed micrometer thread will represent a declination
circle. Place the movable thread at any number M of revolutions

* Breaxy's datronomische Unterauchungen, Yol L p, 208.
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from the fixed thread, and note the times of transit of the star
over these threads by the sidereal clock, the telescope remaining
fixed during the whole observation. Denote the sidereal in-
terval between these times by I, the declination of the star by
J, the true angular interval of the threads by ¢; then (as will be
proved in the theory of the transit instrument) we shall find ¢ by
the formula -

sin { = sin I cos ¢ (41)
or, when the star is not within 10° of the pole,
i=1TIcos?d (41%)

after which the value of a revolution of the screw in seconds of
arc is found by the formula

_lgi_l5Icosa

B M M

(42)

For extreme precision, the correction for refraction should be
applied to 7; but if the observations are made near the meridian
the correction will rarely be appreciable.

‘We may in this process dispense with the use of the fixed
thread by setting the movable thread successively at different
points in the field, and noting the times of transit of the star
over it together with the number of revolutions of the screw
between the successive positions. In this way the regularity of
the screw may be tested throughout its whole length. If the
star is very near the pole, each observation should be compared
with that made near the middle of the field, and the true inter-
vals computed by the formula sin { = sin J cos 4.

This method is applicable in all cases where the micrometer
can be revolved so as to place the fixed and movable threads in
the direction of a declination circle. If the telescope is equa-
torially mounted, this can be done 1n all positions of the instru-
ment, and the star may be in any part of the heavens; but a
slow moving star near the meridian is to be preferred, if we
wish to avoid the correction for refraction.

The times of transit are supposed to be observed by a sidereal
clock, the rate of which if it is large should be allowed for. If
the time is noted by a mean time clock, the mean intervals are
to be converted into sidereal intervals (Vol. I. Art. 49).
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45. If the micrometer is attached to an instrument designed
only for the measurement of zenith distances, or differences of
zenith distance (as in the case of the Zenith Telescope), the
movable threads being always perpendicular to a vertical circle,
we can still employ this method of transits, by observing the
pole star, or any star near the pole, at the time of its greatest
elongation. At this time the vertical circle of the star is tangent
to its diurnal circle, and, consequently, the micrometer thread
will coincide in direction with this declination circle, as required
in the preceding method. If the instrument is not moved in
azimuth during the star’s transit through the field, the formula
for computing the interval i from the sidereal interval I is still,
as in the transit instrument, sini{ = sin J cos &; but it must be
observed that this formula here applies strictly only to the case
where the thread is at one time at the point of greatest elonga-
tion, and therefore each observation should be compared with
that taken nearest the computed time of elongation. To find
this time, we first find the hour angle ¢ of the star by the for-
maula (Vol. I. Art. 18)

cos t = cot d tan ¢

in which ¢ is the latitude of the place of observation; and
then, & being the star’s right ascension, we have

Sid. T. of gr. elongation — o =+ ¢

the lower sign for the eastern elongation.

If the instrument is slowly moved in azimuth as the star
crosses the field, so as to make each observation of a transit in
the middle of the field, the vertical distances between the differ-
ent positions of the movable thread are, rigorously, differences
of zenith distance, and the formula for the transit instrument is
no longer strictly applicable. I shall show, however, that it is
practically sufliciently exact. Let the zenith distance, hour
angle, and azimuth of the star at the elongation be denoted by
2, 1, and A4, respectively; those for any observation by 2, ¢, 4;
and let 4, and A4 be reckoned from the elevated pole. At the
time of the observation, the star, the zenith, and the pole form
an oblique spherical triangle, and we have the general relations

€08 3 coB ¢ = C08 ¢ €08 2 — 8in ¢ sin 2 cos 4
cos 3 8in ¢ = sin z sin4
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At the elongation the triangle becomes right angled at the star,
snd we have
cos t, == 008 Z, 8in 4,
sin z, cosz,cosd,
cos ¢ = " pin ?

sin ty=

From these we deduce

‘cos  8in t,cos t = 8in 2,08 z — €08 z,8in z cos 4, cos A
cos & coa t,8in ¢t = cos z,8in z sin 4,sin 4

the difference of which givea

cos & #in (t — #,)= — sin 2,c08 z | cos z,8in z cos (4,—4)
== 8in (¢ — 2,) — 2 cos z,8in z 8in* § (4, — 4)

where, if we neglect the last term and denote ¢ — ¢, by I, and
2 — 2z, by ¢, we have the formula for the transit instrument. To
obtain an expression for this last term, we take the relations

sin z cos A = cos ¢ 8in 3 — sin ¢ co8 4 cost
sin 2 8in 4 = cos & sin ¢

and combine them with
cos A, = sin & sin#,

sin A‘_cosé __8ind cos?,
T cosg sing

whence

sin 2 sin (4, — 4) = sin 4 cos 3 — sin & cos & cos (t —¢,)
=sin 298in?§ (t —1¢,)

Thus sin (4, — A4) is very nearly proportional to the square of
sin } (¢ — ¢), and is, consequently, so small that we may put
sin } (4, — A) = } sin (4, — A) in the last term of the above for-
mula. 'We may also in so small a term put 2, for z. Making these
substitations, and writing I and ¢ for ¢t — 4, and 2z — 2z, we find

gin { == sin 7 eos ¢ 4 Jcot z,8in*2dwin' 3 I 43)

Since not only sin 7 is a small quantity, but also sin 28, it is
evident that the last term will be inappreciable in all practical
cases. Thus, for the pole star, & = 88° 30’ and I = 80" = T7° 80,
this term is only 0”7.0052 cot 2,
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For either method of observation, therefore, we can regard
the formula sin i = sin I cos 4 as entirely rigorous,

But in either method we must correct the computed interval §
for refraction. This computed interval is the difterence of the
true zenith distances at the two instants of transit, and the
micrometer interval M represents the difference of the apparent
zenith distances at these instants; hence, if 7 and r, are the re-
fractions for the zenith distances z and 2, we shall have

B=i—(;l—r°)=z—z,—zf(r—r,)

If we put
ar = the difference of refraction for 1’ of zenith distance,

we shall have
r—r,=(z—z)ar
or, very nearly,
r—r,= MRar
and, consequently,

R=3—RB.ar (44)

The value of ar may be taken from the refraction table for the
zenith distance at the elongation, which will be found by the
formula

An example of this method will be given in the chapter on
the Zenith Telescope.

46. Fourrn METHOD.—The angular distance of two threads in
the focus of a telescope may be directly measured with a theodo-
lite. We have seen (Art. 4) that the rays which diverge from
the focus and fall upon the object glass emerge from this glass
in parallel lines. If then these emerging rays be received by
the lens of another telescope, they will be converged by the
latter lens to its principal focus, where they will form an image
of the point from which they diverged. Henee, if two telescopes
are placed with their optical axes in the same straight line and
with their objectives turned towards each other, we may in
either telescope see the images of threads at the prineipal focus

of the other. If our second telescope iz eonnected with &
Vor. IL—5
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vertical or horizontal circle, as in the theodolite, the circle may
be used to measure the angular distance of the threads in the
first.

First—If the micrometer threads are horizontal, that is, per-
pendicular to the vertical plane (as in the meridian circle when
the micrometer is arranged to measure differences of zenith
distance or of declination), the telescopes may have any inclina-
tion to the horizon, and the angular distance of two threads will
be directly measured by moving the theodolite telescope in the
vertical plane and bringing its cross-thread successively into
coincidence with the images of the two micrometer threads.
Denoting the difference of readings of the vertical circle in the
two positions by 4, and the number of revolutions of the micro-

meter screw between the threads by M, we have tan R = ggl_r;f_ig,
or, very nearly, B = %

Secondly.—If the micrometer threads are parallel to a vertical
plaue (as in the meridian circle when the micrometer is arranged
to measure differences of right ascension), the theodolite is placed
as before, and the angular distance of the threads is measured
with the horizontal circle. But, in this case, if the telescopes
are inclined to the horizon by the angle 7 (which is obtained
from the vertical circle of the theodolite), the angular distance A4,
read on the horizontal circle, will exceed that of the threads in

the ratio 1:cosy (see the theory of the altitude and azimuth
Acosy

Tan
This ingenious method was suggested by Gauss.*

instrument): so that we shall then have R =

47. Firra MerHOD.—When the telescope is connected with a
graduated vertical circle and its micrometer is arranged to mea-
sure differences of zenith distance, the value of the screw may
be found by means of this vertical circle as follows. Let the tele-
scope be directed towards the nadir and looking into & basin of
mercury immediately under it. The rays which diverge from a
thread in the focus of a telescope emerge from the objective in
parallel lines; they are therefore reflected by the mercury in

# In 1828, Astron. Nach., Vol. IL p. 8371. Rirrexuousk had previously (in 1785)
pointed out the practicability of observing the threads of ona telescope through
snother directed towards the objective of the first,in the Transactions of the American
Philosophical Society, Vol. IL. p 181,
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parallel lines, so that they must be converged by the objective
again to the focus, where they form an image of the thread. It
is evident that the distance of the reflected images of

two micrometer threads will be the same as that of m",u'
the threads themselves. Let then EO, Fig. 14, be a
vertical line drawn through the centre O of the ob- « =

jective, and suppose the fixed and movable threads n
and m to be at the same angular distance from FO,
on opposite sides of it, or EOn = EOm. Then the
rays from n, after passing through the objective, form
a system of rays parallel to n0, and, after reflection
from the mercury (the surface of which is perpen-
dicular to EO), form a system of rays parallel to Om,
and therefore the reflected image of n is seen at m.
For the same reason, the reflected image of m is seen at n. Now
let the telescope be revolved through an angle equal to EOn, so
as to make the line n0 a vertical line; then the image of n will
be found in the vertical line, and will, consequently, be seen in
coincidence with = itself. And if the telescope is revolved in the
opposite direction through an angle equal to £Om, the image of m
will be brought into coincidence with itself. Hence the whole
angular motion (4) of the telescope, as measured by the vertical
circle, between the two positions in which » and m are scen in
coincidence with their own reflected images, respectively, is the
required angular distance of the threads; and, the number of
revolutions of the micrometer screw between them being M, we

o

. A
have, as in other cases, R = i

‘We may, however, dispense with the use of the fixed thread
in this process. Let the movable thread be placed in any part
of the field, bring it into coincidence with its reflected image by
revolving the telescope, and read the circle. Then place it in
any other part of the field, bring it into coincidence with its
reflected image, and read the circle. The thread having been
moved through M revolutions, and the difference of the circle
readings being A, we find R as before.

In order that the reflected images of the threads may be
visible, it is found necessary to throw light down the tube, that
is, from the ocular. For this purpose, one of the eye pieces
{called a collimating or nadir eye piece) is furnished with a reflector,
placed at an angle of 45° with the optical axis, which receives
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light from a lamp held on one side and reflects it down the tube.
This reflectar is sometimes placed within the eye piece, between
the two lenses; the light is then received through an aperture
in the side of the eye tube, and the reflector, if made of metal,
is perforated in the centre in order that the field may be visible.
A better plan is to place & amall piece of very thin mica outside
the eye piece, between the outer lens and the eye, and at an
angla of 45° with the axis. The mica, heing transparent, does
not interfere with the view of the field, and is at the same time
a very perfect reflector. This plan has the advantage that the
mica reflector may be temporarily applied to any of the eye piecea
in actual use.

A mercury reflector used, as in this case, to give reflected
images of the threads, we shall hereafter designate as a mercury
collimator.*

48, Effect of temperature upon the value of a revolution of the
micrometer screw.—~—Changes of temperature affect the angular
value of a revolution of the acrew in two ways: first, by changing
the absolute length of the screw itself; secondly, by changing the
figure of the abjective, and thereby also the focal length. Per-
haps we should add, also, the almost evanescent change in the
focal length resulting from a change in the refractive power of
the glass. The whole effect, however, is very small, and may be
assumed to be proportional to the change of temperature: so
that, if R, is the value of a revolution of the screw for an
assumed temperature 7, R the value for any given temperature
7, we have

R=B+ R(r—1)x=R[l+4 (r—1,)x] (45)

in which z is to be determined so as to satisfy the observed values
of R at different temperatures as nearly as possible, which is
done by the method of least squares.

ExamMpLe.—Buppose the following values of R have been
observed :

R = 26".887, 26".532, 26".529, 26".500, 26".498,
forr = 10° 30° 40° 62° 75° (Fahr.)

* The use of the mercury collimator in connection with the nadir eye piece was
introduoed by Borxx¥BERGER in 1826: v. Astron. Nach., Vol. IV. p. 827.
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and it is proposed to determine R, for r,= 50°. We shall have
the eguations

R, = 26".857 (1 — 40 x)

R,— 26 .532(1 — 20z)

R, == 26 529 (1 — 10x)

R, =26 500 (1 4 122)

R, =26 498(1 + 25%)

Let us assume R,= 26.5 4 y; these equations become

1062z 4+ y — 07.067 =0
68lxr +y—-0.082=0
265z +y —0.029 =0
— 818x 4y +0.000=0
— 662z 4y +0.002=10

Hence, by the usual process in the method of least squares, we
find the normal equations

2019398 x - 878 y — 86".6856 =0
878z + By— 0 .116=0
whence

x == 4 0.0000855 y = 4 07017
and, consequently, R, = 26/".517, and

26".517

R =3 5.0000355 (r — 50°)

As the coeflicient of r — 50° is so small, we may take

R = 26".517 [1 — 0.0000855 (r — 50°)]
= 26".517 4 0/.000941 (50° — )

This gives for the values of R at the observed temperatures,

Re=20"555, 267.586, 20".626, 26".504, 26498
forr= 10° 30° 40° 62° 78°

which agree with the observed values within the probable errors
of such determinations.

49. The position filar micrometer.—When a filar micrometer is
attached to an equatorially mounted telescope, there is usually
combined with it a small graduated circle, the plane of which is
parallel to that of the micrometer threads, by means of which
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the angle which these threads, or the transverse threads, make
with a declination circle may be ascertained. The micrometer
then serves to measure not only the distance between two stars,
but also their angle of position ; that is, the angle which the arc
joining the two stars makes with a declination circle.

The index error of the circle, or its reading for the position
angle zero, is best obtained with the telescope in the meridian.
Let the micrometer be revolved until the movable thread is per-
pendicular to the meridian, which will be the case when a star
of small declination remains upon the thread throughout its
passage across the field. The transverse thread will then repre-
sent the meridian, and in all other positions of the telescope, if
the equatorial adjustment is good, will represent a declination
circle.* If the reading of the position circle is then P, and
the micrometer is afterwards revolved so that its transverse
thread passes through two stars in the field, and the reading
becomes P, the apparent position angle of the stars is

p=P—P, (46)

All position angles should be read from 0 to 860° in the same
direction. I shall always suppose them to be reckoned from the
north through the east.

50. I shall briefly notice some other micrometers hereafter
(Chapter X.). What has been given in relation to the filar micro-
meter was necessary in this place on account of the connection
of this instrument with nearly every form of telescope.

THE LEVEL.

51. The spirit level may here be classed among the ipstru-
ments for measuring small angles, inasmuch as its use in satro-
nomy is not so much to make a given line absolutely level as to
measure the small inclination of the line to the horizon. It
congists of a glass tube, ground on the interior to a curve of
large radius, and nearly filled with alcohol or sulphuric ether.
(Water would freeze and burst the tube). The bubble of air
occupying the space left by the fluid will always stand at the

* See, however, Chapter X. in case the adjustment of the equatorial telescope iq
aot quite exact.
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highest point of the curve of the tube; and therefore any
change of the relative elevation of the two ends of the tube
must be followed by a corresponding change in the position of
the bubble. This position of the bubble, therefore, which is
read off by means of a scale, or by graduations marked on the
tube itself, serves to measure all changes of inclination within
the extreme ranges of the arc of the curve employed. The
larger the radius of the curve, the more sensitive will the level
be. There is, however, obviously a practical limit to the radius,
which is determined by the kind of instrument to which the
level is to be applied and the degree of accuracy aimed at.

In order to apply the level to the horizontal axis of an instra-
ment, it is either mounted upon two legs, the distance apart of
which is nearly equal to the length of the axis; and these legs
terminate in Vs, so that the level bears only at two points of the
cylindrical pivots of the axis, in which case it is called a striding
level: or it hangs from the axis by arms, which are recurved
and terminate in inverted Vs; and it is then called a kanging
level.

Plate II., Fig. 4, represents a common form of the striding
level, and Fig. 5 is an end view of the legs. The tube ¢f is in
this level covered by a larger glass tube abed, to protect the fluid
from sudden changes of temperature. These are secured to a
bar 4B, usually a hollow brass cylinder, which is connected
with the legs by screws s and ¢, which serve to adjust the rela-
tion of the level tube to the line of bearing of the Vs of the
feet, as will be explained hereafter.

52. In order to investigate the method of using the level, let
us first suppose E W, Fig. 15, to be
a truly horizontal line on which o515
the level AB rests. Let O be the
zero of the graduations; e and w
the ends of the bubble. Let the
length of the bubble be 2. If
the legs AE and BW were per-
fectly equal, and O were in the
middle of A B, the readings of v and e from O would be exactly
the same, and each equal to l. But, if BW is the longer leg,
the bubble will stand nearer to B by a number z of divisions;
and if at the same time the zero O stands ncarer to 4 than to B,

4
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at & distancs of y divisions from the middle, then the readings
will be

at o, lt+zty

at ¢, l—n—y.

If now W is raised so that EW becomes inclined to the horizon
by the angle b, the bubble will stand nearer to the end B by a
number 2z of divisions, so that the whole readings at w and e
will be

w=Il4+z4+y+2z } (a1

e=l—wzx—y—2z

To eliminate the errors x and y, let the level now be reversed,
vo that the end A stands over W and B over E. The errors z
and y will both change sign; but, the line KW being inclined
a8 before, the readings of the ends of the bubble towards W and
K, respectively, will be

w=l—2x—y+2
¢=lt+zt+y—z } “9
From the equations (47) and (48) we deduce
jw—e)=z+y+2
F@—&)=—(o+4)+2 } o
2=} 40 —¥) + 3 (@ — )]

= @ + ) —(c+¢) 0
2= yy

whence

whence the practical rule: Place the level on the line whose inclina-
tion i3 to be measured, and read the divisions at the ends of the bubble ;
reverse the level, and read again. Add together the two readings lying
towards one end of the line, and also the two readings lying towards the
other end of the line. Onefourth the difference of these sums is the
measure of the inclination. The line ¥s elevated at that end which
gives the greatest sum of readings.

This gives the inclination expressed in divisions of the level ;
the value of the angle & corresponding to 2 divisions is known
when the angular value d of a division is known, so that

b=z (51)

68. The errors z and y are inseparable ; we can only find their
suwm, which is




LEVEL, 78

rhy=O=O=@=0)

(62)
If the errors of the level could be regarded as constant, the
value of z + y thus found would enable us to dispense with the
reversal of the level, since either of the equations (49) would
then determine z; but such constancy is never to be assumed.

54. For greater accuracy, the level may be read a number of
times in each position, taking care to lift it up after each read-
ing, so that each observation may be independent of the others.
The sums of all the readings at each end of the bubble are to be
formed, and the difference of these sums divided by the whole
number of readings. The number of readings in the two posi-
tions must be equal.

ExampiE 1.

A level on the axis of & transit instrument was read as
follows :

Ww. E. w—e
1st Position 29.1 81.2 — 21
2d “ 85.4 24.9 + 10.5
645 561 4)— 126
56.1 x4 y=— 8.156 = error of the level.
4) 84
z= 21
The value of a division was d=1/.25; and hence
b =dz=2".68

which is the elevation of the west end of the axis.

ExamMprLE 2.

The following readings were obtained with the same instru-
ment:

w. K.

1st Position 29.0 81.8
2d “ 85.4 249
2d “ 85.6 24.6
1st « 29.2 81.0
129.2 1118

1118

8) 174

2= 218 b=2".72
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By taking the first and last observations in the same position
of the level, as in this example, any small change in the level
itself, occuring during the observations, is eliminated.

55. The zero of the level is, however, not always placed near
the middle of the tube; it may be at one end and the divisions
numbered consecutively through the whole length of the tube.
In this case, we have only to find the reading corresponding to
the middle of the bubble in each position of the level: the half
difference of these readings will evidently be the required incli-
nation. It will be necessary, in the record of the observation,
to note the position of the ends of the level, or to indicate in
some manner the direction in which the divisions increase, which
is usually effected most readily by a conventional use of the
algebraic sign, as in the following

ExAMPLE.

A level which is graduated from the end 4 towards the end B
reads as follows when placed on the axis of a transit instrument-

Reading of
W. E. middle of or thus:
bubble.
Aeast| 4640 | 4185 ' -+ 88.75 + 775
B « —101 | —60.7 | — 38540 — 70.8
2) 4+ 3.85 ‘ 4) 4 6.7
z =+ 1675 z= 41675

Since in the case of a transit instrument we wish to find the
elevation of the west end (a negative elevation being interpreted as
a depression), we here mark the level readings with the positive
gign when they increase towards the west, and with the negative
sign when they increase towards the east. The value of z will
then be obtained, with its proper sign, by simply taking the
mean of all the readings, as in the last column above.

56. In the above examples, the diameters of the two pivots of
the axis on which the level rests are assumed to be the same.
‘When this is not the case, a correction becomes necessary, which
will be considered in its place under ¢ Transit Instrument,”
Chapter V.
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57. To find the value of a division of the level.—This is most readily
done by means of a simple instrument called a level-trier. A
horizontal bar is supported by two feet at one end and by a
single foot-screw at the other. The level is placed on the bar,
and the number of turns of the foot-screw necessary to carry the
bubble over any given number of divisions is observed. The
angular value of a turn of the foot-screw is known from the
distance of its threads and the length of the bar. The head of
the screw is graduated so that a fraction of a turn may be noted.

We can also determine the value of a division by attaching
the level tube to a vertical circle and noting the number of
seconds on the circle corresponding to a motion (of the circle
and level together) which carries the bubble over a given number
of divisions. Thus, suppose we read the ends 4 and B of a level
thus attached to a circle, and also read the circle itself, as follows:

A B Cirole.
5.0 40.2 0° 0 40"
413 3.8 01253
86.3 864 - 45 8

(mean) 36.35d = 45".3
d= 1246

When the level is applied to a telescope which is provided
with a micrometer, the value of the divisions of the level may
be found from those of the micrometer. An example of this
method will be given in connection with the Zenith Telescope,
Chapter VIIL

88. To find the radius of curvature of a level.—Let n be the length
of a division in linear units, d the value of a division in arc,
found as above ; then the radius will be

r— n
~ dsinl”

Suppose that in the level of the preceding article we have
n = 0.108 inch, then we find, for this level, r = 17051 inches, or
1421 feet.

§9. The value of a division of a level may be affected by changes of
temperature.—This will be discovered by taking observations for
determining this value at two temperatures as different as pos-
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sible. The proper value to be used for any intermediate tem-
perature will then be found by interpolation.

60. It is also possible that the radius of curvature of different por-
tions of the tube may be different.—This, of course, is a radical defect
in the construction of the instrument: its effect is to give dif-
ferent angular values to divisions of equal abgolute length in
different portions of the tube. The existence of such a defect
will be discovered by determining the value of a division inde-
pendently at various points; and it is proper to examine all our
levels in this manner. A level thus defective should be rejected
a8 unfit for any refined observation ; but, if no other can be had,
a careful investigation might determine @ system of corrections
to be applied to the different readings.

61. It remains to be shown how to effect the mechanical adjust-
ment of the level. 1st. The bubble should stand nearly in the
middle of the tube when the level stands upon any horizontal
line. This is quickly brought about by finding the error of the
level = z + y, (as in Example 1, Art. 54) and then turning the
screws {, ¢, Plate II. Fig. 5, until the bubble has moved through
this quantity in the proper direction. 2d. The axis of the tube
should be parallel to the line joining the angle of the Vs of the
feet, and, consequently, parallel to the axis of an instrument on
which it rests. This is tested by slightly revolving or rocking
the level on the axis of the instrument, so that the legs are
thrown out of a perpendicular on either side. If the axis of the
level tube is not parallel to the line joining the feet, but lies
cross-wise with respect to that line, this revolution will cause the
bubble to change its position, and it will be easy to see in what
direction the correction must be made. The adjustment is made
by the screws s, s’.
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CHAPTER IIL

INSTRUMENTS FOQR MEASURING TIME.

62. Chronometers.—The chronometer is merely a very perfect
watch, in which the balance wheel is 8o constructed that changes
of temperature have the least possible effect upon the time of its
oscillation. Such a balance is called a compensation balance. A
chronometer may be well compensated for temperature and yet
its rate may be gaining or losing on the time it is intended to
keep: the compensation is good when changes of temperature do
not affect the rate. It is not necessary that a chronometer’s rate
should be zero (or even very small, except. that a small rate is
practically convenient); it is sufficient if the rate, whatever it is,
remains constant. The indications of & chronometer at any
instant require a correction for the whole accumulated error up
to that instant. If the correction is known for any given time,
together with the rate, the correction for any subsequent time is
known. The methods of finding these quantities are given in
Vol. I, Chapter V.

68. Winding.—Most chronometers are now made to run either
eight days or two days. The former are wound every seventh
day, the latter daily, so that in case the winding should be for-
gotten for twenty-four hours the chronometers will still be found
running. But it is of importance that they should be wound regu-
larly at stated intervals; otherwise an unused part of the spring
comes into action, and an irregularity in the rate may result.

Chronometers are wound with a given number of half turns of
the key. Itiswell to know this number, and to count in winding,
in order to avoid a sudden jerk at the last turn: still the chro-
nometer should always be wound as far as it will go, that is, until
it resists further winding. This resistance is produced not by
the end of the chain, but by a catch provided to act at the proper
time and thus protect the chain.
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‘When a chronometer has stopped, it does not again start
immediately after being wound up. It is necessary to give the
whole instrument a quick rotatory movement, by which the
balance wheel is set in motion. This must be done with care,
however, and with little more force than is necessary to produce
the result; afterwards the chronometer must be guarded from all
sudden motions.

The hands of a chronometer can be moved without injury to
the instrument, so that it may be set proximately to the true
time. It is, however, not advisable to do this often.

64. Transporting.—Chronometers transported on board ship
should be placed as ncar the centre of motion as possible, and
allowed to swing freely in their gimbals, so that they may pre-
serve a horizontal position. They should also be kept as nearly
as possible in a uniform temperature.

‘When transported by land, the chronometer should no longer
be allowed to swing in its gimbals, but is to be fastened by a
clamp provided for the purpose; for the sudden motions which
it is then liable to receive would set it in violent oscillation
in the gimbals, and produce more effect than if allowed to act
directly.

Pocket chronometers should be kept at all times in the same
position: consequently, if actually carried in the pocket during
the day, they should be suspended vertically at night.

It has been found that the rates of chronometers have been
affected by masses of iron in their vicinity, indicating a magnetic
polarity of their balances. Such polarity may exist in the balance
when it first comes from the hands of the maker, or it may be
acquired by the chronometer standing a long time in the same
position with respect to the magnetic meridian. In order to
avoid any error that might result from this polarity (whether
known or unknown), it will be well to keep the chronometers
always in the same position. IIence, they should not be removed
from the ship to be rated; but their rates should be found after
they are placed in the position they are to occupy.

The rate of a chronometer when transported is seldom the
same as when at rest. The travelling rate is found by comparing
the observations taken at the same place before and after the
journey, or from observations at two places whose difference of
longitude is perfectly well known. A list of well determined
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«differences of longitude” is given in RAPER’S Practice of Navi-
gation, for the use of navigators in finding the sea rates of their
chronometers. (See Vol. I. Art. 258).

65. Correction for temperature.—An absolutely perfect compensa-
tion for temperature in chronometers is hardly to be expected.
It has been found* that the average temperature compensation
of chronometers is of such a nature as to cause the instrument to
lose on its daily rate when exposed to a temperature either above
or below a certain point for which the compensation is most
perfect. Professor Bonp found for a large number of chronome-
ters that if &, be the temperature of best compensation, ¢ that of
actual exposure, the rate may be expressed for a range of 20°
above and below #,by the formula

m = m,+ k(% — 8,)" (58)

in which % is a constant, and has, with rare exceptions, a positive
sign, and m, and m are the rates at the temperatures &, and 9,
respectively ; losing rates being positive.

M. Lieusson, from a very extended examination of the per-
formance of chronometers on trial at the Observatories of Green-
wich and Paris, finds that the rate varies both with the tempe-
rature and with the age of the oil with which the pivots are
lubricated. The thickening of the oil tends to diminish the
amplitude of the vibration of the balance, and thus produces an
acceleration of the chronometer. This acceleration is almost
exactly proportional to the time, so that for any time ¢ the rate
may be found by the complete formula

m=m,+ k($—8) — Kt (54)

in which &’ is the daily change of rate resulting from the gradual
thickening of the oil. The constants k and %’ will be different
for every chronometer, and are determined by experiment for
each instrument.

66. Comparison of Chronometers.—When one or more chro-
nometers are to be regulated by means of astronomical observa-

* LieussoxN, Récherches sur les variations de 1a marche des pendules et des chro-
nometres; Paris, 1854. G. P. Boxp, in his report on the longitude in the Report of
the Superintendent U. 8. Coast Survey for 1854, App. p. 141.
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tions, these observations are made with but one of them, and the
oorrections of all the others are found by comparing them with
this. On board ship the chronometers are never brought on
deck; but the observations are made with a watch (often called a
“hack-watch’'), which is compared with the chronometer either
before or after, or both before and after, the observations. The
double comparison is necessary where extreme precision is re-
quired, in order to eliminate any difference of the rates of the
watch and chronometer.

ExAMPLE.

An ohservation is recorded by a hack-watch at the time
10* 12~ 133, and the following comparisons are made with the
chronometer. Required the time of the aobservation by the
chronometer.

Chron. 8 17= 0-. 8* 27= 0.
Watch 10 8 9.6 10 18 8.0
Reduotion —1 51 9.5 —~1 851 8.0

Here the watch loses 1.5 in 10™: hence, in 4™, the time from the
first comparison to the observation, it loses 1.5 X 7% or 0.6, 8o
that the difference at the time of the observation is 1* 51 8.9;
therefore we have

Wateh time of obs. =  10*12=18°.3
Reduction tochron. = — 1 61 8.9

Chron. time of obs. = 821 44

Comparison by coincident beats.—When twa chronometers are
compared which keep the same kind of time, and both of which
beat half seconds, it will mostly happen that the beats of the two
instruments are not synchronous, but one will fall after the other
by a certain fraction of a beat, which will be pretty nearly con-
stant, and must be estimated by the ear. This estimate may be
made within half a beat, or a quarter of a second, without difli-
culty, but it requires much practice to estimate the fraction
within 0.1 with certainty. But if a mean time or solar chro-
nometer is compared with a sidereal chronometer, their dif-
ference may be obtained with ease within one-twentieth of a
second. Since 1’sidereal time is less than 1° mean time, the beats
of the sidereal chronometer will not remain at a constant fraction
behind those of the solar chrenometer, but will gradually gain
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on them, so that at certain times they will be coincident. Now,
if the eomparison s made at the time this eoincidence occurs,
there will be no fraction for the ear to estimate, and the differ-
ence of the two instruments af this time will be obtained exactly.
The only emor will be that which arises from judging the beats
to be in coincidence when they are really separated by a small
fraction; and it is found that the ear will easily distinguish the
beats as not synchronous so long as they differ by as much as
0+.05; consequently the comparison is accurately obtained within
that quantity. Indeed, with practice it is obtained within 0-.08, .
or even €*.02. Now, since 1’ sidereal time = 0.99727 mean time,
the sidereal chronometer gains (>.00278 on the solar chronometer
in 1°; and therefore it gaips 0.5 in 188, or very nearly in 8™
Hence, once every three minutes the two chronometers will beat
together.* When this is about to occur, the observer begins to
count the seconds of one chronometer, while he directs his eye to
the other; when he no longer perceives any difference in the
beats, he notes the corresponding half seconds of the two instru-
ments.

ExAMPLE.

A solar and a sidereal chronometer wepe compared by coinci-
dent beats, as follows:

Solar chron. 4* 16~ 0-. 4» 19= 10-.
Sidereal « 1 8 116 1 6 22.
Difference 812 48.5 8 12 48.

Here the interval between the two comparisons being about 8,
the sidereal chronometer has gained a beat. JIn order to judge
of the accuracy of the comparisons, let us reduce the second to
the time of the first. The solar interval is, by the solar chro-
nometer, 8" 10*; the corresponding sidereal interval is, by the
tables, 8 10-.52; the second comparison reduced to the time of
the first stands as follows:

Solar chron. 4* 16 0-.
Sid. “ 1 8 11.48
Difference 3 12 48.52

# They will either beat together, or at least their beats will ‘both fall within &'
apaae of time equal to one-half of 02.00278.
Vor.I1.—6
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that is, it agrees with the first comparison within 0-.02. Suppose
that at the second comparison the time when the beats were
coincident was mistaken, and the observer made his comparison
10 later; he would have had 10* more on each chronometer, and
consequently would have put down the comparison thus:

Solar chron. 4* 19= 20°.
Sid. &« 1 6 82.

The mean interval between the comparisons would have been
8™ 20", and the equivalent sidereal interval is 8™ 20°.55, so that
this second comparison reduced to the time of the first would
have stood thus:

Solar chron. 4* 16~ 0.

Sid. « 1 8 1145

Difference 1 12 48 .55

that is, the two comparisons would still have agreed within 0°.05.
The observer can in this way satisfy himself by a few trials that
the two chronometers can really be compared within 0+.05 with
certainty.

‘When two solar chronometers are to be compared together, it
will be most accurately done by comparing each with a sidereal
chronometer by coincident beats, and reducing the comparisons
a8 follows:

ExaMPLE.

Two solar chronometers 4 and B are compared with a sidereal
ehronometer C, as below:

C 6*13= 20-. A 440~ 10°.5
C 6 15 15. B 5 21 18.
8id. interval 1 565. = 1 54 .69 solar

B reduced to timeof A =5 19 18 .81
Difference of A and B =0 389 7.81

The intermediate chronometer used for comparison is not
necessarily a sidereal one. It may be a mean time chronometer
which does not beat half seconds; for example, a pocket chro-
nometer which beats 13 times in 6 seconds. In this case each
beat of the pocket chronometer is worth %, and therefore differs
from that of a chronometer beating half seconds by # of a second.
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. The inaccuracy of a coincidence cannot exceed this quantity, and
the comparison may, therefore, also be made within ;%3 of asecond.

67. Probable error of an interpolated value of a chronometer cor-
rection.— When the corrections a 7'and a 7" for the times 7T'and 7"
are given, the correction for any other time 7'+ t = 7"— ' is
found by interpolation. Denoting the rate by 87, and the
required correction by z, we have

either x = aT 4 ¢.8T or z=aT —1t.0T

Now, granting that the given quantities a7 and a 7" are perfectly
correct, the interpolated values of x will also be correct if there
are no accidental irregularities in the going of the chronometer.
But such accidental irregularities certainly exist, and tend to
diminish the weight to be assigned to any interpolated value of
the correction. If the mean (accidental) error in a unit of time
is ¢, the mean error in the interval ¢ is, by the theory of least
squares, e/, and the weight is inversely proportional to the
square of this error, that is, inversely proportional tot. We shall
have then

x = aT + t.2T with the weight

IR R

x=aT —t.0T « “ “

in which % is an undetermined constant.

Multiplying each value by its weight, and dividing the sum by
the sum of the weights (according to the usual process in the
method of least squares), we have

_t.aTHt.aT _. . [t
= —t_-i-_t'—’ with the weight = k(_w__
- (55)
i tt
or with the mean emr=¢\/t+___t,

This error is zero either for =0 or ¢ = 0, and is a maximum
for ¢t = t/, that is, when the correction is found for the middle
time between the two given times 7"and 7.

68. If, however, the chronometer has accelerated or retarded
uniformly, the error will obtain a different expression. Let the
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rate at the timé 7 be 47 and at the time 7" be 8’7. The
acceleration in a unit of time is

8'T— 3T

0"Tﬁ ___t_+_t'_ (56)

The rate at the middle instant betweem 7 and 7 + ¢ is 87T
4 3¢.8"T; and at the middle instant between 7" and 77—
itis 8 T—43t.3"T; hence we have

T=aT4+2@T+ 4t.8"T)=nT +£.3T 4 ir.3"T
z=aT— ¢ T—34t.8"Ty= aT'—t.8'T+ 328" T

Multiplying the fitst hy ¢/, the second by {, and dividing the sum

of the products by ¥+ ¢, we have
t.aT4t.aT ¥ 3T ”
——_—-——m—-—-—tt'.w-q- si.8"T
or
AT+ t.aT ”

whence it appears that the error of the value obtained hy simple
interpolation, or upon the supposition of a uniform rate, is
4. 3" T, and this error is also a maximum for the middle instant
between T and 7", when ¢t = ¢/, and vanishes for ¢ = 0 or ¢/ = 0.

69. Every chronometer has, moreover, its own peculiarities
which render the application of any formula for weight more or
less uncertain. STRUVE found that, for the greater number of
the chronometers which he tried, the mean error of an interpo-
lated value of their corrections could be expressed by the empiri-

cal formula e- t—w—ty differing from the above theoretical formula

by the omission of the radical sign. (Expédition Chronométrique,
p. 101.)

70. Clocks.—The astronomical clock is provided with a com-
pensation pendttlitm, by which the effect of temrperature is even
more ‘completely eliminated than in chronometers. The only
forms in use are the Harrison (the gridiror) and the mercurial
pendulum.

In ‘the gridiron pendalum the rod is composed (in part) of a
humiber of ‘parallel bars of steel and brass, 8o connected together
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that the expansion of the steel bars produced by an increase of
temperature tends to depress the « bob” of the pendulum, the
greater expansion of the brass bars tenda to raise it, so that when
the total lengths of the steel and brass bars have been properly
adjusted a perfect compensation occurs, and the centre of oscil-
lation remains at a constant distance from the point of suspen.
sion. The rate of the elock, so far asit depends upon the length
of the pendulum, will therefore be constant.

In the mercurial pendulum, the weight which forms the bob
in other cases is replaced by a cylindrical glass vessel nearly
filled with mercury. With an increase of temperature the rod
lengthens, but the mercury expanding must rise in the cylinder,
so that when the quantity of mercury is properly proportioned
to the length of the rod the centre of oscillation remains at the
same distance from the point of suspension. If a clock is to be
exposed to sudden changes of temperature, the gridiron pendulum
will be preferable to the mercurial, as the large body of mercury
will obtain the temperature of the air more slowly than the
thin metal rods.

In setting up the clock the chief point to be observed is that
its alternate beats are exactly equal. The pendulum usually
carries a pointer at its lower extremity which indicates upon an
arc below the pendulum the extent of a vibration. Let the
pendulum be drawn towards one side gently, until a tooth of the
escapement wheel is just freed, and mark the point of the arc at
which this occurs; then let the pendulum be drawn towards the
other side, and mark the point of the arc at which a tooth escapes.
Find the middle point 4 of the included arc. Then let the
pendulum come to rést in & vertical position: if the pointer ig on
A the adjustment is correct, and the vibrations on each side will
be isochronous; if not, the clock case must be moved until the
vertical pendulum is directed exactly towards 4. The equality
of the vibrations may also be tested by the electro-chronograph,
hereafter described.

‘What has been said above respecting the comparison of chro.
nometers will apply, with scarcely any modification, to that of
slocks, or of a clock with a chronometer.

In the observatory, a clock regulated to sidereal time is the
indispensable companion of the transit instrument. The standard
or normal clock of an observatory is carefully mounted upon a
stone pier which is disconnected from the walls or floors of the
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building, and also protected as much as possible from changes
of teraperature. For the latter purpose it is sometimes imbedded
in a stone pier, in an air-tight compartment below the surface
of the ground. STRUVE found that the changes of barometric
pressure, by varying the resistance which the air opposes to the
motions of the pendulum, caused a variation in the rate of the
normal clock of the Pulkowa Observatory of 0#.82 for a variation
of one English inch of the barometer.*

T1. The electro-chronograph.—This contrivance may be regarded
as an appendage of the astronomical clock, and bearing the same
relation to it that the reading microscope bears to a divided
circle ; for its chief use is to subdivide the seconds of the clock,
and thus to measure micrometrically the smallest fractions of
time. In order to effect this micrometric subdivision, the clock
beats are converted from audible into visible signals, which are
recorded on paper by means of an electro-magnet. The instant
of the occurrence of any phenomenon is also registered by a
visible signal on the same paper, and thus referred to the pre-
ceding clock beat with great precision. This general statement
covers a great variety of special contrivances leading to the same
end. We shall here treat only of those which, thus far, have
been most used.

72. The simplest form of register is that known on our tele-
graphic lines as MorsE’s, in which a fillet of paper is reeled off
at a uniform velocity by means of a train of wheels moved by a
weight. The fillet passes over a small cylinder and just under
a hard steel point, or pen (as it is called, for brevity), which is so
connected with the armature of an electro-magnet that whenever
the electric circuit of the galvanic battery is established, the pen
is pressed upon the paper and leaves a visible mark. The wire
from one pole of the battery which passes around the electro-
magnet does not return directly to the other pole, but first passes
through the clock, where, by a contrivance presently to be
described, the circuit is broken and restored at every second.
The Morse fillet in running off, therefore, receives an impression
every second, and thus becomes graduated into spaces represent-
ing seconds. These spaces are greater or less according to the

* Description de Pobservatoire astronomique central de Poulkova, p. 220,



CHRONOGRAPH. 87

velocity with which the paper runs off; an inch per second is
even more than sufficient, as it is easy to divide an inch into fifty
parts by a scale, even without the aid of a magnifier.

It is of importance that the paper should run off with a uni-
form velocity; at least, no sudden changes of velocity should
occur. In the Morse register this regularity is maintained by an
ordinary fly-wheel. 1In the spring-governor, invented by the
Messrs. Boxp, a fly-wheel and pendulum are both used. The
pendulum secures the condition that the seconds shall be of the
same length, while the fly is supposed to maintain a uniform
motion during the second. In this and in other chronographic
instruments there is substituted for the fillet a sheet of paper
wrapped about a cylinder which makes one revolution per minute.
As the cylinder revolves, a fine screw causes it to move also in
the direction of its length, so that the pen records in a perpetual
spiral, and when the paper is removed from the cylinder the
successive minutes are found recorded in successive parallel
lines. One such sheet will contain the record of upwards of
two hours’ work. This cylindrical register is preferable to the
Morse fillet for most chronographic purposes, on account of the
convenience with which the sheets may be read off and filed
away for subsequent reference.

In SaxToN’s cylindrical register the movement is regulated by
a combination of the crank motion with the vibration of two
pendulums.

Professor MircHEL employed a circular disc upon which the
successive minutes’ occupied concentric circles, each of which
was graduated into seconds with great precision by connection
with the clock.

78. The connection of the clock with the register is made in
one of two ways; either so as to break the circuit every second,
or so as to make it.

The method most used of causing the clock to break the
circuit is that suggested by Mr. 8axToN, of the Coast Survey.
ACB, Fig. 16, is a small and very light ¢ tilt-hammer,” usually
made of platinum wire, mounted upon a pivot C, so that the end
A shall slightly preponderate and rest upon a platinum plate E.
The end B is bent into an obtuse angle. The wire ¥ from one
pole of the galvanic battery is constantly connected with the tilt-
hammer through the metallic support D. Another wire G is
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Fig. 16. connected with the plate E, and goes
3 first to the electro-magnet of the register
and thenee to the other pole of the bat-
tery. This apparatus is placed in the
elock case in front of the pendulum PM,
with the vertex of the angle B in a ver-
tical line below the point of suspension
P. A small pin N projecting from the
pendalum rod passes over the angle B
at each vibration of the pendulum, and,
D by thus depressing the end B of the tilt-
@ hammer, raises the end A from the plate
FE and breaks the eircuit, which other-
wise is complete through the conneetion
of the portion AC of the tilt-hammer
with both the wires F' and G. The in-
terval of time during which the circuit
is broken will be longer or shorter accord-
ing as the pin NV strikes the sides of the angle B farther from or
hearer to its vertex. It may be adjusted so that the break shall
last but one-twentieth of a second, or for a shorter time if
required.

Now, if the pen of the register is kept pressed upon the paper
by the attraction of the electro-magnet, it is clear that the breaks
produced by the clock will produce corresponding breaks in the
continuous line made by the pen, and the paper will be gradu-
ated into seconds, thus:

M

But if the pen is pressed upon the paper by a spring acting
against the attraction of the magnet, then each break produced
by the clock will give a corresponding short mark on the paper
with an intervening blank, so that the paper will be graduated
into seconds, thus:

- ke - - - - - - -

The first of these methods is commonly preferred.
In the cylindrical registers a pen carrying ink is used, and the
breaking of the circuit by the clock does not cause the pen to
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rise from the paper, but moves it laterally; in this case the paper
is graduated into seconds, thus:

'~ A A A 2 A - A, )

Dr. Lockk also employed a tilt-hammer for breaking the cir-
cuit; but the hammer was worked by the teeth of a wheel placed
on the axis of the escapement wheel of the clock.

At the Washington Observatory, the record on the paper of
the cylindrical registers has also been made by fine punctures
produced by a needle point. The needle has a little play which
prevents its resisting the motion of the cylinder during the time
required for the needle to enter and leave the paper.

74. The most simple method by which the pendulum makes
the circuit at each beat is also the suggestion of Mr. SaxToN.
A small globule of mercury is placed just below the pendulum,
a8 at 4, Fig. 17, upon a metallic support which by
the wire F' is in connection with one pole of the
battery. Another wire G' is connected with the
metallic support of the pendulum rod at P, and is
connected with the other pole of the battery through
the electro-magnet. A fine point m upon the ex-
tremity of the pendulum passes through the globule
at each vibration and establishes the electric cir-
cuit, for a small fraction of a second, through the
pendulum itself. The effect will be to graduate
the paper in one of the above mentioned ways
according to the arrangement of the register.

Fig. 17.
P
[/

75. Having thus obtained a graduated visible
time-scale, its application to the exact recording of
an astronomical observation is very simple. We
have only to let one of the wires in connection with
the magnet pass, on its way to the battery, through 4
the hand of the observer, where the circuit may be
broken and restored at pleasure. A small piece ¥
of apparatus called a signal-key is used for this purpose. It con-
dists of a piece of wood, five or six inches in length, Fig 18, on
which is fastened a metallic spring 4B, which by a very slight
pressure of the finger can be brought into contact with a metallic
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plate at C. Conceive the wire in its circuit from the magnet to

the battery to be severed at the key; let
s one end F'be connected with the spring
F 4 AB, the other end G with the plate C.
The continuity of the wire may be re-
garded as restored whenever the spring
is pressed into contact with the plate C.
This constitutes a make-circuit key. It is easy to see how the
arrangement may be reversed, so that by pressing the spring the
continuity of the wire is interrupted, constituting a break-circuit
key. Now, whenever the observer taps on his key he will pro-
duce upon his graduated time scale a mark similar to that of the
clock, but mostly distinguishable from it. For example, on a
Morse-fillet, and with a break-circuit key, we have

Fig. 18.

e

_ 260 o 2 200 M5 3
4

Here, at A, is a record of an astronomical observation occurring
between the 80th and 31st second. By a scale of equal parts, we
find the distance of 4 from 80*is 0.61 of the distance from 30
to 31, and hence the instant of the observation is 30°.61.

In order to identify the seconds on the register, a peculiar
mechanical contrivance (which need not be described here) is
employed, by means of which one of the breaks is omitted at
the beginning of each minute of the clock; thus, for example:

(6 18m)
[

560 57 58e [51d 22 3 L

The observer has only to identify the minute and write it on the
fillet, as in this example. For greater security, sometimes, every
fifth minute is also distinguished by the omission of two consecu-
tive breaks, thus:

(113 25w)
0

670 58¢ [ . 4 o

A record on a cylindrical register stands thus:

400 410 42 430 He 450 400 47 48

A

where the observation 4 occurs at 44'.7T1. The observer's signal
is generally distinguishable from the clock signals, as in this
example, by its form.
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In all the forms of recording it must be observed that the
beginning of the break, or dot, marks the point of time recorded.

In order to read off the record with the greatest convenience, a
glass scale is used, on which are etched eleven equidistant parallel
lines, dividing the second of the chronograph into tenths; the
hundredths are obtained by estimation. (Plate L Fig. 8.)

‘When the length of a second on the register is greater than
the perpendicular distance of the extreme lines of the scale, we
have only to place the scale obliquely on the line of seconds,
always causing their extreme lines to pass through two consecu-
tive second dots. Sometimes the lines on the scale are made
divergent; it is then always applied so that the line of seconds
shall be perpendicular to the middle line of the scale, and at the
point where the distance of the extreme lines is equal to the
length of the second. (Plate I. Fig. 2.)

76. When the pen of the chronograph is made to press upon the
paper by the attraction of the electro-magnet upon its armature,
a certain small fraction of time elapses after the closing of the
circuit (by the clock or by the observer) before the signal is
actually impressed upon the paper. This time is called the
armature time. If it were certainly constant, and the same for the
clock signals and for those of the observer, it would have no
effect upon the difference of time between any two recorded
phenomena. But the armature time probably varies both with
the strength of the battery and the length of the wire through
which the electric current passes. The variable error which
would thus be introduced into our results is avoided, or at least
very much reduced in magnitude, by employing break-circuit
signals exclusively; for the interval of time between the dreaking
of the circuit and the cessation of the action of the magnet is pro-
bably smaller and more constant than that between the making
of the circuit and the commencement of the action of the magnet.

77. To give the reader a just appreciation of the degree of
accuracy attained in the recording of time by the chronograph,
full size specimens of the records on three different kinds of
registers are given in Plate I. Figs. 4 and 5 are specimens of
clock signals as recorded on a Morse-Fillet and Saxton’s Cylin-
drical Register used on the United States Coast Survey. Fig.
6 is a specimen of clock signals and a number of actual
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observations of stars’ transits recorded on Boxp’s Spring-Gover-
nor Register, which has been obligingly furnished by Professor
G. P. Boxp. Figs. 2 and 3 exhibit in full size the manner in
which the glass scales for reading these records are ruled. Fig.
1 exhibits the reticule of a transit instrument, provided with
twenty-five transit threads, for determining the longitude by the

electric telegraph. (Vol. L, p. 844).

CHAPTER 1V.
THE SEXTANT, AND OTHER REFLECTING INSTRUMENTS.

78. THE SEXTANT, of all astronomical instruments, is the most
especially adapted to the purposes of the navigator and the
scientific explorer, as it is at once portable and extremely simple
of manipulation, requires no fixed support, and furnishes its data
with the least expenditure of the time of the observer. Being
held in the hand, and having small dimensions, the extreme
accuracy of fixed instruments is not to be expected from it, but
in the hands of a practised observer the precision of the results
obtained with it is often surprising.*

79. The optical principle upon which the sextant and other
reflecting instruments are founded is the following: “If a ray of
light suffers two successive reflections in the same plane by two
plane mirrors, the angle between the first and last directions
of the ray is twice the angle of the mirrors.”

Let M and m, Fig. 19, be the two mirrors. Since the direct
and reflected rays are always found in a plane perpendicular
to the reflecting surface,—called the plane of reflection,—it follows
that, after two successive reflections from two surfaces, the last
direction of the ray will be found in the same plane as the first
only when the plane of reflection is perpendicular to both mirrors,
In the diagram, let the plane of reflection be that of the paper,

* The first inventor of the sextant (or quadrant) was NewroN, among whose papers
a desoription of such an instrument was found after his death; not, however, until
after its re-invention by THomas Goorrey of Philadelphia, in 1780, and, perhaps,
by HapLEyY, in 1781,
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the lines M and m being the intersections of this plane with the
surfaces of the mirrors. Let AM i

be the direct ray falling upon the Fig. 19.

mirror M, which we shall first sup-
pose to lie in the direction MC,;
let Mm be the direction of the ray
after the first refiection, and mE
its direction after the second re-
flection. Draw MB parallel to
Em, MP perpendicular to MC,
and Mp perpendicular to the mir-
ror m. The angle AMB is the
difference of the first and last di-
rections of the ray. The angle
PMp is the same as the angle
contained by the mirrors, being obviously equal to MOm. We
‘have, therefore, to prove that AM B = 2P Mp.

If we conceive a perpendicular drawn at m, parallel to Mp, we
~asily see that p Mm is equal to the angle of incidence of the ray
JMm falling upon m, and pMB is equal to the angle of reflection
of the same ray; and since these angles, by a principle of Optics,
are equal, we have

But, on the same principle, we have

PMm — PMA — AMB + PMB
The difference of these two equations gives

PMp — AMB — PMp
whence
AMB — 2PMp

80. In order to apply this principle, let the mirror M be at-
tached to an index arm MCI, which revolves upon a pivot at
M in the centre of a graduated arc OIN, and let m be perma-
nently secured in & fixed position at right angles to the plane of
this arc. Let MO be the direction of the central mirror and of
the index arm when it is parallel to the fixed mirror m, and let
the graduation of the arc commence at O. In this position, an
incident ray BM from a distant object B will be reflected first to
m and then in the direction mE.which will be parallel to the
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first direction BM. If then the object is so distant that two rays
from it, BM and bm, falling upon the two mirrors, will be sensibly
parallel, an observer’s eye at K will receive both the direct ray
bm and the reflected ray mE at the same time. Hence the ob-
server will see two images of the same object—a direct and a
reflected image—in coincidence.

In the next place, let the mirror M be revolved into the posi-
tion MCI, in which a ray AM from a second object 4 is reflected
finally into the line mE. The observer now sees the direct image
of the object B in apparent coincidence with the reflected image
of the object A. The angular distance A MB of the two objects
is then equal to twice the angle of the mirrors, that is, to twice
MCm or to twice OM1. The arc O, which measures this angle,
is then the measure of one-half the angular distance of the
objects. If the arm MT carries a vernier at I, the exact value
of the arc will be obtained. In order to avoid the necessity of
doubling this value after reading, a half degree of the arc is
numbered as a whole degree: thus, an arc of 60° is divided into
120 equal parts, each of which is reckoned as a degree. As the
index arm MI cannot pass beyond the position MmN, where it
comes against the fixed mirror, it is not found practicable, in this
form of the instrument, to extend the arc 0D much beyond 60°,
and it is from this circumstance that the instrument derives its
name.

81. Plate ITI. Fig. 1 represents the most common form of the
sextant constructed upon these principles.

The frame is of brass, constructed so as to combine strength
with lightness; the graduated arc, inlaid in the brass, is usually
of silver, sometimes of gold, or platinum. The divisions of the
arc are usually 10’ each, which are subdivided by the vernier to
10””. The handle H, by which it is held in the hand, is of
wood. The mirrors M and m are of plate glass, silvered.. The
upper half of the glass m is left without silvering, in order that
the direct rays from a distant object may not be intercepted. To
give greater distinctness to the images, a small telescope E is
placed in the line of sight mE. It is supported in a ring KK,
which can be moved by means of a screw in a direction at rigbt
angles to the plane of the sextant, whereby the axis of the tele-
scope can be directed either towards the silvered or the trans-
parent part of the mirror. This motion changes the plane of
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reflection, which, however, remains always parallel to the plane
of the sextant: the use of the motion being merely to regulate
the relative brightness of the direct and reflected images.

The vernier is read with the aid of a glass R attached to an
arm which turns upon a pivot S, and is carried upon the index
bar.

The index glass M, or central mirror, is secured in a brass
frame, which is firmly attached to the head of the index bar by
screws a, a, . This glass is generally set perpendicular to the
plane of the sextant by the maker, and there are no adjusting
screws connected with it.

The fixed mirror m is usually called the horizon glass, being
that through which the horizon is observed in taking altitudes.
It is usually provided with screws by which its position with
respect to the plane of the sextant may be rectified.

At P and @ are colored glasses of different shades, which may
be used separately or in combination, to defend the eye from
the intense light of the sun.

I shall first treat of those common adjustments of the sextant
which the observer is obliged to attend to in the ordinary use
of the instrument, and shall afterwards treat fully of its mathe-
matical theory.

82. Adjustment of the index glass.—The reflecting surface of the
glass must be perpendicular to the plane of the sextant. The
simplest test of its perpendicularity is the following. Set the
index near the middle of the arc; then, placing the eye very
nearly in the plane of the sextant, and near the index glass,
observe whether the arc seen directly and its reflected image in
the glass appear to form one continuous are, which will be the
case only when the glass is perpendicular. The glass leans for-
ward or backward according as the reflected image appears foo
high or too low. It may be corrected by putting a piece of paper
under one edge of the plate by which the glass is secured to the
index arm, first loosening the screws a, a, a (P1. III. Fig. 1) for
that purpose. Or we may make the adjustment, as it is done
by the instrument makers, by removing the glass and filing
down one of the metallic points against which the glass bears
when secured in its frame.

883. Adjustment of the horizon glass,—This must also be perpen-




06 SEXTANT.

dicular to the plane of the sextant. The index glass having
been previonsly adjusted, if by revolving it (by means of the
index arm) there is found ome position in which it is panrallel
to the horizon glass the latter must also be perpendicular to the
plane of the sextant. The test of this paralleliem is the follewing.
Put in the telescope, and direct it towards a star. Move the
index until the reflected image of the star appears to pass the
direct image. If one image passes exactly over the other, it
will be possible to bring both into exact coincidence, so as te
form but a single image ; and it is evident that when this coin-
cidence takes place the mirrors must be parallel. If one image
passes on either side of the other, the horizon glass needs ad-
justment.

The perpendicularity of the horizon glass may also be tested
as follows. Hold the instrument so that its plane shall be nearly
wertical, and bring the direct and reflected images of the sea
horizon into coincidence. Then incline the instrument until its
plane makes but a small angle with the horizon ; if the images
still coincide, the two glasses are parallel : consequently, if the
index glass is perpendicular to the plane of the sextant, the
horizen glass is also in adjustment.

Any distant and well defined terrestrial object may be substi-
tuted for the star or the sea horizon. A star, however, is to be
preferred ; and one of the third magnitude will .afford greater
precision than the brighter enes.

84. Adjustment of the telescqpe.—The sight-line of the telescope
nmust be parallel to the plane of the sextant. Two parallel wires
or threads are placed in the telescope, which -are to be made
parallel to the plane of the sextant by revolving the sliding
tube containing them; then all contacts er ceincidences of
images are to be made midway between these two wires. The
-gight-line of the sextant telescope is, therefore,a line drawn
through the optical centre of the .object lens and the middle
point between these parallel threads.

Belect two objects from 100° to 120° apart, as the sun and
mmoon, and bring the reflected image of one into contact with
the direct image of the other, at the thread nearest the plane of
the instrument; then move the instrument so -as to throw the
images upon the other thread; if the contact remains perfect,
the line-of sight midway between the threads is parallel to the
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plane of the sextant. If the limbs of the two objects appear to
separate on the thread farthest from the instrument, the object
end of the telescope droops towards the sextant; otherwise it
rises.

It is to be observed that when the telescope is adjusted and
two images are brought into contact at either thread, they will
not be in contact in the middle of the field, but will there over-
lap; consequently, the reading of the sextant will be less for a
contact in the true sight-line in the middle of the field than
for one on either side. If the telescope is out of adjustment, the
middle of the field is no longer in the true sight-line, and the
contacts observed there give angles which are too great. The
correction for a given inclination of the telescope will be inves-
tigated in a subsequent article.

This adjustment may also be examined as follows. Place the
sextant horizontally on a table, and place two small metallic
sights 4, A (Fig. 20) on the arc. At )

a distance of at least 15 or 20 feet, let Fig. 20.

a well defined mark be placed so as 4 4
to be in the same straight line with
the upper edges of the sights, and in -

such a position that it may also be seen through the telescope..
The top edges of the sights should be at the same distance from
the plane of the sextant as the axis of the telescope. The
threads of the telescope being made parallel to the plane of the
sextant, the mark should be seen in the middle between them.

The adjustment of the telescope when necessary is effected
by means of two small opposing screws in the ring which
carries it.

85. The index correction.—Having made the preceding adjust-
ments, it is necessary to find the point of the graduated arc at
which the zero of the vernier falls when the two mirrors are
parallel; for all angles measured by the instrument are reckoned
from this point (Art. 80). If this point is to the left of the
actual zero of the scale by a quantity r, all readings in the arc
will be too great by r; if it is to the right of the actual zero, all
readings will be too small by the same quantity. If we wish:
the reading to be zero when the mirrors are parallel, we must
place the zero of the vernier on the zero of the arc, and then

revolve the horizon glass about a vertical line, until the direct
Vou. IL—7
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and reflected images of the same object coincide. Some instru-
ments are provided with a pair of opposing serews by which this
revolution can be effected ; but in others no such adjustment is
possible. In fact, the adjustment is unnecessary, as we can
always determine the correction to be applied to our readings to
reduee them ta what they would be if the adjustment were
made. This index correction is found as follows:

1st. By a star.—Bring the direet and reflected images of a star
into coineidence, and read off the arc. The index correction is
numerically equal to this reading, and is positive or negative
according as the reading is on the right or the left of the zero.
For example, the direct and reflected images of a star being in
coincidence, we read on the are 5’ 20’; then, calling the index
correction z, we have

2 == — 5" 20",

In another sextant the direct and refleected images of & star
being in coincidence, we read on the extra arc 2 40’’; then

T = 4 2 40",

This method may be used with the sea-horizon instead of a
star, but not with great precision.

2d. By the sun.—Measure the apparent diameter of the sun by
first bringing the upper limb of the reflected image to touch the
lower limb of the direct image ; and again by bringing the lower
limb of the reflected image to touch the upper limb of the direct
image. Denote the readings in the two cases by r and r’; then,
if 8 = the apparent diameter of the sun and R is the reading of
the sextant when the two images are in coincidence, we have

r=R-+s
=R —3s
whence

R=1i(r+7)

and the index eorrection isz=— R. The practical rule derived
from this is as follows. If the reading in either case is on the
arc, mark it with the negative sign; if off the are (i.e. on the extra
arc), mark it with the positive sign; then the index correction ie
one-half the algebraic sum of the two readings. For example,
we have read as follows:
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Oa the arc — 31’ 207
Off the aro - 38 10
+ 150
£=+4 0 56"
We have s = }(r — r’): hence, if the observations are good, we
ought to find that half the algebraic difference of the readings is
equal to the sun’s diameter as given in the Ephemeris on the day
of the observation. But, in order that this comparison may be a
good criterion, we should measure the sun’s horizontal diameter,
which is not sensibly affected by refraction. (Vol. L. Art. 184.)
In order to obtain the index correction with the greatest pre-
cision, the mean of a number of measures of the sun’s diameter
should be taken.

ExaupLe.—March 15, 1858, the following measures of the
sun’s horizontal diameter were taken:

On the are. Off the are.
— 81’ 20" + 88’ 107
« 10 « 0
3 15 “« 20
“« 25 « 15
« 20 « 10
«. 20 « 10
Means — 81 18.3 433 10 .8
—3118 .8
z =+ 56".3

Observed sun’s dismeter, 3 = 32’ 14”.6
By the Ephemeris, §8=232 13 .8

86. To measure the angular distance of two objects with the sextant.—
Place the threads of the telescope parallel to the plane of the
instrument. Direct the telescope towards the fainter of the two
objects, and revolve the sextant about the sight-line until its
plane produeed passes through the other object, observing to
have the index glass on the side towards this object. Then
move the index until the reflected image of the second object is
vearly in contact with the direct image of the first; clamp the
index, and make an exact contact (at the middle point between
the threads) by means of the tangent screw. The reading of the
arc will be the instrumental distance: applying to this the index
correction according to its sign, the result will be the observed
distance.
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In order to make a good observation, it is important that the
two images whose contact is observed should be equally bright.
Hence, we direct the telescope towards the fainter object, so that
it may be the brighter one which suffers the double reflection.
But in observing the distance of the moon from a star it will
generally be found that, even after the double reflection, the image
of the moon is so bright that the star will appear very indistinct
unless the telescope is raised (by the screw for that purpose) so
that the sight-line is directed through the transparent part of the
horizon glass; for then, a portion of the reflected rays from the
moon being lost, the intensity of its light is rendered more
nearly equal to that of the star. When the distance of the sun
and moon is observed, the telescope is usually directed towards
the moon, and the intensity of the sun’s rays is diminished by
putting one or more of the colored shades between the index and
horizon glasses. It will be found necessary in this case also to
regulate the distance of the telescope from the plane of the
instrument, in order to give the image of the moon the same
intensity as that of the sun. It is a common error of inexpe-
rienced observers with the sextant to have the images too bright.
It is essential to a good observation, 1st, that the images be well
defined by carefully adjusting the focus of the telescope; 2d, that
they be so faint as not in the least to fatigue the eye, yet perfectly
distinct; 8d, that their intensities should be as nearly as possible
equal.

In the case of the moon and a star, we observe the distance of
the star from that point of the moon’s bright limb which lies in
the great circle joining the star and the moon’s centre. To
ascertain that this point has actually been brought into contact
with the star, the sextant must be slightly revolved or vibrated
about the sight-line (which is directed towards the star), thus
causing the moon to sweep by the star; the limb of the moon
should appear to graze the star as it passes, or, rather, the limb
should pass through the centre of the star’s light, for in the
. feeble telescope of the sextant the star does not appear as a well
defined point.

In the case of the moon and a planet we bring the reflected
image of the moon’s limb to the estimated centre of the planet.

In the case of the moon and the sun, the contact of the nearest
limbs is observed, vibrating the instrument as above stated, and
making the limbs just touch as they pass each other.
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It facilitates the observation of lunar distances to set the index
approximately upon the angular distance before commencing
the observation. The approximate distance for a given time
may be found from the Ephemeris (see Vol. I. Art 65); the dis-
tance thus found is in the case of the sun and moon to be
diminished by the sum of the semidiameters of the two bodies
(say 82’), and in the case of the moon and a star or planet it is
to be diminished or increased by the moon’s semidiameter (say
16’), according as the bright limb is nearer to or farther from the
star than the moon’s centre. This proceeding is also a check
against the mistake of employing the wrong star.

87. To observe the altitude of a celestial body with the sextant and
artificial horizon.—The artificial horizon is a small rectangular
shallow basin of mercury, over which is placed a roof, consisting
of two plates of glass at right angles to each other, to protect the
mercury from agitation by the wind. The mercury affords a
perfectly horizontal surface which is at the same time an excel-
lent mirror.* If MN (Fig. 21) is the horizontal
surface of the mercury, SB a ray of light from a Flg. 21.
star, incident upon the surface at B, BA the re-
flected ray, then an observer at A will receive
the ray BA as if it proceeded from a point S’
whose angular depression MBS’ below the hori-
zontal plane is equal to the altitude SBM of the
star above that plane. If then SA4 is a direct ray
from the star, parallel to SB, an observer at A
can measure with the sextant the angle SAS’
= SBS’= 28BM, by bringing the image of the
star reflected by the index glass into coincidence
with the image S’ reflected by the mercury and seen through
the horizon glass. The instrumental measure, corrected for
index error, will be double the apparent altitude of the star.

The sun’s altitude will be measured by bringing the lower

* Observers are sometimes annoyed by impurities in the mercury which float on
its surface, and imagine that it is important to have very pure distilled mercury.
1 have found it preferable to use meroury amalgamated with tin (a few square
inches of tin foil added to the mercury of an ordinary horizon will answer). When
the mercury is poured out, a scum of amalgam will cover its surface: this scum can
be drawn to one side of the basin with a card or the smooth edge of a folded piece
of paper, leaving a perfectly bright reflecting surface, entirely free even from the
minutest particles of dust.
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limb of one image to touch the upper limb of the other. Half
the corrected instrumental reading will be the apparent altitude
of the sun’s lower or upper limb, according as the nearest or
Jarthest limbs of the direct and reflected suns were brought into
contact. For examples, see Vol. I. Arts, 145, 151, &e.

In observations of the sun with the artificial horizon, the eye
is protected by & single dark glass over the eye piece of the
telescope, thereby avoiding the errors that might possibly exist
in the dark glasses attached to the frame of the sextant.

The glasses in the roof placed over the mercury should be
made of plate glass with perfectly parallel faces. If they are at
all prismatic, the observed altitude will be erroneous. The error
may be removed by observing a second altitude with the roof in
reversed position, and, in general, by taking one-half of a set
of altitudes with the roof in one position and the other half with
the roof in the reverse position. It is eagily proved that the
error in the altitude produced by the glass will have different
signs for the two positions: so that the mean of all the altitudes
will be free from this error.

Instead of the mercurial horizon, a glass plate is sometimes
used, standing upon three screws, by means of which it is levelled,
a small spirit level being applied to the surface to test its hori-
zontality. The lower surface of the plate is blackened, so that
the reflexion of the celestial object takes place only at the upper
surface.

88. In the observation of the altitude of a star with the arti-
ficial horizon, it requires some practice to find the image of the
star reflected from the sextant mirrors; and sometimes, when
two bright stars stand near each other, there is danger of em-
‘ploying the reflected image of one of them for that of the other.
A very simple method of avoiding this danger, by which the
observation is also facilitated, has been suggested by Professor
Kx~orrE, of Russia.* From very simple geometrical considera-
tions it is readily shown that at the instant when the two images
of the same star—one reflected from the artificial horizon, the
other from the sextant mirrors—are in coincidence, the inclina-
tion of the index glass to the horizon is equal to the inclination
of the sight-line of the telescope to the horizon glass, and is,

* Astron. Nach., Vol. VIL. p. 262.
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therefore, a constant angle, which is the same for all etars. If,
therefore, we attach a emall spirit level to the index arm, so as to
make with the index glass an angle equal to this constant angle,
the bubble of this level will play when the two images of the
star are in coincidence in the middle of the field of view. With
& sextant thus furnished, we begin by directing the sight line
towards the image in the mercury; we then move the index
until the bubble plays, taking care not to lose the image in the
mercury; the reflected image from the sextant mirrors will then
be found in the field, or will be brought there by a slight
vibratory motion of the instrument about the sight line.

It is found most convenient to attach the level to the stem
which oarries the reading glaes, as it can then be arranged 8o as
to revolve about an axis which stands at right angles to the plane
of the sextant, and thus be easily adjusted. This adjustment is
effected by bringing the two images of & known star, or of the
sun, into coincidence, then, without changing the position of
the instrument, revolving the level until the bubble plays.

89. Observations on shore may be rendered more accurate by
means of & stand to which the sextant can be attached, and
which is so arranged that the sextant can be placed in any
required plane end there firmly held. The manipulation must be
learned from the examination of the stands themselves, which
are made in various forms.

90. On account of the feeble power of the sextant telescope
and consequent imperfect definition of the sun’s limb, the
apparent diameter of the sun is somewhat increased. This error,
however, may be removed by taking the mean of two sets of
altitudes, one of the lower limb and one of the upper limb.

91. To measure an altitude of a celestial object from the sea horizon.
«~Direct the telescope towards that part of the horizon which is
beneath the object. Move the index until the image of the
object reflected in the sextant mirtors is brought to touch the
horizon at the point immediately under it. To determine this
point, the observer should move the instrument round to theé
right and left (by a swinging motion of the body, as if turning
on his heel), and at the same time vibrate it about the sight line,
taking care to keep the object in the middle of the field of view;
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the object will appear to sweep in an arc the lowest point of
which must be made to touch the horizon, by a suitable motion
of the tangent screw.

In general, altitudes for determining the time should be taken
when the altitude varies most rapidly ; and this is near the prime
vertical. (See Vol. I. Arts. 143 and 149.) If the object is the
sun, the lower limb is usually brought to touch the horizon; if
the moon, the bright limb.

The apparent altitude of the point observed is found by cor-
recting the sextant reading for the index error, and subtracting
the dip of the horizon. (Vol. I. Art. 127.) To obtain the ap-
parent altitude of the sun’s or moon’s centre, we must also add
or subtract the apparent semidiameter. (Vol. I. Art. 185.)

92. As the sea horizon is often enveloped in mist, even when
the celestial bodies are visible, various attempts have been made
to obtain an artificial horizon adapted for use on shipboard.
The simplest apparatus heretofore proposed for the purpose is
that of Capt. BECHER, of the English Navy. ¢ Outside the horizon
glass of the sextant is & small pendulum about an inch and a
half long, suspended in oil (in order to check its sudden oscilla-
tions); to the pendulum is attached a horizontal arm, carrying
at the inner end a slip of metal which is seen in the field of the
telescope at the usual focus, and whose upper edge when it coin-
cides with a given line is the true horizon. The error is easily
determined by a known altitude, and is the same for all altitudes.
The apparatus, which is in a very compact form, is easily attached
to any reflecting instrument, and is shipped and unshipped at
pleasure. A lamp is attached for observing at night.”* With
this apparatus, when the motion of the ship is not too great, an
altitude can be obtained within 5’ by a practised observer; and
this is often sufficient.

93. Method of observing equal altitudes with the sexiant.—Some
observers set the sextant at pleasure, and note two instants,
namely, the contact of the nearest and farthest limbs of the two
images of the sun (one from the sextant, and the other from the
mercurial horizon), both morning and evening, without touching

* RaPER’8 Practice of Navigation, 2d edition, p. 151. It does not appear, how-
ever, how the slip of metal behind the horizon glass could be distinotly seen in the
field of the telescope. A plain tube must be used.
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the index in the mean time. With a star they obtain but one
observation on each side of the meridian. This practice is de-
signed to secure the condition that the altitudes observed before
and after meridian shall be absolutely identical, which may not
be the case of the index if the sextant is moved and brought
back again to the same reading. The errors to be feared, how-
ever, from not setting the index correctly on a given reading,
are, in general, 8o much less than errors of observation, that it
is better to sacrifice this merely theoretical consideration for the
sake of multiplying the observations. The following method
will be found convenient in practice.

1st. For the sun.—In the morning, bring the lower limb of the
sun, reflected from the sextant mirrors, and the upper limb of
that reflected from the mercury, into approximate contact;
move the 0 of the vernier forward (say about 10’ or 20’) and set
it on a division of the limb; the images will now appear over-
lapped, and will be separating; wait for the instant of contact:
note it by the chronometer, and immediately set the vernier on
the next division of the limb, that is, 10’ in advance; note the
instant of contact again, and proceed in the same manner for as
many observations as are thought necessary. If the sun rises
too rapidly, let the intervals on the limb be 20’.

Now, find (roughly) the time when the sun will be at the same
altitude in the afternoon, and just before that time set the vernier
on the last altitude noted in the morning (of course employing
the same sextant); the images will be separated, but will be ap-
proaching; wait for the instant of contact; note it by the chro-
nometer; set the vernier back to the next division of the limb
(10" or 20/, as the case may be); note the contact again, and so
proceed until all the A.M. altitudes have been again noted as
P.M. altitudes.

If, instead of noting the times directly by the chronometer, a
watch is employed (compared with the chronometer both before
and after each observation), it will generally be found necessary
to allow for its gain or loss on the chronometer, so as to obtain
the exact difference between the two at the instant of observation.

The mean of all the A.M. chronometer times and the mean of
all the corresponding P.M. times are regarded as two simple obser-
vations of the same altitude, and the computation proceeds from
these according to the method and example of Vol. I. Art. 140.

2d. For a star.—Set the sextant, and note the coincidences of the
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two images of the star in the same manner as the contacts of the
sun’s limbs are oberved.

In selecting stars for this observation, it is to be observed that
the nearer the zenith the star passes, the less may the elapsed
time be; and when the star passes exactly through the senith,
the two altitudes may be taken within a few minutes of each
other. But with the ordinary sextants altitudes near 90° cannot
be taken with the artificial horizon, as the double altitude is then
nearly 180°. The prismatic sextants and circles of Pistor and
MarTINS are adapted for measuring angles of all magnitudes up
to 180°, and are, therefore, especially suitable for these observa-
tions.

94. To examine the colored glasses.—The two faces of any one of
the colored glasses, or shades, may not be parallel. The glasses
then act like prisms with small refracting angles, which change
the direction of the rays passing through them, and, consequently,
vitiate the angles measured. To examine them, measure the
sun’s diameter with a suitable combination of shades; then in-
vert one of the shades, turning it about on an axis perpendicular
to the plane of the sextant, and repeat the measure; the half
difference of the two measures will be the error produced by

.that shade. A number of measures must, of course, be taken in
both positions of the shade, in order to eliminate accidental
errors of observation.

In order to save the necessity of this examination, the shades
are 8o arranged in PrsTor and MARTINS' sextants that they may
be instantaneously reversed. We have then only to take one-half
of a set of observations with one position of the shades, and the
other half with the reverse position, and take the mean of all the
measures, in order fully to eliminate the errors of these glasses.

95. To find the constant angle between the sight line and the per-
pendicular to the horizon glass.—A. knowledge of the value of
this angle will be useful in following out the theory of the
errors of the sextant in the subsequent articles. It varies in
different instruments, and must be found for each by a special
examination. Let the sextant be placed on & firm horizontal
support; direct the sight line towards a distant object B, Fig.
22, and bring the two images of the object into coincidence
The mirrors M and m are then parallel; and, if we put
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8 == the angle between the sight line and the perpendicular
to the horizon glass,

we have
BMm == MmE = 28

We have, therefore, only to find some means of measuring the
angle BMm. Leaving the sextant in
its present position, place a theodolite
in the line Mm produced, with its tele-
scope 7'N on a level with the sextant B
mirrors and looking into the index
glass; adjust it so that the image of
B reflected from M shall be seen upon
the cross-wire w in the focus. Rays
from w passing through the object glass
N emerge in parallel lines, as if from
an infinitely distant object lying in the
direction MNT. Bring the sextant tele-
scope to look into the theodolite tele-
scope, and reflect the image of B to the cross-wire: the reading
of the sextant corrected for the index error is the measure of the
angle BMm, or of 28. If the object is not very distant, the
angle subtended by the distance Mm at the object may be ap-
preciable. This angle may be called the sextant parallax, and
denoted by p. We shall have

BMm = 28 :--.p

Pig. 22.
N

When the object and its reflected image are in coincidence, let
the reading be R, and let x be the true index correction for an
infinitely distant object; then we have

Ryzx=—p (68
and when the object is reflected to the cross-wire of the theodo-
lite, let the sextant reading be R’; then we have

R4 =28 —p (59)
and from these two equations,
R—R=28 (60)

By this method I found for one of TRoUGHTON'S sextants, at
the Naval Academy, 23 = 88° 6.
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96. The sextant parallax for an object at a known distance is
found with the aid of the angle 8. Let

f = the distance of the index and horizon glasses,
d = the distance of the object from the index glass.

The perpendicular drawn from M upon mE is equal to fsin 28;
and for the angle p at the object, subtended by this perpendicular,
we have

fsin 28 or — fsin28

d dsin 1”

From this formula we may find a rough value of 8 when p has
been determined for a near object by means of (58) and f and d
are carefully measured.

The distance of an object for which the sextant parallax will
be 1’ will be found by the equation d = f 8in 23 cosec1”’. In
the sextant mentioned in the preceding article we have f =38
inches, whence d = 5.83 miles.

In measuring horizontal angles between terrestrial objects,
the effect of the sextant parallax may be eliminated by deter-
mining the index correction from the object which is seen
directly through the horizon glass.. This index correction will
involve the parallax, and, when applied to the sextant reading
of the angular distance between the objects, will give the angle
subtended by the objects at the centre of the sextant. The sex-
tant must, of course, remain in the same position in the measure
of the angle and the determination of the index correction.

(61)

sinp =

97. To determine the error produced by a prismatic form of the index
glass.—Let us first consider the case of a

P glass with parallel faces. Let MM', NN/,

« 4 Fig. 28, be the parallel faces, of which
NN’ is silvered. An incident ray AB is
refracted by the glass at B, and takes the

Fig. 23.
P

M B’

P ¥ direction BC; at C it is reflected into
. ‘\(‘3/ » CB’; and at B it is refracted into BA’.
Rk Y R ¥ If we put

m = the index of refraction for glass,
¢ = the angle of incidence ABP,

# = the angle of refraction DBC,

spl = A'B'P’,

¢ =DB'C,
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we have, by Optics,
gin ¢ = m sin ¢
8in ¢’ — m sin ¥’

But when the faces MM’ and NN’ are parallel, the normals BD
and B’DY are also parallel ; moreover, the incident ray BC upon
NN', and the reflected ray C B/, make equal angles with DD’:
hence, also # = ¢, and, consequently, ¢ = ¢’. If ABand A’B’
are produced to meet in C’, we see that A’B’ has the same direc-
tion that it would have had if it had been reflected directly from
the plane surface mC’m’ parallel to MM’ or to NN’. The re-
fraction which the ray suffers in passing through the glass, there-
fore, produces no error when the surfaces of the glass are parallel.
It may here be remarked, also, that it is not necessary that the
reflecting surface of the mirror should stand exactly over the
centre of the arc of the sextant.

Let us next consider the case of a glass whose faces are not
parallel, as M’'B, N'D, Fig. Fig. 24.
24, which, produced to meet
in M, form a prism MM'N’.
Let us assume that these faces
are perpendicular to the plane
of the sextant, and, conse-
quently, that the refracting
edge of the prism is also per-
pendicular to this plane. The incident and reflected rays will
be found in a plane parallel to that of the sextant. The ray
being traced through the glass, we shall have, as before, employ-
ing the same notation,

sin ¢ = m 8in &
8in ¢’ = m sin ¢ } (62)

D’ ¢c D

but here # and & are no longer equal. If we put

M = the angle of the prism — M'MN’

we shall evidently have

90°—8 =CBB'=BCD + M
90° — ¢= CB'B=B'CD— M

and, since BCD = B’ CD/, the difference of these equatibns gives
' ¢ —6=2M (63)
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From (62) and (63), ¢, m, and M being given, we can determirne
¢’ or the difference ¢’ — ¢. From (62) we deduce
cos § (¢ + ¢')sin § (¢ — ¢) = m cos } (¥ + ') sin § (¢ — 6)
whence, by (63), ,
) N i 2 S0P+ 8
. sind(f —g)=msin M c0sir £ 7Y Y

As M is always a very small angle, approximate values may be
employed in the second member of this equation: it will be suffi-

cient to take
cos 8

cos ¢

oin §(¢f — #) = m sin J.-

or

——
g’—y:ZMMSOOq)Jl—-m:P?

which may be reduced to the form

¢—e=2MV1+(w—1)sec'e

or, finally, by putting
¢=m—1
to the form
J— =2 MVIF sy (D)

The error varies with ¢, and consequently with the angle mea-
sured, If
7 = the angle given by the sextant,

we have, in Fig. 19, PMm = PMp + pMm, or
p=14r+8 (65)

The whole error in the measured angle will be the difference of
the errors produced at the reading y and at the zero point of the
sextant; and at the zero point we have ¢ = 8. Hence the error
will be the difference of the values of (64) for ¢ =}y + § and
¢ = B, 80 that, if ;' denotes the true value of the angle, we shall
have

r—r =28 [VITgwuo(y ¥ — VIFracsl (80)

For glass we have usually m = 1.55, and hence ¢*= 1.4025. If
M = 10", 8 = 10°, and y = 120°, we shall find y — ;' = 41",
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The effect of the error in the glass is evidently less for small
values of 3 than for large ones. Moreover, the smaller the angle
B, the larger the angle which can be measured with the sextant,
for all reflection from the index glass ceases when ¢ = 90°, and
this value gives by (65) y = 180° — 23 as the limit of poesible
measures with the instrument.

The preceding investigation is confined to the case in which
both faces of the glass are perpendicular to the sextant plane;
but it suffices to show the nature of the effect produced. This
case is, moreover, that in which the effect is greatest.

The glass reflects from its outer face as well as from its silvered
face, though in a less degree. If the faces are parallel, the rays
from a distant object refiected from the two faces will be parallel
after leaving the glass; they will, therefore, be converged to the
same focus in the telescope and produce but a single image of
the object. Bat if the glassis prismatic there will be two images,
a fainter image superposed upon the stronger one and not quite
coincident with it. The effect will be to give an image with an
indistinct outline; a star will present a somewhat enlarged or
elongated image. We can, therefore, very readily determine
whether the glass is prismatic. by examining the reflected image
of a star when the index is set upon a reading of about 120°.

The best makers will reject a glass that does not stand this
test. If, however, an instrument is found to be defective in this
respect, we may determine the error produced by it as follows.
After carefully adjusting the instrument and finding its index
correction, measure a large angle between two well defined ter-
restrial objects. Then take out the index glass and invert it
(8o that the edge, whiech was before uppermost, may now be next
the plane of the instrument), readjust the instrument, determine
the new index correction, and again measure the angle between
the two objects. Half the difference of the two measures will be
the error in either measure produced by the glass. The same
process repeated for a number of angles of various magnitudes
will furnish a table of errors, from which the error for any par.
ticular angle may be obtained by interpolation.

98. A prismatic form of the horizon glass affects all angles, the
index correction included, by the same quantity, and therefore
produces no error in the results.
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99. 7o determine the error produced by a small inclination of the
sight line to the plane of the sextant.—The directions of lines in
space are most clearly represented by points on the surface
of a sphere described about an assumed centre with an arbitrary
radius (Vol. I. Art. 1). The radii drawn parallel to any given
lines in space will intersect each other under the same angles as
those lines, and these angles will be measured by the arcs of
great circles joining the extremities of the radii on the surface
of the sphere. Let us here take the centre of the sextant arc
as the centre of such a sphere. Let O, Fig. 25, be that centre,
OP the direction of the perpendicular
to the index glass, Op that of the per-
pendicular to the horizon glass. - The
points P and p are the poles of the
great circles whose planes are parallel
to those of the glasses, and may be
called, briefly, the poles of the index
glass and horizon glass, respectively.
Let OA be the direction of the sight
line. When the instrument is per-
fectly adjusted, the lines OP, Op, and
OA are in the same plane, which is
parallel to that of the sextant. The course of a ray which
reaches the eye will be most readily followed by tracing it back-
wards from the eye. Thus, the ray OA coinciding with the sight
line is reflected from the horizon glass in the direction BO, so
that pB = pA. It is then reflected from the index glass in the
direction OC, so that PB = P(C; and OC is therefore the direc-
tion of an object whose image is reflected to the eye in the same
direction, A0, in which another object is seen directly. Hence
AOC, or AC, is the angular distance of the objects. From this
construction we obtain easily AC = 2Pp, which is the funda-
mental property of the sextant (Art. 79).

But if the sight line is inclined to the plane of the instrument,
it meets the sphere in a point 4’ not in the great circle Pp.
The inclination is measured by the arc AA’ perpendicular to

- Pp, which is a part of the arc QA’A drawn through A’and the
pole @ of the great circle. The point @ may be called the pole
of the sextant plane. Tracing the ray OA’ backwards, we ob-
serve that the plane of reflexion from the horizon glass is repre-
sented by the great circle A’pB’, determined by the ray and the

Fig. 25.
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normal Op, so that if we take p B’ = pA4’, the reflected ray takes
the direction B’O. The plane of reflexion from the index glass
will be represented by the great circle B/P(C’, and by taking
PC' = PB', 0C’ will be the direction of the reflected ray.
Hence, 4’C’ will be the true angular distance of the two objecte
observed in contact; while AC or 2.Pp will be the angle given
by the sextant. Let

r = the angle given by the sextant = AC,
Y = the true angle =A4'C,
i = the inclination of the sight line = A4 4".

It is evident that C'C’ = BB’ = A A’, and therefore QA’C’ is an
isosceles triangle of which the angle @ ==y, the side A’'C'= ¢/,
and the side QA4’ or QC’==90° —¢{. If then we divide this
triangle into two rectangular ones by a perpendicular from ),
we obtain

sin 4y = cos i 8in }y 67

for which, as i is always very small, we may take the approxi-
mate equation*

Y —r=—isin1"tandy (87%

According to the second method of adjustment in Art. 84, if
the mark is placed at a distance of 20 feet, and if the error of its
position in a vertical direction is not more than § an inch (which
is a large error in such a case), the telescope adjusted to it will
have an inclination which will be found by the equation sini

0.5 c oo . .
305 12 which gives i = 7’ 10’’. Taking this value of i, the

formula (87*) gives y/ — y == — 0”7.807 tan } 7, and for y = 120°,
¥ —y=—~1".5. The error may therefore be regarded as evan-
escent when ordinary care has been bestowed upon the adjust-
ment. When the error exists, the observed angles are always too

great.

100. If the contact of the images of two objects is made on
either side of the middle of the field of the telescope, the actual
sight line is inclined, although the axis of the telescope may be
parallel, to the sextant plane.

# This approximate equation ¢an be deduced from (67) or takem direotly from
8ph. Trig. (112).
Vor. IL.—8
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The inclination of this actual sight line can be estimated by
the aid of the angular distance of the threads. To find this
distance, place the threads at right angles to the plane of the
sextant, bring the direct image of a distant, well defined line on
one thread, and the reflected image on the other thread, and
read the arc; then move the index until the images have
exchanged places on the threads, and again read the arc; the
half difference of the two readings is the angular distance of
the two threads.

Let this distance of the threads be denoted by d, and suppose
an angle 7y is observed by making the contact at a distance nd
from one of the threads (the fraction n being estimated at the
time of making the observation); then the inclination of the
actual sight line to the true sight line corresponding to the
middle point between the threads will be i = }3 — nd, with
which value of i, the correction of the observed angle y, will
be found by (67*).

The distance 8 in the best sextant telescopes will not exceed
80’. When the instrument is held in the hand, we cannot make
all contacts exactly in the middle of the field; but, if we assume
that we can always make them at a distance greater than }4
from either thread (whlch a little practice will enable us to do),
we shall always have i < 4, or { < 5, and hence the correction
Y —7<0"44 tan }y. For any tolerably good observer, there-
fore, this correction will be practically insensible.

At the same time, however, we see the importance of making
the contacts as near to the middle of the field as possible, since
the error always has the same sign and all the measured angles
are liable to be too great. If a contact is made on either thread,
and we have 8 = 80/, the error in y will be 8/7.93 tan }y, or 6.8
for y = 120°.

101. The distance & of the threads may also be used to find
the inclinatiop of the axis of the telescope, or rather of the true
sight line. Measure an angular distance of 120° or more, be-
tween two well defined objects ; bring the images in contact first
on one thread and then on the other (the threads being placed
parallel to the plane of the instrument), and let the readings on
the arc be y and y,. Then, 7’ being the true reading in either
case, and ¢ the inclination of the true sight line, we have
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a 3
7 — r=—(§ —_ z') sin1” tan §
d P
Y —n= —(2 + t) sin 1” tan ¢ y,
whence, taking tan 47 = tan }7, in the second members,

—_ NH—7
28sin 1”

oty (68)

It is evident that, when ¢ is positive, the greater measure is r,,
taken on the thread nearest the plane of the instrument, and

%+ iis the distance from this thread to the point in the field

which represents a direction parallel to the plane of the sextant.
Hence the first method of adjusting the telescope given in Art. 84.

102. To find the error produced by a small inclination of the index
glass.—The horizon glass, being ad-
justed by means of the index glass
(Art. 83), may be supposed to have the
same inclination. Let p P (Fig. 26) be
the great circle of the sextant plane;
let the poles of the mirrors be at P’
and p’, and put

Fig. 26.

1 = the inclination of the index glass = PP’ = that of the

horizon glass = pp’.

If we suppose that the sight line is adjusted by the first method
of Art. 84, it will be found in a plane perpendicular to both
mirrors, and its direction will be represented by a point A’ in the
great circle p’P’. The direct ray from the eye to an object A4’
will be reflected in the direction B’, and thence to C’, these points
all lying in the same great circle; A’C’ will be the true distance
7 of the objects observed, and p’ P’ = }¢’ will be the true angle
of the mirrors, while pP= }y will be the angle given by the
sextant reading. In the isosceles triangle P’ Qp’, we have the
angle p’QP’'= }r and Qp'= QP = 90°—!; and, dividing it
into two right triangles by a perpendicular from @, we obtain

sin}y = cos lsinty (69)
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whence, very nearly,
Y —y=—20sin1"tan iy (89%)

By the method of adjusting the index glass given in Art. 82, it
may easily be placed within 5 of its true position, and for
I = 5= 800", and y == 120°, this formula gives y’ —p = — 0"".5.
Hence, with ordinary care, this error will also be practically
insignificant.

The inclination of the sight line, in this solution, is variable
with the angle measured. Denoting it by ¢ = .4.4’, we readily
find, by the aid of a perpendicular from @ upon p’P’,

tani'-_—-tanl._w : (70)
cos {y
in which § = 4p; or

=1seciyrcos(ty —A) (70%

103. If, however, the sight line is not determined as above
supposed, but has a constant inclination to the plane of the sex-
tant, denoted by i, its inclination to the plane of reflection p’ P’
will be i — ¢, and the additional error produced by this inclina-
tion will be found by (67*) to be

—(i' — ?)*sin 1” tan §y
Combining this with (89*), the complete formula is
Yy —r=—2Psin1"tan 1y —[Isec {ycos({y — ) —)'sin1”tan {

which can be put under the form

Y —r=—2sin1"tanty [l + sec}y [l cos (}y — B) —icos 1y]*] (71)

which agrees with Encke’s formula in the Berlin Jakrbuch for
1830, p. 292.

Taking, as an extreme case, [ = 5,1 = - §, y =120°, g = 80°,
this gives y/ — y = — 4/.0.

104. To find the error produced by a small inclination of the horizon
glass.—Assuming that the index glass and the telescope are in
adjustment, let the pole of the horizon glass be at p’, Fig. 27,
the pole of the index glass being at P, and the sight line directed
towards 4 in the plane of the sextant. The ray from the eye
towards A is reflected to B’ in the arc 4p/, so that p’ B’ = p'A,
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and thenee to €Y, which is at the distance CC’ = BB’ from the
great circle pPC. AC=1 is the
angle given by the sextant; and # . 21.
AC'=y is the true angular dis- , A
tance between the two objects whose
images are observed in contact. &
Putting '

k = the inclination of the herizon glass — pp’,

m = CC' = BB/, 8= Ap,

we have from the triangles 4pp’ and 4 BB’, very nearly,

m = 2kcos §
and, from the triangle 4C’C,

c08 Y = co8 m CO8 y
whence
Y —r = $m*sin 1” cot y = 2A*sin 1” cos* 8 cot y 2.

This error is sensible only for small values of y. For y = 0 the
expression becomes infinite; for in fact it is inapplicable in this
case, since when the horizon glass is inclined it is impoesible to
make a contact of twe images of the same point. But in the deter
mination of the index correction by the sun, the limbs of the
two images will be brought into contact alternately on each side
of the true zero point of the arc, and we shall have y = + 0° 82'.
For this case, with § = 80° and % = 80’/ (which ought to be
the maximum error in the adjustment by Art. 88), we find
Y —r==0"7; and even this error is eliminated from the
index correction itself. For all angles greater than 0° 82’ the
error is wholly inappreciable.

105. Tv find the eccentricity of the sextant.—As the arc of the
sextant is limited, the method of determining whether the centre
about which the index arm revelves is coincident with the centre
of the graduations by means of two verniers 180° apart (Art. 28)
is not applicable. We can find the eccentricity only by comparing
various angles measured with the sextant with their known values
found by some other means. Thus, the angular distances of a
number of terrestrial points situated in a horizontal plane may
be accurately determined with a good theodolite and then also
measured with the sextant.
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Or we may measare with the sextant the distance of two well
known fixed stars and compare it with the apparent distance
computed from their right ascensions and declinations. The re-
fraction, however, must be taken into account, which may be
done in either of two ways. 1st, The true distance of the stars
will be found as in the case of the moon and a star, Vol. L
Art. 255. Then the apparent distance will be found by the
formulse (448) and (449) of Vol. I, in which we must for this
case suppose h’, H’,d’ to be the true altitudes and distance, and
h, H,, d, to be their apparent values affected by refraction. The
altitudes will be computed by Art. 14, Vol. I, the local time,
and consequently the hour angles of the stars, being given.

2d. We may compute the zenith distances and parallactic
angles of the stars for the time of the observation by Vol. I. Art.
15, and then the refraction in right ascension and declination by
Art. 120. 'We shall then have the apparent right ascensions and
declinations, from which the apparent distance will be directly
computed by the method of Vol. I. Art. 255.

Now, let y be the sextant reading, x the index correction (here
supposed to be unknown, as we must regard the zero point as
likewise affected by the eccentricity), y’ the true value of the
measured angle, e the eccentricity ; then, since the readings of the
sextant are double the true arcs, we have, by (9),

Y —@ +2z)=2esin(}/ + E)
or, putting n= ' — 7,
x4+ 2ecos Esindy 4 2¢esinEcosty=n (13)

To find the three unknown quantities x, 2ecos E, and 2¢sin E,
we must have three such equations derived from three angles
falling in different parts of the arc,—for example, near 0°, 60°, and
120°. If we have measured a large number of angles, of various
magnitudes, we can treat the equations by the method of least
squares.

As the index correction is liable to change from one observa-
tion to another, we can let y represent the reading corrected for
the index error found at each observation, and then x will be the
correction of the zero point for eccentricity.
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THE S8IMPLE REFLECTING CIRCLE.

106. If the arc of the sextant is extended to a whole circum-
ference, the index arm may be produced and carry a vernier
upon each extremity. The mean of the readings of the two
verniers may then be taken at every observation, and will be
wholly free from the error of eccentricity. This constitutes a
simple reflecting circle, the manipulation of which is in every
respect the same as that of the sextant. It has not only the
advantage of eliminating the eccentricity, but at the same time
of diminishing the effect of errors of reading and accidental
errors of graduation, since every result is derived from the
mean of two readings at two different divisions of the arc. The
only objection to the instrument is found in the slight increase
of its weight.

The simple reflecting circles of TRouagHTON are read by three
verniers at distances of 120°; but, as the eccentricity is already
fully eliminated by two verniers, the third can increase the
accuracy of a result only by diminishing the effect of errors of
reading and of graduation. If ¢ is the probable error of the
mean of two readings, that of the mean of three readings will be

,=¢,1/3 =081¢,

g0 that if two verniers reduce the error to 5/ the third will only
further reduce it to 4/, an increase of accuracy which for a
single observation is not worth the additional complication and
weight and the trouble of reading. As was to be expected,
these instruments, though of very refined and perfect construc-
tion, have been but little used.

The prismatic reflecting circles of P1sTor and MARTINS noticed
below have but two verniers, and combine many practical ad-

vantages.

THE REPEATING REFLECTING CIRCLE.

107. In the repeating reflecting circle the small mirror, or
horizon glass, is not permanently attached to the frame of the
instrument, but is attached to an arm which revolves dbout the
centre of the instrument. As the telescope must always be
directed through this glass, it is also attached to the same arm
and revolves with it. This arm also carries a vernier at its
extremity.
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Let ETH (Fig. 28) be the revolving arm to which are attached

Fig, 38.

the small mirror m, the
telescope 7, and the ver-
nier, or index H; M the
central mirror which is
revolved by the arm M1,
carrying the vernier, or
index I. In accordance
with the nomenclature in
nautical works, we shall
call H the horizon indez,
and I the central indezx.

The arc is graduated
from 0° to 720° in the di-
rection HIE.

Let 4 and B be the objects whose angular distance is to be
measured. First: let the central index I be clamped at any
sssumed point of the arc. Bring the plane of the instrument to
pass through the two objects. Direct the telescope towards the
right hand object B, and, without touching the central index,
move the horizon index H (or rather revolve the instrument,
keeping the telescope bearing on B), until the image of the left
hand object 4 is reflected from the central mirror M to the
horizon glass m, and thence to the eye, and thus into coincidence
with the object B seen directly. This completes the first part

Fig. 29.

of the observation. Now,
leaving the horizonindex
H clamped in this posi-
tion, unclamp the central

* index J; direct the tele-

scope to the left hand
object 4, Fig. 29, and
move the index I for-
ward (in the direction of
the graduations) until the
reflected image of the
right hand object B is
brought to coincide with
the direct image of A.
This completesthesecond
part of the observation.
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Then, the difference between the readings of the central index in its two
positions is twice the angular distance of the objects. For let R, Fig.
29, be the point of reading of the central index before the first
contact, and R’ that after the second contact. At each contact
the angle of the mirrors is equal to one-half the angle measured
(Art. 80); and it is evident that the points R and R’ are at equal
distances on each side of that point of the arc at which the cen-
tral index would have stood had we stopped its motion when the
mirrors were parallel. Hence the angle RMR’ is twice the
angle of the mirrors at either contact. Denoting the angle
measured by 7, and the readings by R and R’, we have, there-
fore,
2r=R'—R

The half difference of the two readings is then the mean of
two measures of the required angle; while with the sextant two
observations are necessary to furnish one measure of an angle,
since one observation must be made to determine the index cor-
rection, which is here dispensed with.

If we now recommence the observations, starting from the
last position of the central index, this index will be found after
the fourth contact at a reading R’, which differs from R’ by
twice the angle y: so that we have

zr = B" __BI
and, consequently,
4y=R"—R

Continuing this process as long as we please, we shall have, after
any even number n of contacts, & reading B, of the central
index, and
ny = R,— R
R.— R
n

or

y o= (74)
Henee it is necessary to read off the arc only before the first and
after the last observed contact, which is one of the greatest
advantages of this instrument for use on board ship in night
observations.

108. If the distance of the objects is changing, as in the case
of a lunar distance or an altitude, the difference between the
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first and last readings will be the sum of all the individual
measures, and the value of y found by dividing this sum by the
number of observations will be the mean of all these measures.
The time of each observation having been noted, this value of r
will be the value of the observed angle at the mean of these
times, provided the angular distance is changing uniformly.

109. We have thus far supposed the telescope to be directed
alternately towards each object; but (as in the measurement of
a lunar distance, for example) it is expedient to look directly at
the fainter object and reflect the brighter one. This can be done
by reversing the face of the instrument after each contact; for
the relative position of the mirrors will thus be inverted without-
requiring the line of sight to be shifted from one object to the
other.

It is convenient in practice to distinguish the two kinds of
observation by the relative positions of the mirrors. For this
purpose, let a plane be conceived to be passed through the axis
of the telescope at right angles to the plane of the circle; the
instrument is thus divided into two portions, of which that which
is on the same side of the perpendicular plane as the central
mirror will be called the right, and that which is on the opposite
gide, the left; these designations, however, having no reference
to the right and left of the observer when the instrument is held
in various positions. .

An observation to the right is one in which the object reflected
from the central mirror is on the right of the instrument.

An observation to the left is one in which the object reflected
from the central mirror is on the left of the instrument.

A cross observation is one consisting of two observations, one to
the right and one to the left.

The observation to the right is precisely like that with the
sextant. We may, in fact, use the instrument as a sextant.
Clamp the horizon index at any point of the arc; bring the direct
and reflected images of the same object into coincidence by
moving the central index, and read off this index. Call this
reading R; then, making any observation to the right, let the
reading be R’; the angle measured is R’ — R, and — R may be
regarded as the index correction, as in the sextant.

110. In observing altitudes with the repeating circle, the tele-
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scope is directed to the image in the artificial horizon. The
central index is, for convenience, set upon zero, and we com-
mence with an observation to the left, as in Fig. 28, holding the
instrument in the left hand. The next observation is to the
right, as in Fig. 29, and the instrument is held in the right hand.

111. In order to facilitate the repetition of the observations,
the horizon glass and telescope carry with them an inner circular
arc, which is called the finder. This finder moves under the
central index arm alternately backwards and forwards in the suc-
cessive observations; and, consequently, when the two places of
the index arm have been once noted on the finder, it can be
brought approximately to these places for the succeeding obser-
vations, whereby the images will be already approximately in
contact. Two sliding stops are usually placed on the finder, and,
when once set, serve to indicate the two positions of the central
index. The finder is also roughly graduated for the same pur-

pose.

112. The adjustment and verification of the glasses and tele-
scope are in every respect the same as for the sextant. The
theory of the errors is also similar, only we have a compensa-
tion of some of them which is worthy of notice and will be
considered below.

Dark glasses or shades are placed, as in the sextant, behind
the horizon glass and between the horizon glass and central
mirror, for observations of the sun. In cross observations, the
errors of these glasses are eliminated, since their positions with
respect to the incident rays are reversed at each alternate contact.
In observations to the left, however, Fig. 28, it is evident that
when the angular distance between the objects 4 and B is small,
colored glasses midway between M and m would intercept a
portion of the direct rays from 4 on their way to M. In this
case, therefore, it becomes necessary to substitute for them a
large shade immediately in front of the central mirror. The
same shade serves for the observation to the right; but, as the
angle of incidence of rays falling upon it is no longer the same
as in the observation to the left, the error of the shade is
not wholly eliminated. However, as the angle of incidence is
small in both positions, the errors produced by a prismatic form
of the shade will be small, and the partial compensation of these
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errors which ocours will leave a residual error mostly inappre-
cigble.

118, To determine the error produced by a prismatic form of the
central mirror in a cross observation with the circle~~Let us consider
the two contacts separately.

1st. The observation lo the right is the same as with the sextant,
and hence we have, for this observation, by (66),

r—7= ZM[I/I+q’sec’(§r+ﬁ)—-l/l+q’sec’ﬁ] (76)

in which M, ¢, 3, r, and ¢’ have the same signification as in Art. 97.

2d. In the observation to the left, the central mirror is reversed

with respect to the incident ray, and

therefore the sign of M must be

changed. But the angle of incidence

5 ¢ 18 also changed. Let M and m, Fig.

80, be the positions of the mirrors,

AM a ray from the left-hand object 4

reflected from the central mirror to m,

4 and thence to E in coincidence with

the direct ray from the object B. Producing the faces of
the mirrors, we readily find, from the triangle MCm,

Fig. 80.
c

p=1%r—8
This value is to be used in the equation (64). The error in the
measured angle will be the difference of the values of (64) for
¢ =%r — P and ¢ = — B; and we shall therefore obtain for it
a formula differing from (75) only in having — $ instead of + B
and — M instead of + M. Hence the error in an observation
to the left is

r—r=—2M[VIF¢gscc(y —B) — V1fgsec'3] (76)
8d. For the error in the cross observation we have, by taking the
raean of (75) and (76),

r—r=M[VT¥geecdr+ 8 —vVIFgsecly—5] (0N

If we suppose, as in Art, 97, ¢ = 1.4025, M = 10", y = 120°,
f = 10°, we find, by these formule, that the error of an observa.
tion to the left is 41”7, that of an observation to the right is 11/,
and that of a cross observation is 15/, The error of the central
mirror, though not wholly eliminated, is reduced to about one-
third that of a sextant observation.
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Borpa,* to whom we owe the most important improvements in
the reflecting circle, gave the numerical values of the formuls
(75), (76), and (77), in a small table with the argument y, for a
eircle in which g = 10°. Table XXXIV. of Bowprrca’s Navi-
gator is derived from similar formulee.

The error produced by the central mirror for a given angle
may be found by Art. 97, and then by means of Borpa's table
we may infer the correction for any other angle, by simple pro-
portion.

114. The errors of reading, of imperfect graduation, and of
eccentricity are all nearly eliminated by taking a sufficient num-
ber of cross observations. For these errors affect only the first
and last readings, and are divided by the number of observations.
If the sum of all the measures is very nearly 720° or 1440°, &c.,
go that the central index has made one or more complete revo-
lutions, the eccentricity is wholly eliminated.

The error resulting from an inclination of the sight line of the
telescope is not reduced by repetition, since it makes every
measure too great. (Art. 99.)

In theory, therefore, the repeating circle is very nearly a per-
fect instrument, capable of eliminating its own errors. As, how-
ever, we cannot pretend to measure “what we cannot see,” the
refinement of the circle may really be thrown away, so long as
the optical power of its telescope is so feeble. In fact, the results
obtained with the circle do not appear to have surpassed those
obtained with the sextant so much as was expected from its theo-
retical perfection. This may, however, be due, in a degree, to
the mechanical imperfections arising from the centring of two
axes one within another.t

# Description et usage du Cercle de Réflerion, par CH. Dr Borpa, 4™ ed. Paris, 1816.

+ It seems that the instrument makers have supposed that it was necessary that
both the horisen and the eentral indices should be perfeotly centred. In GawsmY's
circles the axis of the central index turns within that of the horison index, and any
skake of the latter is communiocated to the former. But, if we use the instrument as
prescribed in the text, reading of only the central indez, it is quite uwnimportant
whether the horizon index is correctly centred or not. It is omly necessary that it
should revolve in a plane parallel to the plane of the instrument, and should remain
firmly olamped throughout each cross observation ; and this will be secured by giving
it & broad hearing about the centre. The axis of the central index ought then to
pees direetly into the solid frame of the instrument, and the horizon index should
turn upon a fixed collar, which would entirely separate it from the former. From
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115. The circle, as above described, is capable of measuring
no angles greater than about 140°. In this respect, therefore,
it does not excel the sextant. A very simple addition proposed
by M. Daussy obviates this difficulty. On the horizon index
arm EH, Fig. 31, he places a second small mirror n, which

is of only one-half the

Fig. 3L. height of the silvered
partof the horizon glass

m. The angle at which

it stands is more or less

arbitrary, but it is con-

venient to have it make

an angle of about 45°

g with the mirrorm. Let

A be any distant object,

and let the instrument

be held sothataray An,

falling upon n, shall be

reflected in the line nm

to m and thence to the eye at . Now move the central index
until the ray AC, from the same object, is reflected from the
central mirror MN in the line Cm, passing over the small mirror
n to the horizon glass, and thence to the eye in coincidence with
the first ray. (This observation is like the ordinary one of deter-
mining the zero point of a sextant or circle, only the line of sight
is dirccted to a point about 90° from the object.) The mirror
MN and the small mirror n are now parallel. Let R be the
reading of the central index. Now let B be a second object
which may be even more than 180° from A reckoned in the
direction HRR'. Move the central index until this object is
reflected from the central mirror M’N’ to m, and thus into coin-
cidence with the image of A reflected from n. Let R’ be the

the fact that such a construction has not been heretofore adopted, I infer that this
part of the theory of the instrument has not been well considered.

If this change is made, and the instrument is used on land upon a stand, I cannot
see any reason why we should not realize all the theorctical advantages of the in-
strument, especially if we iderably increase the optical power of the telescope.

The opinion of 8ir JorN HxrscHEL (Outlines of Axtrenomy, Art. 188) that ¢‘the
abstract beauty and advantage of this principle” (of repetition) *‘seem to be counter-
balanced in practice by some unknown cause, which probadbly must be sought for in
smperfect clamping,” is hardly sustained by practical experience with instruments
baving a single central axis.
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reading. The angular motion of the mirror MN being always
equal to one-half the angular distance of the objects, R’ — R is
the required angle. M. Daussy calls this contrivance a dépressio-
métre, or dip-measurer, from its application to the measurement
of the dip of the sea horizon, by measuring the angular distance
between two diametrically opposite points of the horizon, this
angular distance being 180° plus or minus twice the dip accord-
ing as we measure through the zenith or through the nadir. It
finds, however, another important application in observations
with the artificial horizon when the altitude exceeds 65° or 70°,
and the double altitude is consequently too great to be measured
in the usual manner. The additional mirror is usually furnished
with the Gambey circles, and is readily applied to any instru-
ment. Since the angle at which it stands is not required to be
found, the only adjustment necessary is to make it perpendicular
to the plane of the instrument, which is done by the aid of the
same test as that which is used in adjusting the horizon glass;
we have only to observe that the two images of the same object
A (which for this purpose may be a bright star) reflected from
MN and n can be brought into coincidence in the middle of the
field of the telescope; the mirrors MV end m having of course
been previously adjusted.*

THE PRISMATIC REFLECTING CIRCLE AND SEXTANT.

116. The prismatic reflecting circle, constructed by Pistor and
Martins of Berlin, differs from the simple reflecting circle
(Art. 106) by the substitution of a glass prism for the horizon
glass, and by the position of this prism with respect to the cen-
tral mirror.

ABC, Fig. 82, represents the circle; M the central mirror
upon the index arm ac, which carries a vernier at each end a
and ¢; m the prism, which is nearer the telescope 7' than the
central mirror, and is permanently attached to the frame of the
instrument. The prism has two of its faces nearly perpendicular
to each other, and the third face acts as the reflector. A ray
from the central mirror entering one of the perpendicular faces
is totally reflected at the inner face and passes out through the

* Special instruments for measuring the dip of the sea horison have been contrived.
Por an account of TrougHTON'S Dip-Sector, see Simms’s Treatise on Mathematical
Instruments.



128 PRISMATIC CIRCLE.

other perpendicular face in the direction of the sight line of the
telescope. The height of the prism is only one-half the diameter
of the object lens of the telescope, and therefore direct rays
from any object passing over the prism enter the telescope and
are brought to the same focus as the reflected rays. When the
central mirror is parallel to the longest side of the prism, as in
Fig. 82, two images of the same object are in coincidence, and
the index correction is determined as in the sextant, except that
every reading is here the mean of the readings of the two
verniers. :

Now revolving the index into the position, Fig. 83, an object

Fig. 32. Fig. 3.

E E

to the right will be reflected into coincidence with the direct
object, and the angular distance of the two objects is given by
the reading corrected for the index error. When the central
mirror becomes nearly perpendicular to the line Mm, the prism
intercepts the rays from the right hand object. This occurs
when the angular distance of the two objects is about 130°.
Beyond this point the head of the observer also intercepts the
rays, until we come to the position of Fig. 34.

In this position two objects 180° apart can be brought into
optical coincidence. DBut, although the prism does not interfere
with the rays from the second object, the head of the observer
may ; and this is obviated by placing a small prism D at the eye
end of the telescope, to reflect the two images which are in
coincidence, to the eye in the direction DE.
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Continuing the motion of the index, we see, by Fig. 85, that
angles greater than 180° can now be obtained until the index
arm comes against the prism, which occurs when the angle is
about 280°. The angles thus measured may be reckoned either
a8 between 280° and 180° or between 80° and 180°. Of these,
the angles falling between 80° and 180° may be observed in two
reversed positions of the instrument, constituting a cross obser-
vation, as with the repeating circle, whereby the index correc-
tion becomes unnecessary, and the errors arising from a prismatio
form of the central mirror are partially eliminated.

Fig. 34. Fig. 85.

‘When the index is on zero, Fig. 82, the rays incident upon
the central mirror make an angle with it of 20°, and in this posi-
tion we obtain the feeblest reflected images. When the index
is at 130°, the incident rays make an angle with the mirror of
85°, and we obtain the brightest reflected images. In the com-
mon sextant, the reverse takes place; the feeblest images occur
for the angle 130° when the incident rays make an angle of only
10° with the central mirror; and the brightest images when the
index is on zero and the rays make an angle of 75° with the
mirror. The angles of incidence in the prismatic instruments
are, therefore, more favorable for the production of distinct
images than in the common sextant, since even the smallest
angle which the incident rays make with the mirror in the

former is double the corresponding angle in the latter.
Vor. IL.—9
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The adjustments of the prism and central mirror are similar to
those of the horizon and index glasses of the sextant.

The theory of the errors is also similar to that above given
for the sextant and circle.

117. The advantages of these instruments over the common
sextants are: 1st. Angles of all magnitudes can be measured;
2d, the eccentricity is completely eliminated by always employ-
ing the mean of the readings of the two verniers; 8d, the re-
flected images are brighter than in other reflecting instruments,
both because the angles of incidence upon the central mirror are
more favorable, and because the inner face of a glass prism isa
much better reflector than a silvered glass; 4th, the errors
arising from a prismatic form of the central mirror are much
less than in the sextant. The instruments, as made by Pistor
and MARTINS combine also other improvements which might be

introduced into the common sextant. Thus, the shade glasses '

admit of reversal, by which their errors are wholly eliminated;
a revolving disc, containing small colored glasses or shades, is
adapted to the eye piece of the telescope, for use in taking alti-
tudes of the sun with the artificial horizon; all lost motion is
avoided in the tangent screw, by causing it to act against a
spring; the arc is read off at night by the aid of a lantern which
is placed over the centre of the instrument and the light of which
is concentrated upon the arc by a lens.

The prismatic sextant differs from the circle only 1n dispensing
with the second vernier (the vernier a in the above figures), and
that portion of the arc upon which it reads. The same angles
can be measured with this instrument as with the circle, but
without the advantage of eliminating the eccentricity.

For an extensive series of observations, illustrating the capa-
bilities of the sextant in the hands of a good observer, and espe-
cially demonstrating the excellence of the prismatic sextants, see
an article of ScEUMAOHER, in the Astron. Nachk., Vol. XXIIL. p.
821.
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CHAPTER V.
THE TRANSIT INSTRUMENT.

118. Tae fransit instrument is an instrument for determining
the instant of a star’s passage through any given vertical plane ;
or (which is the same thing) the time of a star’s transit over any
given vertical circle. For this purpose, it is necessary that the
motion of the telescope be confined to the vertical plane ; and this
is effected by attaching the tube to a horizontal axis and perpen-
dicular to it, so that by revolving the instrument upon this axis
the principal sight-line of the telescope describes a plane passing
through the zenith. The common theodolite may therefore be
used as a transit instrument when its telescope admits of a com-
plete revolution upon its horizontal axis.

The time of transit over the assumed vertical circle is deduced
from the time when a star passes a given thread placed in the
focus of the objective.

The instrument may be mounted in any vertical plane, but is
chiefly used either in the meridian or in the prime vertical: in
the first position, for finding either the true local time or the
right ascensions of stars; in the second, for finding either the
latitude of the place of observation or the declinations of stars.
‘When spoken of simply as “the transit instrument,” however,
it is usually understood to be in the meridian.

It admits of some variety of form. In the old and still most
common form, the telescope and horizontal axis bisect each
other,* and the two ends of the axis are supported on pillars
between which the telescope revolves.

A second form is that in which, starting from the first form,
one-half the telescope tube is dispensed with, that half which
contains the object glass being retained, while the horizontal axis
is made to perform the part of the other half. At the intersec-

# In HaLLEY'S transit instrument (still preserved as a relic in the Greenwich Ob-
servatory) the pivots of the axis are at unequal distances from the telesoope.
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tion of the tube with the axis is a glass prism which bends the
rays from the object glass at right angles, and transmits them
through the hollow axis to the eye piece which is placed at the
end of this axis. The chief advantage of this construction is
that the observer does not have to change his position to observe
all the stars which cross the plane of the telescope. It has also
the advantage, for a portable instrument, of diminished weight
and a more compact form.

In a third form, proposed by STEINEEIL* of Munich the
telescope tube is dispensed with entirely, or rather the horizontal
axis is converted into a telescope, by starting from the sécond
form just described and shortening the tube until the object
glass is brought next to the prism, so that the rays are bent
immediately after entering the instrument. This is therefore.
practically, an instrument of the second form with the telescope
tube reduced to its minimum length; but, to gain sufficient focal
length, the object glass and prism (which are connected together)
are placed near one end of the axis. This form evidently offers
the greatest advantages for a portable instrument; its want of
symmetry, and the loss of light incurred by the introduction of
the prism, seem to prevent its adoption for the larger instruments
intended for the more refined purposes of the observatory.

The principles governing the use of such instruments being
essentially the same as those which apply to the transit instru-
ment of the common form, I shall here treat exclusively of the
latter.

119. Plate IV. represents the meridian transit instrument of
the Washington Observatory, made by ERTEL AND Sons, Munich.
It has a focal length of 85 inches, with a clear aperture of 5.8
inches. The dimensions of all the parts may be found from the
drawing. The portions of the telescope tube T'T, which are
made conical to prevent flexure, are screwed to the hollow cube
M. The conical portions of the horizontal or rotation axis NN
are also screwed to this cube; this axis is hollow, and terminates
in two steel cylindrical pivots which rest inVs at VV. It is
highly important that these pivots be perfect cylinders and of
precisely equal diameters.

If the whole weight of an instrument of this size were per-

* Astron. Nack., Vol. XXIX. ». 177.
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mitted to rest upon the Vs, the friction would soon destroy the
perfect form of the pivots, and hence a portion of this weight is
counterpoised by the weights WW, which, by means of levers,
act at XX, where there are friction rollers upon which the axis
turns. By this arrangement, only so much of the weight of the
instrument is allowed to rest upon the Vs as is necessary to
insure a perfect contact of the pivots with the Vs. This not only
saves the pivots, but gives the greatest possible freedom of
motion to the telescope, the lightest touch of the finger being
now sufficient to rotate the instrument upon the axis.

The counterpoises may be made to perform another important
service in diminishing the flexure of the horizontal axis, which they
will evidently do if they are applied nearer to the cube than in this
instrument. With cones, such as NN, of very broad base, the
amount of flexure must be extremely small ; still, with counter-

poises properly placed, the necessity of making the cones so

large and heavy would be obviated. (See the arrangement of
the counterpoises in the meridian circle, Plate VIL.)

In the principal focus of the objective, at m, is the reticule, con-
sisting of seven parallel transit threads; these are parallel to the
vertical plane of the telescope and perpendicular to its optical
axis (Art. 5). These threads and the images of stars in their
plane are observed with the eye piece E. Eye pieces, or oculars,
of various magnifying powers are usually supplied, to be used
according to the nature of the object observed and the state of
the atmosphere, the highest powers being available only in the
most favorable circumstances. One of these eye pieces (and
usually one of the lowest powers) is fitted with a mirror to throw
light down the tube in observations for collimation, as will be
fully explained hereafter. This constitutes what is called the
collimating eye piece ; but the plan of placing a small piece of mica
outside the eye piece (Art. 47) converts any one of the eye pieces
into a collimating eye piece.

There is also a micrometer thread which moves so nearly in
the plane of the transit threads as to be sensibly in the same
focus. This thread may be either parallel or at right angles to
the transit threads according to the application of it intended ;
but in the simple transit instrument its use will be chiefly to
determine the collimation with the mercury collimator, and then
it will be most convenient to make it parallel to the transit
threads. For this purpose, it will be still better to substitute for
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the single movable thread a cross-thread or two very close parallel
threads.

The transit threads are rendered visible at night by light
thrown into the interior of the telescope through the hollow
rotation axis from a lamp on either side. The light is reflected
down the telescope tube by a small silver mirror in the cube M,
or by an open metallic ring, which does not interfere with rays
from the object glass. The amount of light can easily be regu-
lated by a contrivance which it is not necessary to describe. The
color of the light may be varied by passing it through glass of
the desired shade.

The light thus thrown down the tube illuminates the field, and
the transit threads appear as black lines upon a bright ground.
For very faint stars it may be necessary to reduce this field
illumination to such an extent that the threads cease to be dis-
tinetly visible, and then the direct illumination of the threads is
to be resorted to. This direct illumination of the threads is
effected, in the instrument here represented, by two small lamps
(omitted in the drawing) suspended upon the telescope near
the eye piece, which throw their light obliquely upon the threads
without illuminating the field. The lamps are so suspended that
their flames occupy the same position relatively to the threads
for all positions of the telescope. The threads are thus made to
appear a8 bright lines on a dark ground. Two lamps, one on
each side, are used in order to produce symmetrical illumination
of the threads. The threads may also be illuminated by light
admitted through the axis, but so brought down the tube (by the
aid of a small lens) as not to illuminate the field; this light being
finally received by small reflectors near the eye piece, and by
them thrown upon the threads in such a manner as to produce
the required symmetrical illumination.

At F and F are two small _ﬁndmg circles, also called Jinding levels,
or simply finders, which serve in setting the telescope at any given
elevation or zenith distance. They will be more fully explained
in connection with the portable transit instrument in the next
article. ]

The handles, 4 and B, which are within reach of the observer’s
hand, act upon a clamp and fine motion screw by which the tele-
scope is fixed and accurately set at any zenith distance.

The inclination of the rotation axis to the horizon is measured
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with the striding level L (Art. 51), which is applied to the pivots
VV. The feet of the level have also the form of V.

The piers are so nearly adjusted in the first place that the Vs
are nearly in a true east and west line, but a small final correc-
tion is still possible by means of screws which act horizontally
upon one of the Vs. In the same manner, the inclination of the
axis to the horizon is made as small as we please by screws
acting vertically upon the other V. These screws are not shown
in the drawing. )

In order to eliminate errors of the instrument, it is necessary
to reverse the rotation axis from time to time, that is, to make
the east and west ends of the axis change places. The reversing
apparatus or car for this purpose is shown at R. It runs upon
grooved wheels which roll upon two rails laid in the observatory
floor between the piers PP, and is thus brought directly beneath
the axis. By the crank A acting upon the beveled wheels ¢ and
f, two forked arms aa are lifted and brought into contact with
the axis at VN; then, continuing the motion, the telescope is
lifted just sufficiently to clear the Vs, and the friction rollers at
XX the car is then rolled out from between the piers, bearing
the telescope upon its arms; a semi-révolution is given to the
arms, the exact semi-revolution being determined by a stop d,
the caris rolled back between the piers, and the telescope lowered
into the Va. It is hardly necessary to observe that the telescope
is placed in a horizontal position during this operation.

An observing couch C runs on the rails between the piers. It
is so arranged that the observer reclining upon it may give his
head any required elevation, and thus be able to observe stars at
high altitudes without the discomfort which would destroy the
accuracy of his observations.

The piers PP are of granite, and rest upon a foundation of
stone sunk ten feet below the surface of the ground. They are
wholly insulated from the walls and floor of the building.

Between the piers, a granite slab about a foot broad and ten
feet long is placed on a level with the floor. This rests firmly
upon the foundation which supports the instrument, and, like
the piers, is insulated from the floor. On this slab may be
placed a basin of mercury at various distances from the instru-
ment, for observing stars by reflexion,

I do not propose to enter into the details of constructing the
obeervatory itself, as many of these details will vary according to
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the taste aud means of the builder; but it is essential to remark
that the opening in the roof and sides of the building through
which the observations are to be made should be much wider
than the mere aperture of the telescope; for there are always
currents of air of various temperatures near the edges of the
openings, which produce unsteadiness in the images of stars. A
width of two feet at least should be allowed.

It is also well to observe that the observing room should be
large and high, that the radiation from the walls may not have
too much effect upon the instrument. No artificial heat should
be permitted in it or near it. Its temperature at the time of an
observation, and that of the whole instrurment, should be as
nearly as possible the same as the temperature of the atmosphere
outside the observatory.

The indispensable companion of the transit instrument in the
observatory is the sidereal clock, which is to be secured to a
stone pier, resting upon a foundation which is insulated from the
floor, and so placed that its dial may be seen by the observer
from any position he may occupy at the telescope. If, however,
the transits are recorded by the chronograph (Arts. 71-77) the
clock may be in any part of the observatory, and a single clock
may be used for all the observations with all the instruments. It
‘'will only be necessary that each instrument should have its own
chronographic register, which is graduated into seconds by the
one standard clock. However, a clock in the room with the in-
strument is still necessary to enable the observer to prepare for
his observations at the proper time; but this may then be re-
garded as a sort of finder merely, and it will be necessary to regu-
late it only approximately.

120. Plate V. represents a portable transit instrument as con-
structed by Mr. W. WtrRDEMANN (Washington, D.C.). The focal
length of such an instrument is usually from 24 to 86 inches.

The letters common to Plate V. and Plate IV. represent the
same parts. The peculiar feature is the portable frame PP, which
here takes the place of the piers. It is made of iron, and is made
as light as possible without the sacrifice of strength and stability.
The screws ¢t being removed, the inclined supports pp fold in
against the upright ones, and then the latter fold down upon the
horizontal frame; and the whole frame can be placed in a box.
This box is deep enough to receive the telescope also. The
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instrument can thus be conveniently transported and set up in a
few minutes upon any temporary pillar Q. In the field it will
often be convenient to mount the instrument upon the trunk of
s tree cut off to the required height. The frame is quickly
levelled approximately by the foot screws S, S, S.

A diagonal eye piece E (Art. 12) is necessary for observing stars
at considerable altitudes.

The eye tube of the telescope is moved out and in by a rack
and pinion r, to bring the threads precisely into the focus of the
object glass. The rack and pinion % carry the eye piece to the
right and left so as to bring it opposite each thread in succession
a3 a star crosses it.

The finder F consists, 1st, of a small graduated circle which is
permanently attached to the telescope; 2d, of a spirit level ¢
attached to an arm which revolves about the centre of the circle.
This arm carries a vernier, and has a clamp and fine motion
screw at f. When the vernier reads 0°, the axis of the level is
parallel to the optical axis of the telescope; consequently, if we
set the vernier to this reading, 0°, and then revolve the tele-
scope until the bubble stands in the middle of the tube, the
optical axis will be horizontal. If then we set the vernier at
any other given reading R, and revolve the telescope until the
bubble stands in the middle of the tube, the inclination of the
telescope to the horizon will be = R. The altitude of a star
whose transit is to be observed is known from its declination
and the latitude of the place of observation, and it is usually
necessary to prepare for the observation by setting the telescope
at the proper altitude by means of the finder.

A rack and pinion (not shown in the drawing) serve to revolve
the eye piece and micrometer so as to make the threads vertical,
or rather parallel to the vertical plane of the telescope.

The illuminating lamps are shown in their position. Their
light is thrown into the axis in nearly parallel lines by means of
a lens in the lantern opposite the middle point of the flame, the
flame being nearly in the focus of the lens.

120*. A small altitude and azimuth instrument so constructed
that it may be used also as a transit instrument is called a universal
tnstrument. The horizontal graduated circle renders such an in-
strument very convenient for observations out of the meridian.
Bee Chapter VII.
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121. Method of observation.—In all cases, the celestial observa-
tion made with the transit instrument consists only in noting, by
a clock or chronometer, the several instants when a star or other
object crosses the threads. The method of doing this with pre-
cision is as follows. The instrument remaining stationary, the
diurnal motion causes the star to pass across the field of the
telescope. As it approaches a thread, the observer looks at the
clock and begins to count its beats; and, keeping the count in
his head by the aid of the audible beats of the clock, he then
turns his eye to the telescope and notes the beat when the star
appears on the thread. The transit over the thread may, how-
ever, fall between two beats; and then the fraction of a beat is
to be estimated. This estimate is made rather by the eye thar
the ear. Suppose the clock beats seconds. Let a, Fig. 86, be
the position of the star at the last beat
before the star comes to the thread, and b
its position at the next following beat.
The observer compares the distance from
5 - a to the thread with the distance from a to
b, and estimates the fraction which ex-
presses the ratio of the former to the latter
in tenths; and these tenths-are then to be
added to the whole number of seconds
counted at a, to express the instant of transit. Thus, if he counts
20 seconds by the clock at a, and estimates that from a to the
thread is #& of ab, the instant of transit is 20*.4, which he records,
together with the minute and hour by the clock.

In the transit of the sun, the moon, or a planet, the instant
when the limb is a tangent to the thread is noted. The mode
of inferring the time of transit of the centre from that of the
limb will be explained hereafter.

The most accurate method of observing transits is by the aid
of the chronograph. At the precise instant when the star is on
the thread, the observer presses the signal key and makes a
record on the register, which is read off at his leisure, according
to the methods explained in Arts. 71-77. The record of several
transits of stars over the five threads of the Cambridge telescope
is shown in Plate I Fig. 6. Each transit is preceded by an
irregular signal, produced by a rapid succession of taps on the
signal key, by means of which the place of the observation on
the register is afterwards readily found. As the observer is

Fig. 36.




GENERAL FORMULZR. 189

relieved by the chronograph from the necessity of counting the
seconds and estimating the fractions, the transit threads may be
placed much closer to each other and their number greatly in-
creased. In the transit instruments used in the United States
Coast Survey for the telegraphic determination of differences of
longitude (see Vol. I. Art. 227), the diaphragms contain twenty-
five threads, arranged in groups, or ¢ tallies,” of five, as in Plate
L Fig. 1.

GENERAL FORMULE OF THE TRANSIT INSTRUMENT.

122. In whatever position the transit instrument may be placed,
we may consider its rofation axis as an imaginary line, passing
through the central points of the pivots, which, produced to the
celestial sphere, becomes a diameter of the sphere; and the azit
of collimation as an imaginary line, drawn from the optical centre
of the object glass perpendicular to the rotation axis, and de-
scribing a great circle of the sphere as the telescope revolves.
The position of this great circle in the heavens is fully deter-
mined when we have given the position of the rotation axis;
and the position of the rotation axis is given when we know the
altitude and azimuth of either of the points in which it meets
the celestial sphere.

The sight-line marked by a thread in any part of the field is
a line drawn from the thread through the optical centre of the
object glass. The angle which this line makes with the axis o”
collimation does not change as the telescope revolves: so that,
while the axis of collimation describes a great circle, the sight-
line describes a small circle parallel to it whose distance from it
is everywhere the constant measure of the inclination of the
sight-line. If then a star is observed on the thread, the position
of the star with respect to the great circle of the instrument
becomes known when we know the inclination of the sight-line
or the angular distance of the thread from the axis.

The general problem to which the use of the transit instru-
ment gives rise is the following:

128. 7o find the hour angle of a star observed on a given thread of
the transit instrument in a given position of the rotation axis.—Let
Fig. 87 represent the sphere stereographically projected upon
the plane of the horizon, NS the meridian, WE the prime
vertical. Suppose the axis of the instrument lies in the vertical
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plane ZA, and that 4 is the point in which this axis produced

Pig. 97. towards the west meets the celestial
sphere. Let N'Z'S' be the great
circle described by the axis of colli-
mation; 4 is the pole of this circle.
Let n0s be the small circle described
by the sight-line drawn through a
thread whose constant angular dis-
tance from the collimation axis is
given=c. Let b denote the altitude,
90° 4+ a the azimuth, 90° — m the
hour angle, n the declination of the
point 4; ¢ the latitude of the observer; d the declination of a
star observed at O on the given thread. Join PA, PO, AO.
We have

NI

NZA = 90° + a, ZPA = 90° — m
ZA = 90° — b, PA=90°—n
A0 = 90° + ¢, PZ =90° — ¢

PO =90° — ¢

and the triangle PZA gives the equations [Sph. Trig. (6), (3), (4)]

Cco8 n cos m = cos b cos a

cos n 8in m = sin b cos ¢ - cos b 8in a 8in ¢
(18)
sin n = sin b 8in ¢ — cos b 8in a cos ¢

which determine m and n when a and b are given. Now let

t = the hour angle of O east of the meridian;

then the angle AP0 = 90°—m + t = 90° 4 (r — m), and the
triangle A PO gives
— 8in ¢ = sin n 8in & — cos n cos & 8in (r — m) ‘

whence
sin (r — m) = tan n tan ¢ 4 sin ¢ sec n sec & (79)

which determines r — m, whence also r.
These general formule admit of simplitication when the in-
strument is either near the meridian or near the prime vertical.

THE TRANSIT INSTRUMENT IN THE MERIDIAN.

124. The instrument is said to be in the meridian when the
great circle described by the axis of collimation is the meridian.
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The axis of rotation is then perpendicular to the plane of the
meridian, and, consequently, lies in the intersection of the prime
vertical and the horizon. If, further, the thread on which the
star is observed is in the axis of collimation, the time of obser-
vation is that of the star’s transit over the meridian; and, since
at that instant the sidereal time is equal to the star’s right ascen-
sion, the error of the clock on sidereal time is obtained at once
by taking the difference between that right ascension and the
observed clock time of transit. (Vol. I. Art. 188.)

Practically, however, we rarely fulfil these conditions exactly,
but must correct the time of observation for the small deviations
expressed by a, b, and ¢, of which a is the excess of the azimuth
of the west end of the axis above 90° (reckoned from the north
point), and is called the azimuth constant; b is the elevation of the
west end of the axis, and is called the level constant; and ¢ is the
inclination of the sight-line to the collimation axis, and is called
the collimation constant.

‘We must first show how to adjust the instrument approxi-
mately, or to-reduce a, b, and ¢ to small quantities.

125. Approximate adjustment in the meridian.—1st. The middle
thread of the diaphragm should coincide as nearly as possible
with the collimation axis. This adjustment can be approxi-
mately made before putting the instrument in the meridian, by
moving the thread plate laterally until the middle thread cuts a
well defined distant point in both positions of the rotation axis
in the Vs.

2d. The middle thread (and, consequently, all the transit
threads) should be vertical when the rotation axis is horizontal ;
that is, it should be perpendicular to the rotation axis. This
can be verified while adjusting the sight-line, by observing
whether the distant point continues to appear on the thread as
the telescope is slightly elevated or depressed. After the instru-
ment has been placed in the meridian and the axis levelled, the
verticality of the threads may also be proved by an equatorial
star running along the horizontal thread, which is at right angles
to the transit threads.

The axis, being placed nearly east and west (at first by estima-
tion), is levelled by means of the striding level. Thus ¢ and b
are easily reduced to small quantities.

8d. To reduce a to a small quantity, or to place the instrument
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very near to the meridian, we must have recourse to the obser-
vation of stars. The following process will be found as simple
a8 any other with a portable instrument.

Compute the mean time of transit of a slow moving star (one
near the pole), and bring the telescope upon it at that time. For
the first approximation, the time may be given by a common
watch, and the telescope may be brought upon the star by
moving the frame of the instrument horizontally. Then level
the axis, and note the time by the clock of the transit of a star
near the zenith over the middle thread. It is evident that the
time of transit of a star near the zenith will not be much affected
by a deviation of the instrument in azimuth, and therefore the
difference between the star’'s right ascension and the clock time
will be the approximate error of the clock on sidereal time.
With this error, we are prepared to repeat the process with
another slow moving star, this time employing the clock and
causing the middle thread to follow the star by moving only the
azimuth V. When the clock correction has been previously
found by other means (as with the sextant), the first approximation
will usually be found sufficient. The instrument is now suffi-
ciently near to the meridian, and the outstanding small deviations
can be found and allowed for as explained below.

In mounting a large transit instrument in an observatory, it
will be convenient first to establish the approximate direction of
the meridian with & theodolite, and to set up & distinct mark at
a sufficient distance to be visible in the large telescope without
a change of the stellar focus. The middle thread of the instru-
ment can then be brought upon this mark before proceeding to
the observation of stars.

4th. Finally, it is necessary to adjust the finder whereby the
telescope is to be directed to that point of the meridian through
which a given object will pass. If the finder is intended to give
the zenith distance ({), we take

¢ =¢ — & —r + p for an object south of the zenith,
C=6—¢——r+p “ ¢« north « «“

-1n which r is the refraction, and p the parallax of the object for
the zenith distance {. But, for the purpose of finding an object
merely, we may neglect 7, except for very low altitudes, and p
may be neglected for all bodies except the moon.

To adjust the finder, we have only to clamp the telescope when
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somg known star is on the horizontal thread, and in that position
cause the finding circle to read correctly for that star, by means
of the proper adjusting screws. It will then read correctly for
all other stars. In large instruments the finder is sometimes
graduated from 0° to 360°.

With respect to the time when a star is to be expected on the
meridian, the sidereal clock or chronometer answers as a finder,
since (after allowing for its error) it shows the right ascensions
of the stars that are on the meridian.

126. Equations of the transit instrument in the meridian.—By the
preceding process we can always easily reduce a, b, and ¢ to
quantities so small that their squares will be altogether insensible,
or, which is the same thing, we can substitute them for their
sines, and put their cosines equal to unity. And,since m, n, and
= will be quantities of the same order as g, b, and ¢, the general
formulee (78) will become

m=>bcos ¢ 4 asin ¢
n=2~bging —acosy } (80)

and (79) gives
t=m + n tan ¢ 4 csec d (81)

which is Besser’s formula for computing the correction to be
added to the observed sidereal clock time of transit of a star
over the middle thread to obtain the clock time of the star’s
transit over the meridian. It is hardly necessary to observe that
the unit of all the quantities a, b, ¢, m, n, = should be the second
of time.

If now we put

T — the observed clock time of the star’s transit over the
middle thread,
AT = the correction of the clock,
o = the star's apparent right ascension,

the true sidereal time of transit will be 7'+ r + a7, and this
quantity must be equal to . Hence we have

o=T+4 aT 4+
or (82)
oa=T+4+ AT+ m-4 ntand 4 csecéd }

by which formula the right ascension of an unknown star can be
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found when aT and the constants of the instrument are knowm.
From the transits of known stars, on the other hand, this equa-
tion enables us to find a7, when the constants of the instrument
are given.

The apparent right ascension in this equation should be
affected by the diurnal aberration, which, by Vol. I. Art. 398, is
07.311 cos g sec 3 = 0°.021 cos ¢ sec 3 when the star is on the
meridian. If then a denotes the right ascension as given in the
Ephemeris, the first member of (82) ought to be @ 4 0"7.311
cos ¢ sec 4, so that the equation becomes

o=T+4 AT+ m+ ntand 4 (¢ — 0%.021 cos ¢)sec 8 (83)
Hence, if instead of ¢ we take
¢ =c— 02021 cos ¢

we may use (82) without further modification, and the diurnal
aberration will be fully allowed for. Since, for each place of ob-
gervation, the quantity 0°.021 cos ¢ is constant,there is no reason
for omitting to apply this correction, although its influence is
scarcely appreciable except with the larger instruments of the
observatory. :

127. BesseL's form for the correction r is usually the most
convenient; but other forms have their advantages in certain
applications. From (80) we deduce

a=msin ¢ — n cos ¢
b =mcosp + nsin ¢ } (84)

and from the second of these we have
m==>bsece —ntang (85)
which substituted in (81) gives HanseN’s formula,
t = b sec ¢ 4+ n(tan 8 — tan ¢) 4+ c sec s (86)

This is convenient in reducing observations of stars near the
zenith, where the coefficient tand — tan ¢ becomes small. It
shows that for a star in the zenith the correction depends only
on b and ¢, and that in general the best stars for determining
the clock correction are those which pass nearest to the zenith.

If we substitute the values of m and n from (80) in (81), we
readily bring it to the form
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sin (¢ — &) cos (p — &) e
=a. b. 87
cos ¢ + cos ¢ + cosd (&

which is known as Mayver’s formula. This is the oldest form;
but where many stars are to be reduced for the same values of
the constants, it is much less convenient than the preceding. It
has its advantages, however, in cases where the constant a is
directly given, or in discussions in which this constant is directly
sought.

128. These formule apply directly to the case of a star at its
upper culmination. To adapt them to lower culminations (that
is, of circumpolar stars at their transits below the pole), we
observe that in the general investigation Art. 128, & represents
the distance of the star from the equator reckoned towards the
zenith of the place of observation, and, consequently, the
formula will be applicable to lower culminations if we still repre-
sent by & the distance of the star from the equator through
the zenith and over the pole; that is, if we take for & the supple-
ment of the declination. This being understood, we shall be
saved the necessity of duplicating our formule.

Again, the time of the lower culmination differs by 12* of
sidereal time from that of the upper culmination of the same
star. Hence, to apply the formule to the case of a lower cul-
mination, it is also necessary to suppose that a represents the
star’s right ascension increased by 12*.

In short, for lower culminations, we must substitute 12* 4+ &
and 180° — ¢ for a and J.

129. Since the instrument may be used in two positions of the
rotation axis, it is necessary to distinguish these positions. We
shall suppose that the clamp is at one end of the axis, and shall
distinguish the two positions by ¢ clamp west’ and ¢ clamp east.”
If the value of ¢ has been found for clamp west, its value for
clamp east will be numerically the same, but will have a different
sign; for, since in reversing the collimation axis remains in the
same plane,* any thread will be at the same absolute distance
from this axis, but on opposite sides of it in the two positions.

# Exoept when the pivots are unequal, the correction for which will be considered

hereafter.
Vor. IL—10
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For example, if we have found for clamp west ¢ = — 0%.292, we
must take for clamp east ¢ = + 0°.292.

If, however, we take the diurnal aberration into account, we
must observe that ¢/ is not numerically the same in the two posi-
tions of the axis. For example, if ¢ = 88° 59/, the correction
0°.021 cos ¢ is 0.016; and if for clamp west we have ¢ = — 0°.292,
we shall have for this position ¢/ = — 0°.292 — 07016 = — 0°.308,
but for clamp east ¢/ = + 0°.292 — 0°.016 = 4 (.276.

130. In the above, we have assumed that the star has been
observed on a single thread whose distance from the collimation
axis is known. The same method may be applied to each thread ;
but when the intervals between the threads are kmown, each
observation may be reduced to the middle thread or to a point
corresponding to the ‘“mean of the threads,” and the correction
¢ will then be computed only for this middle thread or this mean
point. I proceed to show how these intervals are to be deter-
mined and applied.

THREAD INTERVALS.

131. An odd number of threads is always used, and they are
placed as nearly equidistant as possible, ar, at least, they are
symmetrically placed with respect to the middle one, and this
middle thread is adjusted as nearly as possible in the collimation
axis. If the threads were exactly equidistant, the mean of the
observed times of transit over all of them could be taken as the
time of transit over the middle one, and this with the greater
degree of accuracy (theoretically) the greater the number of
threads.* But since it rarely happens that the threads are per-
fectly equidistant or symmetrical, it becomes necessary to deter-
mine their distances ; and this is usually the first business of the:
observer after he has mounted his instrament and brought it
approximately into the meridian.

‘Let i denote the angular interval of any thread from the
middle thread ; I the time required by a star whose declination
is & to pass over this interval. Then i, being expressed in
seconds of time, will also denote the interval of sidereal time
required by a star in the equator to describe the space between

* The practical limits to the number of threads will Be considered in smotlrer
place. :
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the threads; for this is the case in which the apparent path of
the star is a great circle. Our notation, therefore, may be ex-
pressed by putting

i = the equatorial interval of a thread from the middle thread,
I = the interval for the declination 3.

If now ¢ denotes the collimation constant for the middle thread,
the distance of the side thread from the collimation axisis i+ ¢;
and if ¢ is the hour angle of a star when on the middle thread,
I+ tis its hour angle when on the side thread. Hence, by our
rigorous farmula (79), applied to each thread, we have
sin (I 4+ * — m) = tan n tan ¢ 4 sin (i + c¢)sec n soc &
sin (r — m)=tan n tan ¢ 4 sin ¢ seo » sec ¢

the difference of which is
2008 (414 t — m)sin § I=2cos (34 + 6)sin }i see n sec &

for twhich, sines r — m, ¢, and n are here very small quantities,
we may write, without sensible error,

2co8 3$Isin 37— 2008 4is8in 4isecd
or } (88)

#in ¥ == sin { sec 8
From this, I can be found when i is given. On the other hand,

if I is observed in the case of a star of known declination, we
deduce i by the formula

sin ¢ == gin 7 cos & (89)

If the star is not within 10° of the pole, it is quite accurate to
take for these the more simple forms

I=1sec? i=1TIcosd 90)

These formuls show that the observed interval will be the
greater the nearer the star is to the pole. Hence, for finding ¢
from observed values of I, it is expedient to take stars near the
pole, since errors in the observed times will be reduced in the
ratio 1:cos 4. '

When the stir is 80 near t6 the pole that either (88) or (89) is
to be used, it will be found convenient to substitute for thena
the following :

Z=1isecd.k t_-—_“]‘:” (91)
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Isin 15"

in which k = T and its logarithm may be readily taken
from the following table:
I log i sec & log & I log isec & log k&
1= 1.778 0.00000 16 | 2.954 0.00031
2 2.079 .00001 16 2.982 00035
8 2.266 .00001 17 8.008 00040
4 2.880 00002 18 8.083 00045
. b 2477 00003 19 8.056 00050
6 2.56566 .00005 20 8.079 {00055
7 2.623 00007 21 8.100 00061
8 2.681 .00009 22 3.120 .00067
9 2.782 .00011 23 3.139 .00073
10 2.778 .00014 24 8.158 00080
11 2.819 .00017 26 8.176 .00086
12 2.857 00020 26 8.192 .00093
13 2.892 .00023 27 8.209 00101
14 2.924 00027 28 8.224 .00108
15 2.954 00031 29 8.289 .00116
30 8.254 00124

ExamrLe 1.—If for a star whose declination is 8 = 88° 88’ we
have observed the interval between a side thread and the middle
thread to be J= 25 17°.6, required the value of i.

‘We have

logI 8.18116
log cos 3 8.40320
ar.co. log k  9.99912

{ = 88.325 log ¢ 1.58848

ExaMrLE 2.—Given ¢ = 88825, find 7 for ¢ = 87° 15/,
We have

logi 1.58348
log sec 3 1.831896

log isec 8 2.90244
(Argument 2.902) log ¥ 0.00024

I="T9%25 log I 2.90268

182. The thread intervals may also be found by Gauss’s
method, with a theodolite, precisely as in the method of deter-
mining the value of & micrometer screw in Art. 46.

If the instrument is furnished with a micrometer, the value
of the screw may be determined by the transits of circumpolar
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stars over the micrometer thread, and then it may be employed
to measure the thread intervals.

REDUCTION TO THE MIDDLE THREAD.

133. Suppose that the reticule contains five transit threads,
and that they are numbered consecutively from the side next to
the clamp: so that for ‘“clamp west” stars at their upper cul-
minations cross the threads in the order of their numbers. Then,
if we denote the observed clock times of a transit over them by
b by b, U, &, and the equatorial intervals of the side threads from
the middle thread by i,, 4, ¢, i; (observing that i, and # will be
essentially negative), the time of passing the middle thread
according to the five observations is either ¢, +- i, secd, {,+ i, 8ec d,
& t,+ i,8ec 8, or {,+ i,8ec 8, which, if the observations were per-
fect, would be equal to each other. Taking their mean, which
we shall denote by T, we have '

T=t,+t.+tg+t.+t.+z’,+e‘n;z'.+i.m¢,

If we put )
G it
5 .

al

and denote the mean of the observed times by 7}, we have

T= T,4 aisec & for clamp west, '
T= T,— aisec é for clamp east

If the threads are equidistant, ai vanishes; otherwise aisecd
is the correction to be applied to what is called the mean of the
threads, to obtain the time of passage over the middle thread.

If there are seven threads, :

MRS ELAE(RARS o)

and so on for any number of threads.

At the lower culmination, a star crosses the threads in the
reverse order, and, consequently, the sign of the correction
aisec 3 must be changed; but this change of sign is effected by
taking for & the supplement of the declination, according to the
method pointed out in Art. 128. We shall, therefore, regard
the above formule as entirely general.

A broken transit (one in which the transits over some of the
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threads have not been observed) is reduced in the same manner;
that is, we take the mean of the observed times and apply to it
a correction which is the mean of the equatorial intervals of the
observed threads mnitiplied by secd. Thus, if only the 1st, 34,
and 4th of five threads have heen observed, we have for 7' the
several values 4 + i sec a, 4, t,+ i,secd, the corresponding
‘thread intervals being 4, 0, 7,: so that we have

ettt
T'?l 8

+zl+i”oe

In general, if we put

M — the mean of the observed times on any number of
threads,
J = the mean of the equatorial intervals of these threads,

i:he time T of transit over the middle thread will be
T=2M+fsecd (93)

If the clock rate is considerable, the reduction of M to 7
must be corrected accordingly. Thus, if

A T = the clock rate per hour,

the reduction f sec 8 becomes f sec 8( 1— ;—6—(1;6); or, putting

p = the factor for rate =1 — —‘—\1 } (94

3600
T=M + pfsecsd

For a sidereal clock which gains 1° per day, we have a7 =
— #» whence log p =0.000005, and for & gain of x seconds daily
log p = 0.000005 z,

For a mean time clock which has no rate on mean time, and,

consequently, loses 9.88 per hour on sidereal time, we find
log p = 9.99881; and, if it gains z seconds per day, logp =
9.99881 + 0.000005 .
- If the star is very near the pole, each thread should be sepa-
rately rednced, the reduction to the middle thread being com-
puted by the formula I = isecd.kp, log k being taken from the
table in Art. 131.
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REDUCTION PO THE MEAN OF THE THREADS.

134. Another mode of redncing transits is commonly used in
the observatory. We may suppose an imaginary thread eo
placed in the field that the time of tramsit over it will be the
same as the mean of the times on all the threads, and for brevity
this imaginary thread is called the mean of the threads, or the
mean thread. Then all observations are reduced to this imaginary
thread, and the constant ¢ as well as the intervals of the several
threads are referred to it, precisely as if it were a real thread.
It is evident that, where many complete transits are to be re-
duced, this method saves labor, as the correction aisec & is avoided.

135. ExampLE 1.—The upper transit of Polaris was observed
with the meridian instrument of the Naval Academy on Jan.
26, 1859, as in the second column of the following table :

Clamp East. J — 88° 88’ 54".8

Thread.| 4l closk. f log gk . wge | ¢
VII | 0*44™56* | — 28™ 49 | n8.16608 | 9.00079 | n1.66290 { — 856°.720
VI 52 56 | — 156 48 | n2.97681 84 | »1.87618 | — 28.721
V|1 6 M | — 7 80 | n2.67210 09 | n1.07087 | — 11.767
v 8 4

o1 16 82 | 4+ 7 48 2.67025 09 1.06882 | 4 11.717
1I 24 81 | 4156 47 2.97686 84 1.87467 | + 28.696

I 82 80 | +28 46 8.15412 78 1.56200 | 4 85.646

The table exhibits the computation of the equatorial intervals
of the side threads from the middle thread. The values of log &
are taken from the table in Art. 181, and each wvalue of log i is
found by the formula log i =1log I + logcosd — logk. The
signs of I and i are given for clamp west.

The values of the intervals must be found from a number of
observations of this kind, and the mean of all the determina-
tions should be finally adopted.

According to this single observation, the value of ai for this
instrument will be

ai = — 04021

If the reductions are to be made to the mean of the threads,
we find the values of I by taking the difference between the
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mean of all tke observed times and the time on each thread,
and compute i a8 before. The values of i that would result in
the above exumple may be immediately inferred, since they
will be equal to those above found diminished by ai. Thus,
arranging the values in their order for clamp west, we have—

~——

o, | et | aeran i
I | 485645 | - 85.666

II | +23.606 | +28.717
II | 4+11.717 | +11.788
IV 0. + 0.021
v | —11.767 | —11.746
VI | —23.721 | —28.700
VII | —85.720 | —85.699

ExAMPLE %.—With the same instrument on the same date, the
hansit of a Arietis was observed as follows (clamp east):

Thread. Clook.
ViI 1» 58= 582 8= 4 22° 47 49".
: VI lost
A\ 159 24.1
IV 86.9
III 49 .8
II 2 0 28
I 15.9

Mean =1 59 41.28

The algebraic sum of the intervals to the middle thread for
the threads here observed, taken from the table in the preceding
example, is 4 23°.571, or for clamp east — 23°.571; and therefore
the time of transit over the middle thread is

T — 1 59 41+.28 — 2—9"'651 sec 3 — 1» 59= 87702

To reduce this observation to the mean of the threads, the
ghortest method is to take one-gixth of the interval corresponding
‘to the missing thread,—thus:
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23700

T,=1* 59= 41°.28 — sec 8 = 1* 59= 37.00

136. Having shown how the quantity 7' in (82) or (88) is
found, I now proceed to show how to determine the constants
m,n, and ¢. Since m and n both involve b, let us begin with the
investigation of this quantity.

THE LEVEL CONSTANT.

137. The inclination of the rotation axis to the horizon is
usually found by applying the spirit level as explained in Art.
52; and this inclination expressed in seconds of time is the
value of the level constant b, positive when the west end of the
axis is too high.

But the spirit level applied to the outer surface of the cylinders
which form the pivots does not directly determine the inclina-
tion of the rotation axis which is the common axis of these
cylinders, unless the pivots are of equal diameters.

To find the correction for inequality of the pivots, let C, Fig. 88,

Fig. 88. Fig. 39.
B b 4 B
4
o (4
o r
A4
D ‘I
A

be the centre of a cross section of a pivot, A the vertex of the V
in which the pivot rests, B the vertex of the V of the spirit level
applied to it. Put

21 = the angle of the V of the level,
2=« « « ¥V « transit inst.,
r = the radius of the pivot,
d = the vertical distance of B above C,

—_ « “ “ C « A,
1
we have
r r
~ sind 17 sin §

If now, in Fig. 89, CC’ is the rotation axis, 4 and B the
vertices of the transit and level Vs at the end next the clamp,
4’ and B’ the vertices of the Vs at the other end of the axis,
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r’ the radius of the pivot at that end, then we have for the dis
tances B'C’, A’C,

= =T
. —

The level gives the inclination of the line BB’ to the horizon,
and we wish to find that of CC’. Let us suppose the clamp at
first is west, and afterwards east, and that in both positions of
the axis the inclination given by the level is observed. Let

B, B’ = the inclinations given by the level for clamp west
and clamp east, respectively,
b, ¥ = the true inclinations of the rotation axis for clamp
west and clamp east,
B = the constant inclination of the hne AA'.

" Also draw CE and CF parallel to BB’ and 44/, and put

p = ECC’ p,= FCC'
. then, L being the length of the level, we have
sin p = d—d _r—r
P T ZLemi
sin p. == d/—d _r—r
b= Zeiny,
for which we may take
— r—r _—r=r
P= Ienienly P= Tein Lein 16

in which p and p, are in seconds of time. Now, we have evi.
dently for clamp west (b denoting the elevation of the west end)

and for clamp east,
Y=B'—p b=4§8+p,

whence
b’—b=B'—B—2p=2p,
B'— B sin ¢ p(sini-l-sing)

2 =r+pn= p+p;1nt sin ¢,
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and, consequently,

p=B'—B( sin ¢

2 gin ¢ +4 ain 5 (35
By this formula, when i and i, are known, we can directly com-
pute the value of p from the level indications B and B’, observed
in the two positions of the axis.

If the angles of both the transit and the level Vs are equal to
each other, which is usually the case, we haye sini = sin¢,; and

then we have BB
P="—7 (96)

‘The value of p thus found is called the correction for inequality
of pivots. It is to be carefully found by taking the mean of a
great number of level determinations in the two positions of the
axis. By determining it according to the above formula, it is a
correction algebraically additive to the level indication for clamp
west: so that the true level constant in any case is found by the
formulse

b= B+ p forclamp west,

Y= B'—p for clamp east. } )

188. The inequality of the pivots may also be found without
reversing the axis, by using successively two spirit levels, the
angles of whose Vg are quite different. Let 27 and 24’ be their
angles, and B and B’ the apparent inclination of the axis given
by the two levels respectively. If then b is the true inclination,
and we put

— r—7
1 L sin 15"
we have, by the preceding article,
b=B +-L
+ sin i
R
, b=B'+ sin ¢
whence
: 4
¢=(B— B". sin { gin 7 98)

sin{ — sin ¢

and the correction of inclinations found with the level the angle
of whose Vs is 2¢ will be
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sin ¢’

-9 _(p_py__mt
( )sini-—sinz"

sin ¢ (%9)
If we construct the levels so that their angles are supplements

of each other, that is, make 2¢ = 180° — 21, the formula becomes

B— B

tani—1

For example, if 27 =157° 23’ and 2¢'=22° 87/, we have
p»=$(B — B’): so that as accurate a determination of p may
be found in this way as by reversing and employing the formula
(96).

p=

139. ExaMpLE 1.—The following example of a case in which
the angle of the level V differed from that of the transit V is
given by S8awitscH. A portable instrument was mounted in the
meridian, and three sets of observations were made consecutively
for the determination of p, as in the following table :

No. of dete Level readings.
:;i‘!)mtign.r- Clamp. | ————— B and B B—B
West. East.
div.
w. {|B 182(1811) p Iy -
A. 14.0| 124
1 A 184 84 + 4.50
E. {IB 179 g2|{B=+492
B. 17.9| 82
g {|B 188 83|} p_ £ 5,60
A. 191| 7.2
2 A. 136|120 + 5.15
W. 1B 132130 {B =+ 045
B. 132|130
w. {|B 186/180|) 5 062
A. 14.0| 125
8 A, 182 88 + 4.58
E {|B 183 so|f{B=+505
B. 183 8.0

The letters A and B in the first column of level readings refer
to the position of the level on the axis.

The value of one division of the level was 1’7.68, or, in time,
0-.112.

The angle of the level Vs was 85°= 2i: that of the transit
Vs was 91° = 2i,.

We find, by taking the mean,

B' — B = 4 4.73 div. = 4 04.58
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and hence, by (95),
P== + 0-.14

If we had assumed ¢ =, we should have fourd, by (96),
p =+ 0°.18, very nearly the same as by the complete formula,
although there is a considerable difference between ¢ and i,.

To find the true inclination of the axis during these observa-
tions, we have, by taking the mean of the values of B and B’,

div.
B = + 046 = 4 0+.05
whence
b= 0005 4+ 0014 — + 019
Y=+ 0.58 —0.14 = + 0.46

ExampLe 2.—In October, 1852, the pivots of the REepsoLp
meridian circle of the U.S. Naval Academy were examined by
twenty-four determinations of the inclination of the axis, twelve
in each position, and the means were

div.
Clamp west, B — - 0.68
“ east, B =4 0.7T4

One division of the level was equal to 0°.079; and hence

div.

which was neglected, as of no practical importance. Indeed, it
is hardly to be presumed that the level readings were sufficient
to determine so small a quantity with certainty; nevertheless
they suffice to prove the same excellence of workmanship in
these pivots as in those of other instruments of ReprsoLp’s. In
the meridian circle of Pulkowa, made by the same distinguished
artist, STRUVE found an inequality of pivots of only 0.0025.

140. The linear difference of the radii of the pivots may also
be found ; for, by the above formule, we have

(B'— B) L sin 15”sin 1 8in 4,
2 (sin t + 8in 3y)

¥ —r=pLsinisinly’' = (100)

The value of L in the Example 1 of the preceding article was
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10.85 inches, and hence ' — r = 0.000075 inch. Bmall ag this
difference appears, it is satisfuctorily determined by the level.

141. The level constant may also be found by the aid of the
mercury collimator (Art. 47) and the micrometer. For large
instruments, it i convenient to have the mercury basin peérma-
nently placed immediately under the instrument, a little below
the level of the floor, and covered only by a emall movabdle
trap-door in the floor.

Let CC’, Fig. 40, be the rotation axis of the instrument; EO

the collimation axis, perpendicular to CC’;
Fig 40, MN the surface of mercury. There will be
formed in the field of the telescope a reflected
image of each thread of the reticule; but
we shall here use only the movable micro-
meter thread (which will be assumed fo be
o parallel to the transit threads). Leét thid
micrometer thread be brought into eoincis
dence with its own refleeted image, which
occurs when it is at that point a of the
o fleld which lies in the line 0 drawn
through the optieal centre of the objective,
perpendicular to the horizontal surface of
[ the mercury; and hence it follows that, in
this position, the angle aOF is equal to the
inclination of the rotation axis CC’ to the surface MN, or that
aOFE is equal to the required level constant. Now, let the rota-
tion axis be reversed; the directions CC’ and EO remain un-
changed (provided the pivots are equal), and the micrometer
thread is now at a/, at the same distance as before from the col-
Hmation axis; if then the thread is again brought into coinci~
dence with its image, it must be moved over a distance a’s
== twice the required level constant. If then we put

M = the micrometer interval (expressed in seconds of time),
positive or negative according as the mierometer thread
is east or west of its image after reversal,

we shall have

b= ﬁ;‘f (101)

and b will thus be positive when the west end is elevated.



FRREGULARITIES OF PIVOTS. : 159

If the pivots are unequal, b and & being the true inclinations
of the axis for clamp west and clamp east respectively, we shall
have, after reversal, EOa’= b, and after making a coincidence
again, EOe = b’; and hence

V+b=M
and, from (96) and (97),
' V—b=2p
whence
b:%’_, b’=%!+p (102)

It appears, then, that the mercury collimator alone is not ade-
quate to the determination of the level constant when the pivots
are unequal, since the quantity p must be otherwise determined.
The only independent method of finding p is by the spirit level ;
but we shall see hereafter how the level may be dispensed with
(or its indications verified) by means of the mercury collimator
in combination with collimating telescopes.

142. The pivots may be not only unequal, but also of irregular
fignres. To determine the existence of irregularities of form,
the level should be read off with the telescope placed successively
at every 10° of zenith distance on each side of the zenith. The
mean of all the inclinations found being called B, and B’ being
that found at a given zenith distance 2, B)— B’ is the correc-
tion to be applied to any level reading afterwards taken in the
same position of the rotation axis and at the same zenith dis-
tance. The level readings are thus freed from the irreqularities
of the pivots, but we still have to apply the correction for in-
equality of the two pivots; and this inequality will be deter-
mined by taking one-fourth of the difference of the mean values
of B, (found as just explained) in the two positions of the rota-
tion axis. o

For the examination of the form of the pivots of the great
Transit Circle of Greenwich, ¢ each is perforated, and within
the hollow of the eastern pivot is fixed a plate of metal perforated
with a very small hole, behind which a light can be placed for
illumination ; and in the hollow of the western pivot there is
fixed an object glass at a distance from the perforated plate equal
to its focal length. This combination forms a collimator re-
volving with the instrument. It is viewed by a telescope of 7
feet focal length, which, when required, is placed on Vs, one of
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them planted in the opening of the western pier, and the other
in a hole made for that purpose in the western wall of the room.
By a series of most careful observations in 1850, '51, and ’52, no
appreciable error could be discovered in the form of the plvots T
These pivots are six inches in diameter.

THE COLLIMATION CONSTANT.

148. The constant ¢ may express the distance from the colli-
mation axis either of the middle thread or of the fictitious thread
denoted by the ¢ mean of the threads;”’ the former, when 7'in
(82) is the time of transit over the middle thread, and the latter
when 7' is the time of transit over the mean of the threads

Let us first determine ¢ for the middle thread; its value for
the mean of the threads can afterwards be found by adding the
quantity ai (Art. 183); thus, denoting the latter by ¢, we shall
have

6=c + ai (108)

144. First Method.—Place the telescope in a horizontal position,
and select any terrestrial object that presents some well defined
point, and so remote that the stellar focus of the telescope need
not be changed to obtain a good definition of the point.} Mea-
sure with the micrometer the distance of the point from the
middle thread. Reverse the rotation axis, and again measure
this distance. If it is the same as before, the thread is in the
collimation axis, and ¢ = 0; otherwise ¢ is one-half the difference
of the micrometer measures. To obtain a simple practical rul:
which will fix the sign of ¢ for clamp west, put

M, M' = the micrometer distances of the middle thread from
the point, positive when the thread appears in the
" field to be nearer to the clamp than the point;

then, for clamp west,
c= (M + M) e

This gives ¢ with the positive sign when the thread is nearer
to the clamp than the collimation axis, in which case stars at

* Greenwich Obs. for 1862. Introd. p. iv.
+ The meridian mark, if one has been established, will, of course, be used for
this point. See Art. 169.
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their upper culminations arrive at the thread before they reach
the axis, and the correction c¢sec 8 must be additive.

By this method, no correction for the inequality of the pivots
is required, since the telescope is horizontal.

Instead of a distant terrestrial point, we may substitute the
mtersection of two threads in the focus of a horizontal colli-
mating telescope, placed north or south of the instrument. To
avoid reversing the axis, two such collimators are used, as in
the following method.

145. Second Method.—Let two horizontal collimating telescopes
D and F, Fig. 41, be mounted on piers in the transit room, one

north and the other south of the transit instrument, in the same
plane with its rotation axis, their objectives turned towards this
axis, and, consequently, towards each other. Suppose, for sim-
plicity, that the collimators have each a single vertical thread
Nor Sin the principal focus. The transit instrument being at
first removed so as not to obstruct the view of one collimator
from the other, an image of the thread of either collimator will
be formed at the focus of the other, and either thread may be
adjusted so as to coincide exactly with the image of the other. -

Then the two sight lines of the collimators are in the same
line, or at least are parallel to each other, and their threads
when viewed by the transit telescope represent two infinitely
distant objects whose difference of azimuth is precisely 180°.
Replacing the transit instrument, direct it first towards the
north collimator. Let CC’ be its rotation axis, A4’ perpendi-
cular to CC" its collimation axis, 7’ the middle thread of the
diaphraym at the distance AT = ¢ west of the axis. An image
of N will be formed at N’ at a distance AN’ from the collima-

tion axis, which is the measure of the difference of directions of
Vou. I1.—11
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the common sight line of the collimators and the axis A4’
Measure with the transit micrometer the distance (= M) of T
from N/. Next revolve the telescope upon its rotation axis and
direct it towards the south collimator. The axis CC’ is un-
changed, and the point 4 of the focus which represents the
collimation axis is8 now found at 4’. The image of § is formed
at S’ at a distance 4’S’ from the collimation axis, which is again
the measure of the difference of directions of the common sight
line of the collimators and the axis AA’: so that we have AN’
= A’S’; but the points S’ and N’ are on opposite sides of the
axis. The middle transit thread is now at 7" on the same side
of the collimation axis and at the same distance from it as
before: so that we have also A’7T"=¢. Hence, remembering
that

M, M’ — the micrometer distances of the middle thread west
of the north and south collimator threads, respect-
ively,

we evidently have
e={M+ M)

To give this method the greatest degree of precision, it will
not suffice to use single vertical threads in the collimators, on
account of the difficulty of estimating the coincidence of two
superposed threads. It is also clear that the sight lines of the
two collimators must not be marked by two entirely similar and
equal systems of threads, since to bring the sight lines into coinci-
dence we should still have to superpose one system upon the other.
A simple method is to substitute for the single thread in the
north eollimator two very close parallel vertical threads, and in
the south collimator two threads intersecting at an acute angle
and making equal angles with the vertical. Then the middle
point between the close parallel threads marks the sight line of
the north collimator, and the coincidence of the intersection of
the cross threads of the south collimator with this point can be
judged of by the eye with great delicacy. It will assist the eye
somewhat if the collimators have also two parallel horizontal
threads equidistant from the middle of the field, but not at the
same distance from each other in both telescopes.

In the large transit-circle of the Greenwich Observatory the
whole system of tramsit threads is moved by the micrometer
screw. In this case let M and M’ be the micrometer readwmgs
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when the middle thread is in coincidence with the two colli-
mators respectively; then M, = } (M + M') is the reading whes
the middle thread is in the axis of collimation, and ¢ = 0; and
if during any subsequent observations the micrometer is placed
at a different reading m, we must take for the reduction of such
observations ¢ = M, — m.

ExaurLE.—On Feb. 7, 1863, the collimators of the Greenwich
transit-circle having been brought into coincidence, the middle
transit thread was brought successively upon each collimator,
and the reading of the micrometer for the north collimator was
31800, and for the south collimator 81".521. Hence, the micro-
meter being set at the mean 317411, the middle thread would
be in the collimation axis, and then ¢ = 0. But if the transit of
a star was observed on that date with the micrometer set at
81.5, we should have ¢ = 81".411 — 81".5 = — (7.089, or, since
1" = 0r.985, ¢ = — 0°.088.

146. For merely determining the collimation constant, it is
not necessary, as has been above supposed, that the collimators
be in the same horizontal plane with the axis of the transit
instrument. They may be in a plane so far above (or below)
that of the transit instrument that the telescope of the latter
when horizontal will not intercept the view from one to the
other. If then each collimator is mounted as a transit instru-
ment and its rotation axis is level, it can be depressed (or
elevated) until its threads can be viewed by the transit tele-
scope. If the inclination of each collimator to the horizon is
the same, and the measures of the distances of the middle transit
threads from the two collimating threads are as before M and M’,
we still have ¢ = 3 (M + M’). The objection to this arrange-
ment i8 that the sight lines of the collimators must be made per-
pendicular to their rotation axes, and these axes must be levelled,
adjustments which are unnecessary when they are in the sanie
or very nearly the same horizontal plane as the axis of the prin-
cipal instrument.

To avoid the necessity of raising the transit instrument out
of the Vs (when the three instruments are in the same horizontal
plane), two apertures may be made in the cube of the telescope,
through which, when the telescope is vertical, the herizontal
rays from the collimators may pass.
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147. Third Method.—Direct the instrument vertically towards
the mercury collimator, and measure with the micrometer the
distance of the middle thread from its image; put

M = the micrometer distance of the thread from its image,
positive when the thread is west of its image;

then it is evident that, if the rotation axis is horizontal, we shall
have M = 2¢; but, if the west end is elevated by the quantity b,
the apparent distance of the thread and its image will be dimin.
ished by 2b: so that we shall then have M = 2¢ — 25, whence

c=3M+b (105

which gives ¢ with its proper sign for the actual position of the
rotation axis.

If we wish to determine the level constant at the same time,
we reverse the axis, and again measure the distance of the middle
thread from its image. Then, putting

- M, M' = the distances of the thread west of its image for
clamp west and clamp east, respectively,
b, ¥ = the level constants in the two positions,
we have, for clamp west,
c=3iM+b

and (since the sign of ¢ is changed by the reversal), for clamp

east,
—e={M4V

c=1(M — M) —}(¥'— )

whence

or, since b’ — b = 2p,

c= }M—M)—p clamp west,
and il oo e A
‘We have also
V4 b=— (M + M)
V—b= 2])
whence
b=—}(M+ M')—p clamp west,
Y=—}M+M)+p « eonst, }(107)

‘When the micrometer thread is at right angles to the meridian,
and, consequently, moves only in declination, it can nevertheless
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be used for determining the small quantities ¢ and b according
to the above method, as follows. Let 4.8, Fig. 42,

be the middle transit thread, 4B’ its reflected a4
image in the collimator, CD the micrometer thread. -
Move the micrometer thread CD until the distance 7 >
between it and its image C’"D’, estimated by the

eye, is equal to the distance between the transit Bl

thread AB and its image, that is, until the two threads and
their images form, to the eye, a perfect square. This square is
always very small in a tolerably well adjusted instrument, and
can be very accurately formed by estimation. We have then
only to measure the distance of CD and C’D’ to obtain the
required distance. Now, if we move CD we also cause the
image C’D’ to move; but it is evident that (the telescope not
being disturbed) if CD is moved to C’D’, the image will be seen
at CD, and, in passing from one position to the other, the thread
and its image will be in coincidence at the point midway between
the two positions. If this coincidence could be observed with
perfect accuracy, we might read the micrometer head first when
the square was formed, and secondly when the coincidence
occurred and the difference of the readings would be one-half
the required measure of the side of the square. But, as the
threads have sensible thickness, it is difficult to estimate the
coincidence of the middle of the thread with the middle of its
image, and therefore it will be better to read the micrometer,
first when the square is formed by the thread at CD and its image
at C'D’, and secondly when the square is again formed by the
thread at C'D’ and its image at CD. The difference of the
readings will then be the required measure of the side of the
square or of the quantity above denoted by M.

Exampre 1.—In 1857, June 28, at the Naval Academy, to find
the collimation constant of the meridian circle, the distance of
the image of the middle thread from its image in the mercury
collimator was measured, by forming a square, as above explained,
with the declination micrometer thread, alternately north and
south of its own image. The readings of the micrometer were
63.5 div. and 59.5 div. The middle thread was west of its image.
The value of one division of the micrometer was 0°©.0618. The
level constant found by the spirit level was b = — 0+.247. Clamp
West.
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We find
div.

M= 460=4 0371
¢=3 M+ b=+ 02186 — 0-.247 = — 0.061

. Examrre 2.—In 1855, May 11, with the same instrument, a
gimilar observation was made, both with clamp west and clamp
east, and there were found
div.
Clamp W., M == — 5.4 (Thread east of its imago)
« E, M= —27 “« “ “

Hence, since for this instrument p = 0, we find

c= }(M— M')=— 0.042 for clamp W,
b=—} (M 4+ M)=+ 0125

148. By combining the collimating telescopes with the mer-
cury collimator, we can deduce both the collimation and level
constants without reversing the rotation axis and without in-
volving the inequality of the pivots. For, by the collimating
telescopes, we deduce the value of ¢, and by the mercury colli-
mator in the same position of the axis, the value of b =¢ — § M.
This is the method now employed at the Greenwich Observatory,
where the transit circle is never reversed; but it is better alse
ta reverse, and thus obtain two independent determinations of
‘qur constants for verification.

If we reverse the instrument and determine the level constant
by this method in both positions, we can find the inequality of
the pivots; for we shall have p = } (%' — b).

149. Fourth Method.—The preceding methods are very precise
and convenient, but are practicable only with instruments pro-
vided with collimators. The following method is independent
of these auxiliaries, and is practicable with all instruments which
admit of reversal; and, being quite accurate, it may be used
also with the larger instruments in conneetion with the other
methods, as a check upon them.

Direct the telescope upon a star near the pole, and observe
its transits over one or more of the side threads (and also aver
the middle thread, if the instrument can be reversed in the
jnterval between two threads). Then immediately reverse the
rotation axis and observe the transits of the star over ome or
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more of the same side threads again. Let 7 and 7” be the
mean of the clock times of tramsit over the middle thread,
deduced from the several observations for clamp west and clamp
east respectively (Art. 188); b and b’ the level constants in the
two positions (the pivots being supposed unequal) ; then, by (82),
(88), and (87), we have, for elamp west,

= gin (¢ — 9) cos (p — &) ¢ 0.021cosp
+=T+oT+e cos ¢ +9 cos ¢ + cos 8
and, for clamp east,
sin (¢ — &) 00&({0 -85 e 04021 cos g
e=T+al+a cos 8 +Y cos &8 cosd ©o8 ¢

From the difference of these equations we deduce

¢=4(T"— T)cos 8 4 p cos (¢p — &) (108)
in which we have substituted p for (6’ — ). If the pivots are
equal, the term p cos (p — 8) will disappear.

If T and 7" are the times of passing the mean thread (Art. 134),
then ¢ is the collimation of this fictitious thread.

150. If the equatorial intervals have not been previously well
determined, the mean of the transits over the same thread in the
two positions must be compared with the transit over the middle
thread. Thus, if 7} and 7} are the clock times on the same
thread for clamp west and clamp east, we have, for this thread,
i, being its equatorial interval (omitting the diurnal aberration,
which would be eliminated),

_ ; sin (p — 9) s(p—+—23) ¢
e=1T,+isecd+alT+a on 3 + b o P~y

, gin (¢ — &) cos(p — 3)
- o  — —_—
o T/—ise0d 4 aT+a cos 8 +¥ cos 8 cosé

and, for the middle thread, supposed to be observed with clamp
west,
- T+AT+asm§:s 3) +bcos(y d)+ K

cos 9 cosd

The difference between the last equation and the mean of the
first two gives
T, 4+ T/

c_(—-l-_;—- T)cosd+p cos (p — ) (109)
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but, since the error of observation in 7" will appear in all the
values of ¢ thus found from the several threads, their mean will
also involve this error, so that but a slight increase of accuracy
will be gained by observing more than one side thread. Hence,
for the greatest precision, it is indispensable that the thread
intervals should be previously well determined, and that several
threads should be used as prescribed in the preceding article.

These formule apply without modification to the case of a
lower transit, if for 3 we use the supplement of the star’s decli-
nation (Art. 128).

ExaMprLe.—On Sept. 80, 1858, the lower transit of Polaris was
observed with the meridian circle of the Naval Academy on the
three side threads and the middle thread with clamp east, and
on the same side threads with clamp west, as below:

Polaris (lower culm.) § = 91° 26’ 84".

e

I 125 44= 45, + 238= 39:.2 13» 8= 24+.2

CLE II 12 52 41 +15 4.8 25.8
Tl OIIX 183 0 89 + 7 475 26.5
IV 13 8 2456 24 .5

Mean 7' = 13 8 25.25

III 13 16 21. — 7 475 13 8 88.5

CLW. I1 24 20. —15 448 85.2
I 82 18. — 23 89.2 83 .8

Mean T = 13 8 83.17

The adopted intervals for these threads were i, = + 85'.67,
i, = + 2877, 4 = + 1177, with which the reductions to the
middle thread were computed as in the table. As a test of the
accuracy of the observation, each thread is here reduced sepa-
rately. We have then, taking only the seconds of T and 17,
aud putting p = 0, by (108),

- o 2625 — 88.17
- 2

" On the same day the distance of the middle thread west of its

cos 91° 26’ 84” — 4 0+.100 (CL W.)
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image in the mercury collimator was found with clamp east to
be — 19.9 div. = — 1°.230, and by the spirit level there was found
b= + 0.521, whence ¢ = — 07615 + 0°.521 = — (*.094 (Cl.E.),
agreeing almost exactly with the value found by Polaris.

THE AZIMUTH CONSTANT.

151. To find the azimuth constant, we must have recourse to
the observations of stars, since it is only by a reference to the
heavens that the direction of the meridian can be determined.
We can either find a directly, or first find » and m, from which
a can be deduced.

To find a directly.—Observe the transits of two stars of different
declinations 4 and &’. Let Tand 7" be the clock times of transit
reduced to the middle thread (or the ‘mean thread), b the level
constant, ¢ the collimation constant for the middle thread (or
the mean thread), and put ¢/=c¢ — 0.021 cos ¢ (Art. 126). Let
aT;, be the clock correction at any assumed time 7;, 37 the
hourly rate; then the clock corrections at the times of observa-
tion are

AT =aT,+ 8T(T— T)
AT'=aT,+ 8T(T'— T)

Then, if a and &’ are the apparent right ascensions of the stars
at the time of the observation, as found from the Ephemeris,
we have, by (82) and (87),

a=T+ AT+ asin(p —3)secd 4 bcos(p—3d)secd + ¢'secd
o/ =T+ aT'+ asin (¢ — &) 8ec 3’4+ b cos (p — &) sec 3'+ ¢’ sec &’

If in these we substitute the above values of AT and a7”, and
suppose the rate of the clock to be given, every thing in the
equations will be known except aT; and a. To abbreviate, put

t=T+ 37(T — 1;)+bcos(¢—6)seod+c’seoa} 110
=T+ 8T(T'— T,) + b cos (p — &)sec 3’4 ¢'sec?’ (110)

that is, let ¢ and ¢ denote the observed clock times reduced to
the assumed epoch 7, and corrected for level and collimation;
then we have

a=1t+ AT,+ asin (p — 3 )sec 3

o’ =¢t'4+ AT,+ asin (p — ¢")sec &’
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. give
. o . _
¢'~-¢=t'-—-t+a[sm(¢ 3"y _sin(p —29)
cos &' cos S
AT
==‘,_.__t_’_acosgpsm( é")
cos & cos &’

’ ’ €08 8 cos 8’
a=[('—a—¢'~ t)] cos ¢ sin (3 — &)
(111)
- (o/—a)—(t'—1?)
cos ¢ (tané — tan 8’)

| these formule we learn the conditions necessary for
ccurate determination of @. In the first place, if the
f the clock is not well determined, the interval between
»servations must be as brief as possible, so that ¢ and ¢
e but little affected by the error in 7. The right ascen-
of the two stars must therefore differ as little as possible;
one of them is observed at its lower culmination, they
liffer by nearly 12*. In the next place, it is evident that
rger the factor tan 8 — tan 8’ in the denominator of (111),
ss effect will errors in ¢ and ¢ have upon the deduced
of a. Therefore, if both stars are observed at the upper
1ations, one must be as near to the pole and the other as
)m it as possible. Finally, the right ascensions @ and @’
be accurately known, and, therefore, only fundamental
should be used, or those whose places are annually given
Ephemeris.
ne of the stars is observed at its lower culmination, we
mly to use 180° — 4’ and 12* + a’ for its declination and
ascension, and still use the equations (110) and (111) with-
1ange of notation (Art. 128). In this case the factor
—tand’ will become tan ¢ 4 tan &’ (taking J’ here to
7 the proper declination); and this will be the greater, the
* both stars are to the pole. All the most favorable condi-
:an therefore be best fulfilled by two circumpolar stars,
8 near to the pole as possible and differing in right ascen-
y nearly 12%,
re can rely upon the stability of the instrument and the
rate for 12, we may observe the same star at both its
and lower culminations, and then, putting 180° — &' = 4,
‘mula becomes
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o —a—(t'—1)
a= 11
2cos ¢ tan 9 (112)

where a’ is the apparent right ascension of the star at the lower
culmination increased by 12*, and ¢ is the corrected time for the
lower culmination.

If the object of the observer is to re-determine the right
ascensions of the fundamental stars themselves, it is plain that
he must have an instrument of the greatest stability, and for
the determination of the azimuth must rely upon upper and
lower culminations of the ‘same star; for the difference o’/ —a
in (112) may be accurately computed by the formule for pre-
cession and nutation, although the absolute values of a and o’
may be but approximately known.

To find n directly.—Having observed two stars under the con-
ditions above given, let ¢ and ¢ be the clock times reduced for
rate to the assumed epoch 7| as before, but further corrected
only for collimation ; that is, put

t=T+48T(T— T, + c'sec s
t'= T'4 8T (T'— T) + ¢ sec &' } 118)

then, by Brssar’s formula, Art. 126,

oa=t+4 aT,4 m-+ ntand
o'=t'+ aT,+ m + ntan &
whence
(t'—t)— (a'—0) (114)

n =
tan 8 —tan &’

For a single circumpolar star observed at its upper and lower
culminations,

_ @ —t)—('—a)
n=t (115)

We then find m by (85); namely,
m=—>0bsecyp —ntan ¢ (116)

If we reduce our observations by Besser’s or HANSEN'S
formula, it will be unnecessary to find a. If it is required, how-
ever, it may now be found by the equation

a=>btan ¢ —nsecyp am
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ExaMpLE.—On May 25, 1854, with the meridian circle of the
U. 8. Naval Academy, the upper and lower transits of Polaris and
the transit of a Arietis were observed, and the clock times reduced
to the middle thread were as follows: ;

T
Polaris U.C. 1*14=48°24 (Clamp East.)
a Arietis 2 8 9.18 “
PolarisL.C. 18 14 40.12 “

‘With the spirit level and mercury collimator, there were found
b=+ 0.004, c = — 0°.203. The hourly rate of the clock on
gidereal time was 87'= — 0°.224. The longitude of the instru-
ment was 5* 5 55° W. of Greenwich, and the latitude ¢ — 38° 58’
527.5. Find the constants a, m, and n.

From the Nautical Almanac for this date the right ascensions
and declinations of the stars, reduced to the time of the obser-
vations, are

[ . 3 Nat. tan &
Polaris U.C. 1» 5= 29:.41 88° 81’ 89” 88.902
o Arietis 1 58 56.05 22 46 7 0.420
Polaris L.C. 18 5 29.75 91 28 21 — 38.902

‘We find for the constant of diurnal aberration for the given
latitude, 0°.021 cos ¢ = 0°.016, and hence ¢/ = — 0°.208 — 0°.016
= — (0.219. Computing ¢’secd, bcos (¢ — 3)secd for each star,
and reducing the times for rate to 0% the values of ¢, according
to (110), are found as follows:

Iy Red. for | Corr. for | Corr. for
rate to 0A.| collim, level.

Polaris U.C.| 1» 14" 48+.24 | —(+.28 | —8.52 | 4 0.10 1» 14= 39254 |
o Arietis, 2 8 9.13|—048|—0.24 000/ 2 8 841
Polaris L.C.|13 14 40.12]—2.97|48.52| —0.09 |18 14 45.58,

To exemplify the use of the formula (111), we will first take
Polaris U.C., and a Arietis (accenting the quantities for the
second star). We find

o/ — a = 53= 26°.64 t'—t = 53= 2887
tan 8 — tan &' = 88.482
and hence, by (111),
— 2428 *
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To exemplify the use of (111) in the case of two stars, one
above and the other below the pole, we will take & Arietis and
Polaris L. C., for which we find

o' — a = 11* 6= 8370

AZIMUTH CONSTANT.

t'—t=11*6=87.17
tan 8 — tan 8’ — 89.322
whence

— 8°47

39.322 cos ¢ 0114

a

~ To exemplify the use of (112), we will take Polaris U. C. and
L.C., for which we have

o — a = 12* 0= 0.34 t'— t =12* 0= 6°.04
2tan & = 77.80
whence

— 570

=— = — (.094
77.80cos ¢

We adopt this last determination of a, and then, by (80), we find

But, where m and n are required, it is preferable to find n
directly from the observations, and for this purpose we do not
correct the times for level. Thus, correcting the times according
to (118), we find ¢ as follows:

Red. for | Corr. f(
T rate to?):. o::u'or ¢
PolarisU.C. 17144824 | — 0028 — 8.52] 1»14=39°.44
a Arietis, 2 8 9.18|—048|—0.24| 2 8 8.4l
[Polaris L.C. |18 14 40.12 {—2.97|4 8.52| 18 14 45.67

_ Taking Polaris U. C. and « Arictis, we find, by (114),

formula,

.. 283
T 88.482

Taking a Arietis and Polaris L. C., we find, by the same

o 856
T 89.322

= 4 0°.061

= 4 0001
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Finally, from Polaris U. C. and L. C., we find, by (115),

_ 4589

- =4 0
m= e = T 0076

agreeing exactly with the value above found from the same
observations. We now find m by (116), which gives as before
m = — (*.056. And then, if a is required, we find, by (117),
a=— 0.094.

THE CLOCK CORRECTION.

152. Having determined all the instrumental comstants, the
clock correction is found from the transit of any known star by

the formula
AT=0a—(T+ 1)

in which T is the clock time of the star’s transit over the middle
thread, or the mean thread, and r is the reduction of this thread
to the meridian, computed by either (81), (86), or (87).
. The finally adopted value of aT will be the mean of all the
values thus found from a number of stars; and this mean will
be the value corresponding to the mean of all the times of obser-
vation. But the observations thus grouped together for a deter-
mination of a7 should not extend over so great a period of time
that the clock rate cannot be regarded as constant during that
period.

The clock rate is found by comparing the corrections a7, a 77,
corresponding to two times 7, 7", or

I’
0l = ——
T Tr—T

The value aT, of the clock correction for an assumed epoch T
will be found by taking

AT,=aT+4 8T(T,— T)

It is evident, from HaxXsex’s formula (86), that an error in the
determination of n (or of a, which involves n) will have the less
effect upon r and a T the less the difference between the observer’s
latitude and the star’s declination. Hence, assuming that b and
¢ can be found with greater precision than n, it is expedient to
use for clock stars only fundamental stars which pass near to the
zenith. If two circumzenith stars are observed, such that the
mean of the tangents of their declinations is equal to the tangent
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of the latitude, the mean value of a7 will be wholly free from
any error in n.

An error in ¢ will be eliminated, either wholly or in part, by
taking the mean of the two values of a7 found in the two posi-
tions of the rotation axis, since the sign of ¢, and, consequently,
also that of any error in ¢, is changed by reversing the axis. An
error in the assumed value of the correction p, for inequality of
pivots, will also be removed in this manner; but, since the co-
efficient of b does not change its sign for different stars, nor
when the instrument is reversed, there is no method of elimi-
nating an unknown error of b. It is necessary, therefore, that
the astronomer give particular attention to the precise determi-
nation of this constant.

(For the determination of the clock correction by a transit of
the sun, see Art. 155).

DETERMINATION OF THE RIGHT ASCENSIONS OF STARS.

158. The principal application of the transit instrument in the
observatory is the determination of the apparent right ascensions
of the celestial bodies. The instrumental constants and the
clock correction and rate being found from known stars as above
explained, the right ascension of any other star is immediately
deduced from the time of its transit by (82), in which we may
substitute (86) or (87). The form in which the observations are
reduced will be best learned by referring to any of the printed
observations of the principal observatories.

In making a catalogue of stars, the instrument is clamped at
@ certain declination, and all the stars within a zone of the
breadth of the field of the telescope are observed as they cross
the threads. In this case, it will be expedient to find the clock
correction from fundamental stars nearly in the parallel of decli-
nation upon which the instrument is set. For if we have found
aT from a star whose right ascension is a, by the formula

aAT=a—(T+1)
the right ascension of another star will be

=T+ aT+eT(T"—T)+ 7
—a +(T'—T)A + T+ (¢ —9)

that is, it will be equal to the right ascension of the fundamental
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star increased by the clock interval corrected for rate, and for
the difference ' — r of the instrumental corrections; and if the
declinations are the same, we shall have 2/ — ¢ = 0, and all the
errors of the instrument will be eliminated. Since, in this appli-
cation, the absolute clock correction is not required, we may
substitute in (82) m’ for AT+ m, and m’ will be found directly
from the fundamental stars by the formula

m =a — (T + n tan ¢ 4 ¢/sec d)

The right ascensions will then be obtained by adding to the
observed times the correction m’ + ntan & + ¢’ secd, and it will
not be necessary to separate m’ into its constituents a7 and m.
Since m’ involves the rate of the clock, its hourly variation will
be taken into account in precisely the same manner as that of
aT. This mode of reduction was adopted by BesseL for his
Konigsberg Zone observations.

The mean right ascensions for the beginning of the year or
for any assumed epoch, are found, from the apparent right
ascensions, by the formula (692) of Vol. L.

For the determination of the absolute right ascensions of the
fundamental stars, see Chapter XII. Vol. I.

TRANSITS OF THE MOON, THE SUN, AND THE PLANETS.

154. Transits of the moon.—The hour angle of the moon’s limb,
when on a side thread, is affected by parallax; and the time
required by the moon to pass from this thread to the meridian
differs from that required by a star in consequence of the moon’s
proper motion in right ascension. If 4 is the true declination of
the moon, ¢’ the apparent declination as affected by parallax, ¢
the apparent east hour angle of the moon’s limb at the instant
of the observed transit over a thread whose equatorial interval

Fig.48. from the middle thread is 7, then, since &’ is the decli-

P nation of the observed point on the thread, we have
¥=m 4 ntan &' 4 ({ 4 ¢’)sec 8’
Thus & is known, but to reduce the observation we
z must find the true hour angle &. Let PM, Fig. 43, be
the meridian, P the pole, Z the geocentric zenith of the
R place of observation, O the true place of the moon, ¢
a' o its apparent place; and denote the true and apparent



TRANSITS OF THE MOON. 177

zenith distances ZO and Z(’ by z and 2’. We have MPO =8,
MPO = ¢, and drawing OM, O’ M’ perpendicular to the meri-
dian, we find

sin MO _ sin MO'

80 MZ0 = = = win 20’

or
gin # cos & _ sin # cos &’

ginz  sin2
whence
8 — o,_sin 2 cos &'
sin 2’ cos &
Now, if

4 = the moon’s increase of right asceusion in one second of
sidereal time,

the sidereal time required by the moon to describe the hour
angle 8 i i8 7 — 9 & and, therefore, T'being the clock time of transit

of the hmb over the thread, the right ascension of the limb at
the instant of its transit over the meridian will be

G=T+AT+1—-—1

and if we put

S = the moon’s geocentric apparent semidiameter,

the hour angle of the moon’s centre when the limb is on the

meridian will be + 15—8——1 and the time required by the moon

8
to describe this hour angle will be = m- Hence the

formula for computing the right ascension of the centre at the
instant of the transit of the centre over the meridian is

+ 8
27 15(1 —2)cos &

¢=T+AT+1 8

in which the upper or the lower sign will be used according as
the first or the second limb is observed. If then we substitute
the values of # and ¢, and put

sm z 1 (118)
~sinZ (1 — 1) cos 8

Vor. IL—13
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we have

y ’ ’ ’ S
a=T+4AaT+iF4+(m-ntand’<4c'secd’) Feosd’+ 5 (l—T1cos3 A—D)oosd (119)

To compute the factor F conveniently, put

sin z _ 1
sin 2 T 112

then
F = ABsgec 8

The value of A may be developed in a simple form. If we put
¢’ = the reduced or geocentric latitude of the place of observa-
tion, p = its geocentric distance, 7 = the moon’s equatorial
horizontal parallax, we have z = ¢’ — 4, and

sin (2 — z) = p 8in = sin 2
whence

a.

in 2

A=
sin 2

= 08 (# — z) — p 8in = cos

or, neglecting the square of the parallax,
A=1— psinx cos (¢ — 9)

which is the form employed by BesskeL, who gives the value of
log A, in Table XIIL. of the Tabule Regiomontane, with the
argument log [p sin 7 cos (¢’ — d8)]. For a particular observatory,
where these reductions are frequent, it is more convenient to
prepare a special table, adapted to the latitude, giving log 4 with
the arguments ¢ and z. In BEesseL’s table, there are also given
the values of log B with the argument *‘change of the moon’s
right ascension in 12* of mean time,” and the argument is ex-
pressed in degrees and minutes of arc; but as the change in one
minute, expressed in seconds of time, which I shall denote by aa,
is given in the American Ephemeris, I shall take

Aa 60.1643

2 — —_——
60.1643 60.1643 — aa

where 60.1643 is the number of sidereal seconds in one minute
of mean time. The following table gives the values of log B
computed by this formula:
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Argument Aa = change of the moon’s right ascension in one minute of
mean time.
Ao log B Aa log B Aa log B N

1465 | 0.01208 2:.05 0.01506 2:.45 | 0.01806
1.70 | 0.01245 2.10 0.01543 2.50 0.01843
1.75 | 0.01282 2.15 | 0.01580 2.65 0.01881
1.80 | 0.01319 2.20 0.01618 2.60 0.01919
1.85 | 0.01356 2.25 | 0.01655 2.65 | 0.01956
1.90 | 0.01394 2.30 | 0.01693 2.70 | 0.01994
1.95 0.01431 2.35 0.01730 2.75 0.02032
2.00 0.01468 2.40 | 0.01768 2 .80 0.02070

This table will be useful also in computing the term

— 8 _
15(1 —A)cos 8

The reduction of an observed transit of the moon is then as
follows. The transit over each thread is reduced to the middle
thread (or mean thread) by adding the correction iF' to the
observed times, and the mean of the several results is taken
a8 the clock time of transit of the limb over the middle (or
mean) thread; or this time may be found by multiplying the
mean of the equatorial intervals of the observed threads by F
and adding the product to the mean of the observed times.
This time is then reduced to the meridian by adding the correc-
tion (m + ntan &’ 4 ¢’ sec 8')F cos &’ or (mcos 8’ + nsin &’ + ¢’) F,
in which we may take &’ =8 — = sin (¢’ — ). Then, adding the
clock correction, we have the right ascension of the limb at the

instant of its transit over the meridian. Finally, adding or sub-
tracting the term 1—5—(—1—_-57)—0(—);,» we have the right ascension of
the moon’s centre at the instant of its transit over the meridian.

‘When the moon has been observed on all the threads, the
computation of F' by the above method may be dispensed with,
as an approximate value, sufficient for computing the reduction
to the meridian, may be inferred from the observed times on the
first and last thread. For, calling the observed interval between
these threads I, and the equatorial interval ¢, we have I = iF,

whence

\'s SBsecd

I

F=—_—
)
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If we omit the factor 1 — 2 throughout, the right ascension
obtained is that which corresponds to the instant of the observa.
tion instead of the instant of meridian passage.

ExampLE.—The transit of the moon’s first limb was observed
at the U. 8. Naval Academy on May 29, 1855, as follows :

Thread. Clock.
I 158576
II 4 103
(Clamp east.) II1 4 23.2
IV 4 36.2
v 4 490
VI 5 1.8
VII 5 14.6

For the Naval Academy we have ¢’ = 88° 47’ 88", and logp
= 9.99943; and the longitude from Greenwich is 5* 5" 57-.

The constants of the transit instrument were m = + 0.251,
n=— 01162, ¢ = + 0:.098; and hence (Art. 126) ¢’ = + 0093
— 0°.016 =+ 0°.077. The clock correction to sidereal time was
+ 1= 25°11. The equatorial intervals of the threads from the
middle thread were

4 L) s s s %
+85.65 428272 4 11078 — 11277 — 2877 — 85.67
From the American Ephemeris we find for the culmination
at the Naval Academy on May 29, 1855,
= = b7' 46".1 S =15 46".5
8 = —17°58' 63" Aa = 22147
To illustrate the method of reducing the observations to the
middle thread, we will first find the factor F' by direct computa-
tion. We have ¢’ — & = 56° 46’ 81", log psinxcos (¢’ — 8) =
7.96855; and hence

log 4 = 9.99599 °

log B = 0.01629
log sec ¢ = 0.02175
log F = 0.08408

Multiplying the equatorial intervals by F, we find the reductions
of the several threads to the middle thread to be

I II II1 \' VI VII
488456 2565 4 12.74 —12073 — 25271 — 88.58

k
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The clock times of transit over the middle thread, according
to the observations on the several threads, were, therefore,

I 15* 4= 36+.06

II 35.95
III 85.94
Iv 86.20

v 36.27
VI 86.09

VII 86.02

Mean 7=15 4 86.08

To compute the instrumental correction, we have x sin (¢’ — 8)
= 48'.8, whence &= — 18° 47.2, m + ntand’' 4 ¢’secd’ =
+ 0°.887, and therefore

(m + n tan &' 4 ¢'sec 8") Feos ' = + 0040
Applying this term to the above mean, we have
Clock time of transit of the limb — 15* 4= 36.48

Clock correction, AT =+ 1 25.11
R. A. of the limb at transit =15 6 1.69
S
_—= 1 .
16(1 — A)cos 9 8.88

R. A.of moon’s centre at transit,a =15 7 10 .47

The factor F' might have been approximately deduced from
the first and last observations, which give the interval 7= 771,
and the equatorial interval between the extreme threads is
i = 3565 + 385'.67 = T71'.82, whence

log F = log 7%;13 — 0.0388

which is sufficiently accurate for reducing the instrumental cor-
rection.

The ¢ sidereal time of the semidiameter passing the meridian,”
or ml—_sm may be taken from the table of Moon Culmi-
nations given in the Ephemeris.

The clock correction employed in deducing the moon’s right
ascension should be deduced from stars as nearly as possible in

the same parallel of declination. (See Art.158.) The “moon cul
minating stars” are stars lying nearly in the moon’s path whose

—
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positions have been carefully determined for this purpose. (See
Vol. 1. Art. 229.)

155. Transits of the sun or a planet.—The formula (119) is applic-
able in general to any celestial body ; but, in the case of the sun
and planets, the parallax is so small that its effect upon the time
of transit over a side thread is inappreciable: so that we may
take simply

F=——-1-—- = Bsec 8
(1 —2A)cos s

and, consequently, also put & for . The formula for computing
the right ascension of the centre of the sun or a planet over any
given thread is, therefore,

o=T+aT+ iBsecd+ (m+ntand 4 ¢’ secd) B+ ) SBsecd (120)

in which (4 denoting the change of right ascension in one sidereal

second) we have
1

1—12
The logarithm of B may be readily computed. Putting aa for
the change of right ascension in one hour of mean time (which
change is given in the Ephemeris for the sun), we have, since
one mean hour is equal to 3610 sidereal seconds,

1= 2>
3610
*1ogB=_1og(1_—°i)
3610
M
= da——
3610

.in which M = 0.43429, the modulus of the common system of
logarithms. Performing the division of M by 8610, we find

log B == 0.00012 X aa 21

in which ac must be expressed in seconds of time.

In the British Nautical Almanac, the change of right ascension
aa in one hour of longitude is given for each planet. In this
case, we have

—— —

* By the formula log (1 —z) = — M(z + } 2?4 &o.), where the square and
higher powers of = are 80 small as to be inappreciable in the present case.
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Ao
B=1+ 3500

the logarithm of which may also be found by (121) with suffi-
cient accuracy, that is, within a unit of the fifth decimal place. .

The term & SBsec J, or “ the sidereal time of the semidiameter
passing the meridian,” is given in the Ephemeris for the sun and
each of the planets. When both limbs have been observed on
all the threads, this term is not required, since the mean of all
the observations is evidently the time of the passage of the centre
over the mean of the threads. If this mean is to be reduced to
the middle thread, there will remain the small correction aiBsecd
to be applied (Art. 183), for which we may take aisecd. We may
also putm + n tan 3 + ¢’ sec 3 instead of (m + ntan 3 + ¢’ sec 8) B,
unless m, n, and ¢’ are unusually great. '

The reduction of transits of the sun observed with a sidereal
clock is greatly facilitated by the use of Table XII. of BrsskL's
Tabule Regiomontane, which contains every thing necessary for
the purpose, for each day of the fictitious year (Vol. L Art. 406).

156. Transits of the sun observed with a mean time chronometer.—
A mean time chronometer is often used with the portable transit
instrument, and transits of the sun are then observed solely for
the purpose of determining the chronometer correction. In this
case, the mean motion of the sun corresponds with that of the
chronometer, and therefore the factor B may be put equal to
unity, unless we wish to obtain extreme precision by taking into
account the small difference between the mean motion of the sun
and its actual motion at different seasons of the year, a degree
of precision quite superfluous in the use of a portable instrument.
If we put

E = the equation of time for the instant of transit, positive
when additive to apparent time,

8’ = 5 Ssec 8 = the mean time of the sun’s semidiameter
passing the meridian, which may be taken from the
Ephemeris,

7 = the reduction to the meridian, found either by (82), (86),
or (87),

T — the observed chronometer time of the transit of the
sun’s limb over a thread whose equatorial interval is i,

AT = the chronometer correction to mean time,

t = the chronometer time of the transit of the sun’s centre,

S
bk
L Y
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then we have
t=T-+isecd =8+ 122)
and
124+ E=t+4aT
or
AT=12"+ E—t (123)

Exampre.—On May 17, 1856, the transit of the sun was ob-
served at the Naval Academy with a portable instrument as below
(Clamp West):

Mean time chronometer.
Thread,
1st Limb. 2d Limb.

I 11> 556 42:.2 11> 57 56-.6

II 66 57 .4 lost
III 56 12.0 68 26.7
IV lost 68 41.7

v 56 42.3 lost

There had been found ¢ =+ (.35, b = — 0.27, ¢ = — 012,
The thread intervals from middle thread were

" b 4 %
+ 2826 + 14.16 — 14227 — 2881

The longitude being 5* 5™ 57* west of Greenwich, we find from
the Ephemeris for the transit over this meridian,

8= 4 19° 291

The reductions of the several threads to the middle thread, or
the values of isecd, are, therefore,

8= 6724 E= —38=49.71

1 11 v v
+ 29.97 + 1501 — 1514 — 8003

Applying these to the observed times, and also the quantity
=+ §’, we have the chronometer time of the transit of the sun’s
centre over the middle thread, as deduced from the several
threads, as follows:
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Thread. Chronometer.
I 11* 57= 1941
. 11 19 .65
1st Limb, I 19 .24
A4 19 .51
I 19 .83
2d Limb, {m 19 .46
v 19 .82

Mean =11 57 19 .42

The latitude being ¢ = 88° 58".9, we find, by (87), r = — 0°.21,
and hence, finally,
t = 11*»57= 1915
122+ E—11 56 10.29
AT=— 1 8.86

157. Correction of the transit of the moon or a planet when the
defective limb has been observed.—Let us consider the general case
of a spheroidal planet partially illuminated. The transit of the
observed limb is reduced to that of the centre by employing
instead of Sin (119) the perpendicular distance from the centre
of the planet to that tangent to the limb which lies in the direc-
tion of the transit threads, or, in the case of meridian transits,
the perpendicular upon the declination circle which is tangent
to the limb. The formulee for computing this perpendicular, in
general, are discussed in Vol. 1., Occultations of Planets, where we
have found that in all practical cases the formule (628) of p. 580
may be considered as rigorous. In those formule the angle ¢
is the angle which the required perpendicular makes with the
axis of the planet, so that, p being the angle which this axis
makes with a declination circle, we have here

#=270°—p or ¢=90°—p

according as the first or second limb is observed. The values
of p as well as of V and ¢ required are found as in Vol. I. Arts.
851, 852.

But this rigorous process will seldom be required ; and when
we regard the planet as spherical, the formule can be simplified
as follows. For a spherical planet we make ¢ = 1, and substi-
tute the value 90° — p for ¢, which applies to the 2d limb,
whence, by Vol. I. formulse (628) and (628),

giny = cosp sin ¥V

{
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or
sin y = %costin(u’ —4)
(124)
8
8"=scosz=;‘-’cosz

where a’and A are the right ascensions of the planet and the
sun respectively (and @’ — 4 is therefore in the present case the
sun’s hour angle at the time of the observation); D = the sun’s
declination; R, R’ = the heliocentric distances of the earth and
the planet respectively; s = the apparent semidiameter of the
planet at the time of the observation; s, = the mean semi-
diameter (Vol. L. p. 578); r = the geocentric distance of the
planet; and s’ = the required perpendicular. For the moon we
may put R= R'.

The above value of sin y is deduced for the second limb, and,
therefore, by Vol. I. Art. 854, it will be positive when the second
limb is defective. Since we should have to substitute 270° —p
for &, or — cos p for sin &, in the case of the first limb, which
would only change the sign, it follows that the value of sin y com-
puted by the above formula will be positive or negative according as the
2d or the 1st limb is defective.

The value of s'’is to be substituted for S in (119).

EFFECT OF REFRACTION IN TRANSIT OBSERVATIONS.

158. Since the refraction changes the zenith distance, its cffect
upon the time of transit over a side thread has the same form as
that of the parallax. If then z and 2’ denote respectively the
true and apparent zenith distances, the time required by the star
to describe the interval ¢ is iF, where F'is found by (118); or,
denoting this time by I/, and putting 2 = 0,

I — i sinz

~ cosd sinZ

Now, the refraction is represented by the formula r = k tan 2,
k being nearly constant; and for values of z not greater than 85°,
we may here assume k= 58/, and 2z =2’ + ktanz’, whence
we find :

sin 2
sin 2

=1 + ksin 1” =1.00028
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Hence the error in computing the interval by the formula
I=isecd is 1 X .00028, which amounts to 0.01 when /= 86*;
and this is as great an interval as is ever used for an equatorial
star. The error of observation for other stars increases with the
interval I, or as the value of secd: so that the error produced
by neglecting the refraction is always much less than the proba-
ble error of observation. Moreover, the error is wholly elimi-
nated when the star is observed on all the threads, or on an equal
number on each side of the middle thread.

If, for any special purpose, it becomes necessary to correct an’
observation on an extreme thread for refraction, we can take, as
a very accurate formula,

I'=1sec (1 + ksinl")

k being found by BrsseL's Refraction Table (Table II.), and, for
& near approximation,

I'=isecd X 1.00028

MERIDIAN MARK.

159. For a fixed instrument, it is desirable to have a perma-
nent meridian mark by which the azimuth of the telescope may
be frequently verified. A triangular aperture (for example) in a
metallic plate mounted upon a firm pier, with a sky background,
makes a good day mark, the thread of the telescope being brought
into coincidence with it by bisecting the vertical angle of the
triangle. If the mark is sufficiently near, a light may be placed
behind it for night observations: A simple mark like this, how-
ever, must be so remote as to be distinctly defined in the tele-
scope without a change of the stellar focus, and even for instru.
ments of moderate power this requires a distance of upwards
of a mile.

It is found, however, that the apparent direction of these
distant marks is often subject to changes from the anomalous
lateral refractions which take place in the lower strata of the
atmosphere, produced chiefly by variations of temperature. If
a sheet of water intervenes, the mark is found to be especially
unsteady. It was to remedy this difficulty that RITTENHOUSE
first proposed the plan of placing the mark comparatively near
to the instrument, but in the focus of a lens which receives
the divergent rays from the mark and transmits them to the




188 TRANSIT INSTRUMENT IN THE MERIDIAN.

telescope in parallel lines; a suggestion which has resulted in
various important improvements in the methods of investigat-
ing instrumental errors, such as the collimating telescopes, the
mercury collimator, &c., which have already been fully treated
of in the preceding pages. The apparent direction of the mark
will be that of the line joining the optical centre of the lens
and the mark. At Pulkowa, the lens for this purpose is placed
on a pier within the transit room, and has the extraordinary
focal length of about 556 feet,* which is, therefore, the distance
of the mark from the pier. The mark consists of a circular
aperture ¢ of an inch in diameter, in a metallic plate, presenting
in the telescope a planetary disc of only 2/’ in diameter, which
can be bisected by the thread of the telescope with the greatest
precision. The merit of such a mark depends on the stability
of the two points, the mark and the lens, which determine the
direction of its optical line. These points, mounted as they are
upon solid stone piers, are not liable to greater relative changes
than the piers of the telescope itself, and therefore the changes
of direction of their optical line will be less than those of the
telescope in the proportion of the focal length of the lens to the
length of the rotation axis of the telescope, which in this case
was as 5566 feet to 8.61 feet, or as 154:1. Now, according to
STRUVE,t the diurnal changes in the direction of the axis of a
well mounted transit instrument are seldom more than one or
two seconds of arc; but y}; of a second of arc is a quantity abso-
lutely imperceptible even in the best transit telescopes. Two
marks of the same kind were used by STRUVE, one north and
the other south of the telescope, and they served not only as
meridian marks, but as collimators according to the method of
Art. 145.

In the same manner, one of the collimators of the Greenwich
transit circle is used as a meridian mark, although it is within
the transit room. In this case, the advantage gained is com-
paratively small.

It is not necessary that the mark be precisely in the meridian
of the instrument. It is sufficient if it is so near to it that its
deviation in azimuth can be measured with the telescope micro-
meter. Let A4 be its azimuth west of north. Direct the telescope
to it, and measure its distance m from the middle thread, giving

* Description de U Observato.re de Poulkova, p. 1260, + Ibid. p. 128,
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the measure the positive sign when the mark, as seen in the
field, is to the apparent west of the thread; then, ¢ being the
azimuth constant of the telescope determined by stars, and ¢ the
collimation constant, we have

A=a—m—c¢ (125)

Bo long as the values of 4 thus found appear to vary only within
the limits of the probable errors of observation, their mean is to
be taken as expressing the constant position of the mark, and
during this period the azimuths of the transit instrument will be
found at any time by the formula

a=A+4+m+4ec

If the instrument is reversed and the micrometer distance of
the mark west of the middle thread is now m’, we have

a=A + m—c
which, combined with the former equation, gives

e } am

e =4¢(w —m)

which last equation gives ¢ with its proper sign for the first posi-
tion of the instrument.

PERSONAL EQUATION.

160. It is often found that two observers, both of acknowledged
ekill, will differ in the time of transit of a star observed by “eye
and ear,” by a quantity which is nearly the same for all stars.
Buch a constant difference does not necessarily prove a want of
skill in subdividing the second according to the method of Art.
121, but may proceed from a discordance between the eye and
the ear, which affects the judgment as to the point of the field to
which the clock beats are to be referred. Thus, if
a and b, Fig. 44, are the true positions of a star at
two successive beats of the clock, we may suppose
the observer to allow a certain interval of timeto Q¢ | Q0@
elapse after each beat before he associates it with the
star’s position (possibly in some cases he may antici-
pate the beat): so that he refers the beats to two different points
« and b/, whose distance from each other is, however, the same

Fig. 44.
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as that of @ and b. The ratio in which the distance a’b’ is divided
he may still estimate correctly.

The distance between a and a’ may be called the absolute per-
sonal equation of the observer, and, if it could be determined,
might be applied as a correction to all his observations. But, so
long as his observations are not combined with those of another
observer, the existence of such an error cannot be discovered;
nor is it then of any consequence. For the process of deter-
mining the right ascension of an unknown star consists essen-
tially in applying to the right ascension of a known star the
difference of the clock times of the transit of the two stars (cor-
rected for instrumental errors and rate), and this difference will
evidently be the same as if the observer had no personal equation.

In order to combine the observations of two individuals—for
example, to deduce the right ascension of an unknown star
whose transit is observed by A, from the time of transit of a
known star observed by B—it is necessary to know the difference
of their absolute equations,—i.e. their relative personal equation.
Thus, if the times observed by A are later than those observed
by B by the quantity E, then B’s observations may be reduced
to A’s (that is, to what they would have been if observed by A)
by increasing them all by E.

The relative personal equation may be found by the following
methods :

First Method.—Let one observer note a star’s transit over the
first three or four threads, and the other observer its transit
over the remaining threads. Reduce the observations of each
to the middle thread (or to any assumed thread) by applying the
known equatorial intervals multiplied by secd. The difference
between the mean results for the two observers will be a value
of their required personal equation. The mean of the values
found from twenty or thirty (or more) such observations will be
adopted, provided the probable error of such a determination (as
found from the discrepancies of the individual results) is not
greater than the equation itself; in which case the difference
between them should, of course, be regarded as accidental, and
the use of a constant equation would introduce error instead of
eliminating it. This remark may be necessary to guard inexpe-
rienced observers against an incautious adoption of an equation
derived from insufficient data. 'We may also remark here that
constant personal equations are more apt to exist between trained
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observers than between inexperienced ones, the former having
by practice acquired a fixed kabit of observation.

Second Method.—The preceding method is liable to the objection
that as the second observer takes the place of the first in a some-
what hurried manner, his usual habit of observation may be
disturbed. To obviate this, let each observer independently
determine the clock correction by fundamental stars; then the
difference of these corrections, both reduced for clock rate to the
same epoch, will be the personal equation. The equation thus
found involves the errors of the stars’ places and of the clock
rate. The first will be inconsiderable if only fundamental stars
are used, but may be entirely eliminated by the observers’ ex-
changing stars on a following day and taking the mean of the
two results. The effect of error in the rate will be insensible if
the stars are so distributed that the means of the right ascensions
of the stars of the two groups employed by the two observers
are nearly equal.

Third Method.—An equatorial telescope is sometimes used for
the purpose, as follows. Two transit threads of the micrometer
are adjusted in the direction of a declination circle, and the tele-
scope is directed towards a point in advance of any star not far
from the meridian, and clamped. The observer A notes the
transit of the star over the first thread, and the observer B the
transit over the second thread. The telescope is then moved
forward again in advance of the star, and clamped. The ob-
server B now notes the transit over the first thread, and A the
transit over the second thread. This gives one determination
of their personal equation; for, putting E = the reduction of
B’s observation to A’s, and I = the interval of the threads for
the observed star, M and M’ the observed intervals, we have

M=I+E M=I—E
whence

M—_M
B= 2

This process being repeated a number of times, M will be the
mean of all the intervals when A begins, and M’ the mean of
those when B begins.

This method is also open to the objection that the observers
succeed each other so rapidly that their usual habit of deliberate
observation is likely to be disturbed. Moreover, if their per-
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sonal equation is required to reduce their observations made
with a transit instrument, it should be determined with this in-
strument ; for it is possible that the equation may not be the
same with instruments of different powers.

The same clock, also, should be used in determining the per-
sonal equation that is used in the observations, for it is very
probable that the peculiarity of the clock-beat affects the equa-
tion.*

It is one of the advantages of the American (the electro-chro-
nographic) method of recording transits that the personal equa-
tion is very much reduced : still it is not wholly destroyed. The
same methods may be employed to determine its amount as
when the observations are made by eye and ear.

It may also be remarked that not only should the same tele-
scope and the same clock be employed in determining the per-
sonal equation, as in the observations to which it is to be
applied, but also the observer’s general physical condition should
be as nearly as possible the same. Even the posture of the body
has been found to have some effect upon the observer's estimate
of the time of transit; and it can bhardly be doubted that the
personal equation will fluctuate more or less with the observer’s
health, or the condition of his nervous system.

That the personal equation depends upon no organic defect
of either the eye or the ear, but upon an acquired habit of ob-
servation, seems to follow from the fact that it is usually greatest
in the case of the most practised observers. In 1814 there was
no personal equation between those eminently skilful astrono-
mers BesseL and STRUVE; but in 1821 they differed by 0-.8,
and in 1828 by a whole second; a progressive increase indicat-
ing the gradual formation of certain fixed habits of observation.
8o far from invalidating the results of either observer, this fact
would indicate that their absolute personal equations were in all
probability very constant for moderate intervals of time, and
therefore had no appreciable effect upon their results so long as
these results did not depend upon a combination of their obser-
vations with those of other observers.

* BrssgL found that with a chronometer beating half seconds he observed transits
0r.49 later than with a clock beating whole seconds.




PERSONAL BCALE.

PERSONAL SCALRB.

61. Prof. PEiRoE has called attention to the fact that ¢
iced ohservers often acquire s fixed erroneotis habit of
ing particular fractions of the second. Thus, when a st
ly at 0.3 from a thread, one observer may have & hab
ing it 0.4, while another may incline rather to 0°.2; or, %
on the fraction is less than 0.1,0ne invariably takes 0.1, whil
er a8 invariably neglects it and puts 0.0. Thus each obse
onceived to have his own personal scale for the division o
ond.

n 8 vory large number of individasl transits ever threac
same observer, there is, according to the docetrine of p
ties, the same chance for the occurrence of each of the
s .0, .1, .2, &c., if the observations are perfecily mads, or
rs of the observers are purely accidental ; otherwise, one or 1
these decimals will occur more frequently than the
1ce, by simply counting the number of times each dec
ars in & very large number of observations by the :
erver, the personal scale of this observer may be determi
t is easily shown that the effect of an erroneous per:
e 8 to inereéase or dimimish the mean result of a |
nber of observations by & comstant quantity. For exar
pose that in 1000 observations of a certain observer the
1 0.8 appears but 20 times, while 0.4 appears 180 times,
L édch of the other fractions appedrs 100 times. Then,
h fraction should appear 100 times, the mean of any ]
nber of observations by this observer will prebably be
at by the quantity

(04 X 180 + 0.3 X 20) — (0.4 X 100 + 0.8 X 100)
1000 -

'he effect, therefore, beitig constans, will be combined
personal equation determined from a large number of o
ons, ard may be regarded as always forming a part «
nce it follows that the application of the personal egua
ch involves the errors of the personal scale, doss not n
ly eliminate the observer’s constant error from each obs
, but that it probably does eliminate it from. the mean
re number of observations.

0.00

Vor. IL.—18
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PROBABLE ERROR OF A TRANSIT OBSERVATION.

162. That part of the error in the observed time of transit of
a star which is independent of the personal equation and other
constant errors, and is irregular or accidental, may be distin-
guished as the probable error; and it will be the only error of
observation which will affect the final result, if the observations
of two observers are not combined. It may be determined for
each observer by comparing the several values of the thread
intervals given by his observations. Let

I = the observed interval of two threads whose equatorial
interval is ¢;
then, since we should have ¢ = I cos 8, each observation furnishes

a value of i; and from a great number of values the probable
error r of each single determination is deduced by the formula?

r — 0.6745 \/%

in which the values of v are the residuals found by subtracting
the known value of ¢ from each value found from observation,
and m is the number of observations.

Now put

¢ = the probable error of the observed time of transit of an
eguatorial star over a thread;

then, since the time of transit over each thread is affected by
this error, we have
23 =1
whence
Z(v")

£ = 0.6745 2(m—_1)

ExampLe.—From the transit observations made by Mr. ELLIs
at the Greenwich Observatory in 1843, the observed intervals
between the successive threads (i.e. from 1st to 2d, from 2d to 384,
&c.) were found as in the following table: the true equatorial
intervals being those given in the fourth column. The difference

* Appendix, Art. 17
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veen the computed and the true equatorial interval (v) is
n in the fifth column, and the last column gives v*.

Observed [Computed| True
1848. ° o?
I t—=1Isecd ]
March 8. 13.8 | 12.79 | 12:.89 | —0.10| 0.0100
 Taur: 13.8 .79 .76 |4+ .08 9
0 =4 22°27" | 14.0 93 87 |+ .06 36
14.0 93 91 |4+ .02 4
18.7 .66 88 |— .22 484
13.6 b7 .86 [— .29 841
13.8 .85 89 | — .04 16
e Taurt . 18.8 .85 76 |4+ .09 81
3 =4 21°21" | 13.9 94 87 |+ .07 49
13.9 .94 91 |4+ .08 9
18:8 .85 88 |— .03 9
13.7 .76 86 [— .10 100
18.7 .65 89 |— 24 676
w Geminor. 14.0 .98 a6 |4+ .17 289
3 = 4 22°85 | 14.0 .93 87 |4+ .06 36
14.0 .93 91 [+ ,02 4
13.9 .84 88 | — .04 16
13.8 .14 86 | — .12 144
m =18, Z(v*) = 0.2808

ence we find, by the above formula,
e = 0406

aking a much greater number of the observations made by
ELL1s of stars from the 8d to the 5th magnitude, I found
0°.056, which is probably smaller than will be found for
t observers. In the case of another well trained observer, I
d ¢ = 0.08. '
| the same manner, from a large number of Mr. ELL1s’8 ob-
ations of the moon I found his probable error in observing
transit of the first limb over a single thread to be 0-.074, and
the second limb 0°.071. In the case of another observer, I
\d for the first limb 0°.078, and for the second limb 0*.094.
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If we assume, then, that for meoderately skilful observers
¢ = 0°.08 for a star, the probable error of the mean of the ob-
servations over seven threads will be 0°.08 + /7, or only (*.030,
the star being in the equator. For the declination ¢ the pro-
bable error will be 0°.08 sec 4.

The probable error thus found is the accidental error, com-
posed of the error of the observer in estimating the fractions of
a second (including the errors of his personal scale), and of the
error arising from unsteadiness of the star; but it must not be
taken as the measure of the degree of precision in the deduced
right ascension or time.*

168. The error of the right ascension derived from a single
complete transit is composed of the following errors:

1at. The undetermined instrumental errors, depanding upon the
errors in the determination of the constarts a, b, and ¢;

2d. The errors of the assumed clock correction and rate;

8d. The error arising from irregularity of the clock;

4th. The error in the observer’s personal equation, arising from
an imperfect determination of the equation, or from fluctua-
“tions in its value, depending on the observer’s physieal and
mental condition;

6th. The accidental error of observation, composed of the ab-
server’s error in estimating the fractions of a second, and of
errors arising from unsteadiness of the star;

6th. The error arising from an atmospheric displacement of the
star, which may possibly be constant during the transit over
the field of the telescope, and may be called the culmination
error.

We may form an estimate of the total effect of all these
wurces of error by examining the several values of the right
wcension of & fundamental star deduced from different culmi-
1ations, and reduced for precession and nutation to a common
ypoch. Thus, there were found from the different observations
f the transit of & Arietis, in the year 1852 at the Greenwich Ob-
lervatory; the following values of its mean right ascension on
[an. 1, 1852, Putting a = 1* 58" 50* 4 z, the values of x were—

# In this connection see the remarks of BasseL in the Berlin Jahrbuch for 1823,
» 166.



PROBABLE ERROR OF OBSERVATION. 197

z z z [
0-.40 034 0-.59 0.87
44 31 42 84
.39 42 42 .34
.39 45 A8 .59
42 .68 88 24
A0 86 32 81

'he mean is x = 0°.40; and from the differences between this
an and the several values of z we deduce r = 0°.057 as the
bable error of a single determination of the right ascension
this star. In the same manner, I find from the observations
- Ceti during the same year r = 0°.063, and for a Urse Majoris
- (1.131. If these be multiplied by the respective values of
3, we have 0°.053, 0°.068, 0.063, the mean of which, or 0°.06,
resses nearly the probable error of a single determination of
equatorial star with the transit circle of the Greenwich Ob-
ratory in 1852. A larger number of stars should be ex-
ned to determine this error with certainty; but the above
| suffice to illustrate the mode of proceeding. It must not
forgotten, however, that this instrument is never reversed,
| all its results may be affected by small constant errors
uliar to the several stars.

f we denote the probable error of observation, or the 5th of
above enumerated errors, by ¢, and the combined effect of
the rest by ¢,, we have

r=c+4¢!

ence, taking r = 0.06, and ¢ = 0*.08, as above found, we
uce e, = 0.052: 8o that if ¢ were reduced to zero—that is,
he observations were made perfectly—the right ascension
ermined by a single transit would be improved by only 0°.01.
nce it follows that an increase of the number of threads for the
pose of reducing the error of observation would be atiended by no
ortant advaniage.

ESSEL thought five threads sufficient.

64. We see from these principles that the weight of an ob-
red transit is not to be assumed to vary as the number of
2ads, as it would do were there no culmination error or un-
wn instrumental errors. For practical purposes it will be
icient to regard the probable error of & transit as composed
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only of the error of observation and the culmination error. The
latter will then be the quantity denoted above by e¢,; and, if we
now put

¢ = the probable error of a transit over a single thread,
n = the number of threads observed,
r = the probable error of the observed right ascension,

‘we shall have

¢
P=ct+ =
If then we also put

E = the probable error of an observation whose weight is
unity,
p = the weight of the given observation,

we shall have, according to the theory of least squares,

B
e

The unit of weight is arbitrary, and hence ¥ also is arbitrary.
If IV is the total number of threads in the reticule, and a complete

observation on them all is to have the weight unity, we shall
have

p= azn

FEt— ‘1’ + lf_v
and the formula will become
vty 28
p= = (128)
‘l’ + —;

If we substitute the values ¢, = 0.052, ¢ = 0.09, which are suffi-
ciently accurate for an approximate estimation of the weights of
observations, we shall find, very nearly,*
3
14 ¥

Y (129)
14—

p=

* See also Vol. I. Art. 236, where a slightly different formula is obtained.
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[his will be a very convenient formula in practice in cases
ere there is no reason to depart from the above assumed values
e, and e. The observer who has determined these quantities
himself will, of course, employ (128) directly.

t may be useful to illustrate, by the aid of this formula, the
position announced at the end of the preceding article. If
= 7 and E'= (°.062, the weights and probable errors of obser-
ions on one or more threads will be as below:

E

n b4 w
1 0.36 0104
2 0.57 0.082
8 0.71 0.073
4 0.82 0.069
b 0.90 0.065
6 0.95 0.063
7 1.00 0.062
25 1.25 0.055
®© 1438 0.052

o see that the advantage of seven threads over five is almost
ignificant, and BessgL’s opinion is confirmed.

165. The probable error of a single transit of a star recorded

the electro-chronograph does not appear to be much less
n that of one observed by eye and ear by experienced ob-
vers ;* but it must be remembered that it takes but a short
e to acquire the requisite skill in the use of the chronograph,
ile the small probable errors by eye and ear above adduced
 evidences of long training. The personal equation, however,
much less in the use of the chronograph, and probably
re constant. It is not unlikely that a considerable portion of
 total error of a determination of right ascension, as above
ind, is the result of variations in the observer’s personal equa-
n; and, if so, the substitution of the chronograph for eye and
 will carry these determinations to a still more remarkable
gree of accuracy.

Jee Dr. B. A. Gourp’s Report in the U. 8. Coast Survey Report for 1867, p. 807.
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LICATION OF THE METHOD OF LEAST SQUARES TO THE DETER-
INATION OF THE TIME WITH A PORTABLE TRANSIT INPPTRUMENT
f THRE MERIDIAN.

6. In the use of the portable transit instrument in the field,
1 not always possible to mount it so firmly that its azimuth
level can be absolutely relied upon as constant for a whole
Prequently it is necessary to take all the observations at
iven place within a few hours. 'We must then observe such
8 a8 are available at the time, and so conduct the observations
their reduction as to obtain the most probable result.
irst, as to the observations.—The instrument having been
nght very near to the meridian (see Art. 125), 8 number of
8 must be observed in bhoth positions of the rotation axis,
, in general, about the same number of stars in each position.
ong these must be included at Jeast one circumpolar star,
, if possible, two or three, one or more being below the pole.
: level should be observed at the beginning and end of the
es, and before and after each reversal of the axis.
econdly, as to the computation.—We assume that the thread
rvals have been well determined, as also the value of a
sion of the level. Jf they have not been found before the
arvations, they must, of course, be determined subsequently,
7 obgerving that no change of the instrument has occurred
ch might changs the value of the thread intervals. The
m of all the level determinations should be adopted as
constant value of b for all the observations, unless the dif-
nces of the several values are greater than the probable
rs of observations made with the particular spirit-level used,
vhich case it will be better to interpolate a value of b for
1 star from the actually observed values. The chronometer
3 T of transit over the middle thread or the mean thread
1g found for each star by employing the thread intervals when
:ssary, we shall suppose that observation has furnished only
ad b for each star. The rate 37 of the chronometer is also
sosed to be approximately known. The constants a and ¢,
the clock correction a7, are then to be found by a proper
bination of the observations. Let us put in formula (87), for

1 star,
A = the azimuth factor = sin (¢ — 4) sec J,
B = the level factor = cos(¢ — J)sec J,

C == the nollimation factor = #e¢ 8;
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, let each observation be reduced to some assumed time 7,
put
AT, = the chronometer correction at the time T},
nce
AT =aT,+3T(T— T)

4 = an assumed approximate value of AT
. A# = the required oorrection of 4
hat
8+ a8 =aT,

3 the formuls (82) becomes
o=T+8+ a8 4 3T(T—T) + 4a + Bb + C¢

vhich every thing is known except the small quantities a#, a,
¢. If we now put*

te=T 4 8T(T—T,)+ B
w=4%8 —(a —1)

1, since @ — ¢ and & are each nearly equal to the clock cor-
ion, w is a small residual, and the equation is

Aa 4 Ce+ a8 4+ w=0 (180)

h star gives an equation of condition of this form, and from
hese equations the most probable values of g, ¢, and a8 will
‘ound by the method of least squares. The sign of the term
will be changed when the axis of the instrument is reversed.
 the observations are extended over a number of hours, it
not always be safe to assume that the azimuth a has been
stant during the whole time. 'We may then divide the obser-
ons into two groups, in one of which the azimuth will be
oted by @ and in the other by a’. The normal equations,
ned by combining all the equations in the usual manner, will
1 involve the four unknown quantities a, @/, ¢, and ad.
o determine the mean error of the resulting value of a8, it
it be remenibered that when a and ¢ have been eliminated by

‘or greater precision (not always required in the use of & portable instrument),
8y allow for the diurnal sberration. Singe o requires the correction - 0%.021
sec d, we have'merely to take

t=T4 6T(T—T,) + Bb — 0021 cosg sea d
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successive substitution, taking care to introduce no new factor
into the equations, the coefficient of a# in the resulting final
equation will be the weight p of the value of a# thus determined.*
Then, substituting the values of a, ¢, and a# in the equations of
condition, and denoting the residual in each by v, we have the
mean error of a single observation by the formula

=4/

=2

in which [vv] = the sum of the squares of the residuals, m = the
number of observations, and u = the number of unknown

quantities.
The mean error of ad and a7, will be

€
‘0 = %
and if we wish the probable errors, we multiply the mean errors
by 0.6745.

If any residuals are so large as to throw a doubt upon the
‘observations, such doubtful observations may be examined by
PEIRcE’s Criterion.t
~ If an observation consists of transits over only a portion of the
‘threads, it may be well to give it a diminished weight, multiply-
ing its equation of condition by the square root of the weight
found by (129).

If the collimation constant ¢ has been previously determined,
we have only to include the term Cc in the quantity {; thus,
putting

t=T+43T(T—T)+ Bb+ Cec
w=1906—(a—1t)

the equation for each star will be
Aa 4+ a8 4+w=0 (181)

and the determination of a and a# from these equations is then
exceedingly simple.

ExamMpLE.—The following observations were taken on the
United States North-Western Boundary Survey with a portabie

* See Appendix. + Bee Appendix, Arts. 57-60.
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nsit instrament in the meridian. The stars were mostly
scted from the British Association Catalogue, and are con-
iently designated by their numbers in this catalogue. But
ir apparent places have been derived from the more reliable
hority the Greenwich Twelve Year Catalogue. The apparent
ce of & Urse Majoris is derived from the American Ephemeris.
rer stars from the British Association Catalogue, observed
the same evening, have been excluded because they are not
en in the later catalogues.

Camp Simiahmoo.—1867, July 27. Latitude 49° ¢’ N.

Threads.
Star. L Mean. Level.
I | II | IOX | IV v VI | VII

B. A.C. 6890 W.[162.8/1482.6(122.8(40+.8] 9.2(872.9| 62.2|22% 4™ 4(r.76| 04.75)
“ 6434 127 .2 16.2|88 .8| 2.3/26.8|50.1/22 10 88.68 “

“ 6441 ¢ |28 .8(47 .8(11.3(36 .8|68.6(22.6[46 .8/22 11 85.10 “

“ 6489 ¢ 121 .8/46 .8|12.5(37 .8| 2.8 22 18 387.68 “

“« 6836 ¢ 180 .8(83 .8(88 .2[42 .0 28 18 41.6 “
“ o E.|52.8/48.2/|48 .9 28 18 40.49|— 0 .70
¢ 8282 8.P.|« [82.1/86.9(43 .2/49.4]64 .5|69.9] 6.9 0 46 48.84|— 0 .51
¢« 8346 8. P.| ¢ (89.7|122.7| 7.0(60.1(88.6{16.9] 0.8] 1 5 50.04/— 0 .48
«“ 7686 ¢ 158 .1{40.0/26 .7|18 .9| 0.7/48.6|85.8] 1 22 14.04|— 0 .44
s« 7778 ¢« 148.8] 8.9|29.2(49.4/10.8/80.8|61.2! 1 84 49.78!— 0 .42
¢ 8647 8. P.| « [26.8(20.7/17 .6{11 .8| 7.8 l.957.0| 1 67 11.86/— 0 .88
o Urs. Maj. 8.P.| < [82.7(19.8| 7.9]|55.0/42.6/80.0[17 .4| 2 19 55.06|— 0 .38

e threads are numbered from the end of the axis at which the
minating lamp is placed, and the seconds of the chronometer
-recorded, not in the order of observation, but in the columns
ropriated to the several threads. The column ¢ Mean” gives
 time of passage over the mean of the threads, employing in
 case of the defective transits the following equatorial inter-
s from the mean :

% 1 iy i ) s Ll
3582 4 44+.05 2184 —0°.08 —22.00 —48.79 —65.85

ere the signs are given for Lamp West. The column marked
gives the position of the lamp end of the axis. The value of
> division of the level was 0°.105. Only one observation of
 level was made during the observations ¢ lamp west.” Two
ervations of the level were made during the observations
ump east,” one near the beginning, the other near the end, of
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the series, from which those given in the table are obtained by
interpolation.

Stars observed at their lower culminations are marked 8. P,
(sub polo).

The chronometer was sidereal, and its rate was losing 07,40
daily,

A first computation of the observations having shown that the
obgervations lamp west and lamp east give very different results,
the presumption is that in reversing the axis the observer dis
turbed the instrument, a supposition rendered still more probable
by the change of level. It will, therefore, be proper to compute
the observations upon the supposition of a different azimuth fox
the two positions of the axis. '

The apparent places of the stars on the given date were as
follows :

8tar. [ é

B. A. C. 6390 | 18*39=38.71 | - 89° 81
“« 6434 | 18 45 35.70 | —~ 22 b5
“« 6441 | 18 46 31.91 — 22 b1
“ 6489 | 18 53 84.86 | — 80
“ 6836 | 19 48 4161 | 4 69 58
“ 8232 9 21 46.76 | 4+ 70 29
“ 3346 9 40 48.22 | 459 44
“ 7686 | 21 57 14.44 | 4 72 28
“ 7778 | 22 9 49.07 | + 56 18
“ 8647 | 10 82 9.78 | 4 66 80
o Urs. Maj. 10 54 53.21 + 62 81

o

The observed times of transit are to be reduced for the chro-
nometer's rate to some common epoch, which we shall here
assume to be 7, = 0* by the chronometer. The agsumed correc-:
tion of the chronometer at this time will be

3 = — 3* 25~ 0.

The formation of the equations of condition for the first and
last stars is as follows:
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L. W. L.E.
1
B. A. C. 6390. o Urss Maj. 8.P. '
8 -+ 89° 3Y 117° 29
¢ —2 + 9 29 —68 29
log sec ¢ 0.1127 10.3858
lIog cos (¢ — &) 9.9940 9.6644
log sin (p — ) 9.2169 79.9686
log cos (p — &) sec 8 = log B 0.1067 n9.9002
log sin (g — d)sec ¥ = log 4 9.8296 0.3044
A 4+ 0214 4 2.018
secd=C| 4 129 — 2166
b + 0.08 + 0.08
Observed mean | 22* 4= 40-.76 20 19= 55°.06
Rate to 0% — 0.03 +0.04
Bb 4+ 010 +0.02
rnal ab. = — 0.021 cos ¢ sec 4 — 0.02 + 0.08
t| 22 4 40.81 2 19 556.16
o 18 89 88.7F | 22 54 §3.21
a—t|—8 256 2.10 (-3 236 194
Assumed # (—8 25 0. -3 26 0. |
” +2.10 4 1.94

denoting the azimuth of the instrument for L. W. by a, and
t for L. E. by a’, and changing the sign of ¢ for I. E., the
ations of condition for these two stars are, therefore,

+0214a+ 1296 ¢+ a8 + 2,10 =0
+2018a’+ 2166 ¢ + a8 +1.94 =0

he equations for the other stars being found in the ssme
nner, we have then :

1. 4 02l4a 4 1.206¢ 4 a8 4 2010 =0
2. +1.032a 4 1.086¢ + 28 42.96 =0
8. +1.08la + 1.085¢+ 284 8.17=0
4 +1185a + 1.156¢ + 284+8.19=0
5. —0.732a + 2.066c+ 0.707 a8 + 0.15 =0
6. — 0.732a' — 2.06 ¢ 4 0.707 a0 — 0.97 = @
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7. + 26064 4 2.998¢ 4 a8 4+ 2.22 =0
8. +1879a'41984c+ a8 4+1.91=0
9. — 18224’ —8319¢ 4 a8 —0.58 =0
10. —0.2294a’ —1.802¢ + a8 4 0.58 =0
11. 422640’ + 2.508¢ + a8 4+ 2.18 =0
12. 420164’ 4+ 2.166¢c + a8 4+ 1.94 =0

where the 5th and 6th equations have been multiplied by v/},

thus giving each but one-half the weight of an ordinary obser-

vation, because the star was observed on but half the threads.*
The normal equations are

8998a 4+ 0 4 2825¢c-4 289448 4 10.283 — 0

0 + 218484’ 4 27.881c 4+ 6.697 ad - 19.569 — 0
2.325a 4 27.881a’ + 51.969¢ + 9.153 a8 + 86.352 — 0
2.804a + 6.697a’+ 9.158¢ + 11.000 A8 + 19.090 — 0

from which we find

a= —1.681
a'=—0.083
¢ = —0.423

a8 = — 0.891 with the weight p = 6.775

This example is instructive in several respects. The instru-
ment was reversed upon the star B. A.C. 6836 for the purpose
of deducing the value of ¢. But, upon the supposition that the
azimuth remained unchanged during the reversal, we find
¢=— 0~.267. The danger of disturbing the instrument in re-
versing the axis is, of course, greater with small instruments,
and always requires great caution. Again, the observer neglected
to observe the level immediately before and after the reversal,
the values of b given in the table being inferred from observa-
tions taken at the time of the transits of Nos. 1, 7, and 11. If
the level had been observed more frequently, as it should be,
the disturbance of the azimuth might have been suggested to the
observer himself, who, however, appears not to have suspected it.

But we shall obtain still further instruction from this example
by substituting the values of @, @’, ¢, a# in the original equa-
tions of condition. The residuals v will exhibit to us the ano-
malous observations. We find :

* To proceed more accurately, we shoull have computed, by (129), the weights of
the four defective observations, the 2d, 4th, 5th, and 6th. We should have found
the weights 0.95, 0 89, 0.82, 0.71 respectively.
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No. v oo
4-

1. -+ 0802 0.0912
2. — 0.125 .0166
8. + 0.086 .0074
4. — 0.098 .0096
5. — 0.120 0144
6. — 0.669 4475
7. — 0.153 0234
8. + 0.024 .0008
9. +0.043 0018
10. + 0.470 2209
11 + 0.040 .0016
12. — 0.084 .0012
[vv] = 0.8352

=1L _ o328
m—u

- 1st Approx.
m_—..12,p=4,n=l x 156
Table X.A. log T' 8.5051
« « logR 93978

log = 91078

_2 s (Z’ )r2r
=11 log 2* = log T 9.8378
1—a 03117
=7, 0—1=T(1—2) 21819
x* 8.1819
x 178

207

nce, the number of observations being denoted by m = 12,
1 the number of unknown quantities in our equations by
= 4, we have the mean error of an observation of the weight

e large residuals of Nos. 6 and 10 point them out as probably
omalous; but, before rejecting them, we will apply PEIrce’s
iterion. Since Table X. is adapted only to the cases of one
1 two unknown quantities, we shall have to employ Table X.A.
mmencing with the hypothesis of but one doubtful observa-
n, we assume for a first trial ¥ = 1.5.

24 Approx.
1.78
8.5051
9.3464

9.1587

9.8470
0.2970

2.0790

8.0790

1.76
xe = 0°.668
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dual 0.669 surpasses the limit 0°.568, and hence the
ition is to be rejected. We must then pass to the
of two doubtful eobservations, for which we com-
assuming x = 1.5, and then with n =2 we find
e = 01.481. Hence the 10th observation is nof to be
Chus the only observation to be rejected as anomalous
and our hypothesis of a disturbed state of the instru-
1ced by reversal is confirmed.
»w form normal equations from the remaining eleven
f condition, we shall find the values of the unknown
to be

a4 = — 1'636
a=—0.092
¢ = — 0.867
a¥ = — 0.999 with weight p = 5.963

7alues substituted in the equations of condition give
ls and mean errors as follows:

Ro. ° [evl
1. + 0.276 0.0762
2. —0.126 0159
8. -+ 0.086 0074
4. —0.089 0079
5 —0.114 0130
7. —0.120 0144
8. +0.010 0001
9. — 0.239 0671

10. 4 0.264 0897 ]

11. 4 0.051 0026

12. —0.040 .0016

m—p=17 [vv] = 0.2669

o= \[ ["”]_ = 07195

| observation is now well represeuted, and the Crite-
ot rejeet any of them.
n error of av is

[ 3
— 008
"=V

»bable error 0° 05.
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[ence we have, finally, the chronometer correction at 0,

AT,= ¢ 4+ A% = — 8» 256" 1.00 =+ 005

THBR TRANSIT INSTRUMENT IN ANY VERTICAL PLANE.

3T. The formule (78) and (79) apply to any position of the
rument. When the instrumental constants m and » are known,
vhen a and b are given, from which m and n can be found by
, the formula (79) determines the apparent east hour angle
[ the observed object at the time of its transit over any
n thread whese distance from the eollimation axis is . The
stants are found by combining observations of stars near to

remote from the pole, as will be illustrated hereafter.
en the transits over several threads have been observed,
1 may be separately reduced by the general formulee ; but it
ecessary also to have the means of reducing them all to a
mon instant. I shall, therefore, here eonsider the mest
eral case of an observation of the moon’s limb on any given
ad, and investigate the formula for reducing it to the middle
ad, or to the collimation axis of the instrument. This
eral formula will be applicable to any other object which
a proper motion and a sensible diameter. Let

© = the sidereal time of the observed transit of the
moon’s limb over the given thread,
i = the equatorial interval of the thread from the middle
thread, ‘
a, 8 = the true R.A. and decl. of the moon’s centre at the
time O,
o/,8’ = the apparent R. A. and declination,
8 = the moon’s geocentric semidiameter,
& = the moon’s apparent semidiameter.

t the instant the moon’s limb touches the thread whose dis-
e from the middle thread is 7, the centre of the moon is at
distance ¢ + 8’ from the middle thread, and, consequently, at
distance ¢ + ¢ =8’ from the collimation axis of the telescope.
 apparent east hour angle of the moon’s centre at this
ant is

'r=a.'-—9

ting then ¢ + 7 = ¢ for ¢ and a’ — © for  in (79), we have
Vor. IL.—14
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sin (¢ 4 ¢ += &) = — sin n8in 8’ — cos n cos 8’ sin (8 — o’ 4 m)
= — s8in n 8in 8’ — cos n cos m cos 3’ 8in (& — a")
— cos n 8in m cos &' co8 (© — a')

where the apparent declination and right ascension are employed,
since it is the moon’s apparent place which is observed. To in-
troduce the geocentric quantities, let

= = the moon’s equatorial horizontal parallax,
p, ¢ = the earth’s radius and reduced latitude of the place
. of observation,
4, 4 = the moon’s distance from the centre of the earth
and the observer respectively ;

then, putting

AI
I=7

we find from Vol. I., equations (182),
S cos 8'sin (© — o’) = cos 38in (© — a)
S eos 8 cos (© — a’) = cos 8cos (© — a) — psin=zcos ¢’

f&ingd’ = gin & — psinxsin ¢

Substituting these values, we obtain

f(e+ix8)sin1"= —sinnsind — cosn cos 4 8in (0 — o + m)
-+ psin z8in ¢’ 8inn 4 p sin x cos ¢’ cos nsinm
(132)

The right ascension and declination are, however, variable, and
we should introduce into the formula their values for some
assumed epoch. Let this epoch be the sidereal time, ©,, which
is the common instant to which the observations on the several
threads are to be reduced. Let

oy 8, = the true right ascension and declination at the time
eo!
Aa = the increase of the right ascension in one minute
of mean time,
a3 = the increase of the declination (towards the north)
in one minute of mean time,

and put
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I—=©, — © = the required reduction,

A= 6061;4 = the increase of a in 1* of si
ad
l’ _— — ({3 é [
60.164

n, if I is expressed in seconds of arc, we ha
o=oa,—4i], 8=20,— /54
}—°=eo_“o_(eo—e)+("o_°)=eo'

(©® — a + m) =sin (6, — o, + m)
— @ —2)cos[©, —ay+m—13(1

which (1 — 2)sin } I is put for sin (1 — 2) Z
. . ry .
sin ¢ = 8in 6,——130036,.2 sin {1
cos & = co8 8, + listsina,.Zsinil

stituting these values, our formula becomes
Itiplied by the exceedingly small quantity &

+i+#')8in1”=— sin n sin 3, — cos n cos 3, sin (O,
~+ psinz sin ¢'sin n 4 psin rcos ¢
+(1—A4)cosn cos 8,co8 [0,—a,+m-
~+ 14’ [8inn cos 3,—cos n sin 4,8in (¢

n this formula, we may consider I as the onl
ies with the time; for, although f, 8/, and = w:
iations will not usually be sensible, or, if sen
ead, their effect will disappear when the ep
an of all the observed times.

f now ©, is the time of transit of the moon’
at circle of the instrument, this formula giv.

0 = — 8in n sin 3, — cos n cos 3, 8in (6, — a
+ psin z8in ¢’ 8in n 4 psin w cos ¢’ cos n ¢

btracting this from (183), and, for brevity, pu

t=0 —a+m
R = sin n cos 3, — cos n 8in 4, sin-
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f(+1i{+¢)sinl"
(I—Bcosneosa cos[t — (1 —A)I]+ /4R

Juivalent to the formula given by SawrrscE (Pract.
)l. I. p. 308); but he has not observed that the expres-
may be put under a much more simple form. In so
rm as gA’'R, we need not consider the effect of the
pon the factor R; but when we neglect the parallax

y (134),

0 = — sin n 8in é,— cos n cos &, sin ¢

g this by sind, and subtracting the product from
e find

R cos 3, = sin n, or R = sin nsecd,
to be observed that by the formula (246) of Vol. L
f& = 8 = the true semidiameter.
formula becomes
f(c + ©)sin 1” + g sin 1”

- (185)
1—2) cos n.008 3,008 [t— § (1 —1) I'] + yxA'sinnsecd,
'is small, as it usually is,
fle++s (185%)

1—2) cosn cos é,cos [t— ¥ (1 —2) I]+ fxA'sinn secd,

mula, then, gives the reduction of the observed time
)f the moon’s limb over any given thread to the time
f the moon’s centre over the great circle of the instry-

mit s in the numerator of the second member, I
1 reduction to the time of transit of the limb over the
3 of the instrument.

nit fe + s, I hecomes the reduction to the time of
he limb over the middle thread.

or f is determined rigorously by (187), Vol. L. ; but it
uffices to take

n{

sin ¢

f=
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hich i8 very nearly exact, according to (101) of Vol. I. The
der of the instrument will give the apparent zenith distance
, and the difference between this and the true zenith distance
will be found with sufficient accuraey by the formula

Bin (8’ — )= psinzsin(’'—y)
which, a being the azimuth constant of the instrument,

r=(—¢)cosa
. very nearl
» Very ik 7y =(p — ¢)cos n cos m

For the sun or a planet we can always put =0 and { = {’,
d the formula becomes

I— c+i+s .

~ (1 = 2)cos n cos 3,co8 (t — )

(186)

For a fixed star, we further put 1 = 0,8 =0,{ =0,— a + %,
d the formula becomes for stars near the pole,
(¢ + 7)sin 1”

2sin 4= cos ncos dcos(t — 11)

asmn
d for other stars,

_ cti .
I—.cosncosacos(t—il) 87
 all cases, we must carefully observe the sign of I in the
nominator of the second member. I will be negative when
e observed time is later than the time to which the reduction
made, and then — } I will be essentially positive. An approxi-
ate value of I must first be found by neglecting 7in the second
ember, and then a more precise value by the complete formula.
If the azimuth a and the level b are given, m and » must first
> found by (78), in which, however, we may usually neglect &
hen our object is merely to reduce the several threads to a
mmon instant.

168. For a fixed star, another formula has béen given by
ANSEN. We have

(¢ + ) = —sinnsin 83— cos n cos 3sin (t — I)
= —sin n 8in 8 — cos n cos 38in tcos I cos n cos ¢ cost sin I
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' the reduction is made to the collimation axis, we have
0 = — gin n 8in 3 — 008 n cos 3 sin ¢
hich, subtracted from the above, gives
8in (¢ 4 1) =2cos ncos ésin ¢sin’ § T4 cos n cos & cos £sin I

hence )
sin I = _sn(e+9 _ 2tan ¢ sin*} 1 (138)
CcoB n co8 J cos t

hich is a rigorous formula. We see also that # may be found

7 the formula
sin ¢t = — tan n tan ¢ (139)

169. To deduce the moon’s right ascension from an observed transit
any giwven position of the instrument.—W e first find the clock time
" transit of the moon’s centre over the great circle of the
strument, from each thread, by applying to the observed time
ie reduction given by the formula (135). Let T; be the mean
’ the resulting times, and a 7] the corresponding correction of
1e clock ; then we have ©,= T; 4 a T}, and from (184) we deduce

sin ¢'tan n4-cos ¢'sinm
cos 4,

n(9,—a,+ m)=—tanntand,}psinx ( ) (140)
. which @, and J, are the true right ascension and declination
. the sidereal time O,

If it is preferred, we may first find the apparent right ascen-
on by the formula

sin (6, — @y + m) = — tan n tan 3/

1d deduce the true right ascension by applying the parallax
ymputed by Art. 102, Vol. I; but it will then be necessary to
ympute the apparent declination 4,'.

It will be easy to deduce from (140) the formula for the case
here the instrument is in the meridian, which has already been
ven in Art. 154.

The constants m and n, above supposed to be known, may be
und from the transits of two stars as in the next article.



OUT OF THE MERIDIAN. 216

FINDING THE TIME WITH A PORTABLE TRANSIT INSTRUMENT OU?T
OF THE MERIDIAN.

170. The number of Nautical Almanac stars near the pole is
so small, that the observer in the field, when pressed for time,
cannot always wait for their transits over the meridian, and
must then either employ catalogue stars whose places are not so
well determined, or have recourse to extra-meridian observations.
If the transit instrument is mounted so as to be readily revolved
in azimuth and clamped in any assumed position (as is the case
with the “universal instruments”), it may be directed at once to
a fundamental star near the pole, and then, its rotation axis being
levelled, its collimation axis will describe a vertical circle not far
from the meridian. The transit of any star over this circle being
observed, the general equations of Art. 128 will enable us to find
the hour angle of this star, and hence the time, when we have
determined the constants m and n for the assumed position of
the instrument.

The stars best adapted for the purpose in the northern hemi.
sphere are Polaris (a Urse Minoris) and 8 Urse Minoris, one of these
being always near the meridian when the other is most remote
from it; and it will be advisable always to employ that which is
nearest to the meridian. In the southern hemisphere, the best
star is ¢ Octantis, which is less than 1° from the pole; but, as it
is of the 6th magnitude, it may be necessary, with small instru-
ments, to use either B Hydri or B Chameleontis.

To take the observation, make the axis approximately level,
and turn the telescope upon the circum-polar star. The star
moving very slowly, set the instrument, so that a few minutes
must elapse before the star will cross the middle thread. During
this interval, apply the spirit level and determine the constant b.
Observe the transit of the star over the middle thread by the
chronometer. The instrument now remaining clamped in azi-
mauth, revolve the telescope upon its axis, and observe the transit
of an equatorial star over all the threads. Then determine the
constant b again, and employ the mean of its two values.

In order to eliminate an error of collimation, the rotation axis
is to be reversed, and another similar observation is to be taken,
the instrument being set at a new azimuth slightly in advance
of the polar star as before. Each observation of a pair of stars
must, of course, be separately reduced. We may, however,
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combine each transit of the polar star with the transits of several
equatorial stars.

The collimation constant should have been made as small
as possible before the observations; but, in any case, we shall
assume that its valae is known.

To reduce the observations, we must first find the constants
which determine the position of the instrument. For this pur-
pose, we use only the observations on the middle thread. Let
then 7" and 7 be the observed chronometer times of transit of
the polar and equatorial star respectively over the middle thread,
reduced for rate to an assumed time 7},; and let a T, be the chro-
nometer correction at this time; a’, &, the right ascensions, &, 3,
the declinations; ¢/, 7, the east hour angles, or reductions to the
meridian; 90°— m, and », the hour angle and declination of
the point in which the rotation axis produced towards the west
meets the celestial sphere; ¢ the collimation constant: then we
have, by (79),

8in (r — m) = tan n tan 8 4 sin ¢ sec n 8eC & } 141
sin (Y— m) = tan a tan 8’4 sin ¢ sec u sec &’ (141)

ip which we have
T—a —(T+AT.)
Y=o —(T'+aT)

If we could put ¢ = 0, these equations would give us m and »
by a very simple transformation; but, retaining ¢, we can still
reduce them to the form they would have if ¢ were zero.* For
this purpose, let m’ and n’ be approximate values of m and n,
determined by the conditions

sin (r — m') = tan n’' tan ¢
sin (¥ — m') = tan n’ tan &'

from which we shall find »’ and then the correction to reduce it
ton. Put

r=4(#=r1 A=} 40—
then y is known from the observation, since we have

r=4'—T"—(—T)] (142)

# This transformation is given by Haxsex, Astr. Nach., Vol. XLVIIL ». 116.
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We have then
A—y=1—m Adr=7—m
and hence
sin (A — y) = tan n’'tan ¢ sin (A + 7)== tan #’tan &

the sum and difference of which give

28in 4 cos y cos & cos 3’ = tan n'sin (3" -} )
2cos 4 8in y cos 8 cos 3’ = tan n'sin (3’ — J)
If, therefore, we make
Lsini=400'+9
cos y

Loosl_—_w

sin y

(148)

these equations will give us 2 and L, and then we shall have

tan n’ = 2cos8 8 cos &8’ (144
L
It is to be observed that &’ is always to be regarded as greater
than 77, and in finding y by (142) the difference a’ — 7" is to be
found by increasing a’ by 24* when necessary, but « — 7'will be
positive or negative. This makes y less than 180°, and, since
i+ y(=17 — w’) must be less than 860°, it follows that 2 must
aleo be less than 180°. Hence, L will have the same sign as
cosr, and n’ will be negative when y > 90°.
Now, we have 1 — m =t — m’+ (m’ — m), and, since m’ — m
is very small,

gin (r — m) = sin (r — m’) + sin (M’ — m)cos (r — m")
which, substituted in the first equation of (141), gives

gin ¢ = sin (r — m") cos n cos 3 — sin n sin &
+ sin (m'— m) cos (r — m') cos n coB 8

To simplify this, let us put
oin 1 = sin 8
= cosw’

from which and the equation
sin (r — m’) = tan n’ tan 8
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there follows also
co8 w = cos (r — m’) cos &

for, if we add together the squares of the first and third of these
equations, the sum is reduced by means of the second to the
identical equation 1=1. By substituting the values of sin(r — m’),
cos (r — m’), and sin 4, which these equations give, 1n the expres-
sion for ¢, it becomes

sin ¢ = sin (n' — n) sin w + sin (M’ — m) cos n cos w
In the same manner, if for the polar star we take

sin &’

- cos v’ = co8 (v'— m') cos &’
cos n

sin w =

we shall have

8in ¢ = sin (#’ — n) sin W’ 4 sin (m' — m) cos n cos v’
Combining these two values of sin ¢, we have

sin ¢ (cos w — cos w') = sin (v’ — n) sin (W' — w)
whence "
o oo oo 8in 3 (w0 4 w)
sin (n' n)_smcm*(w’_w)
or, putting n”’ —n =y,
_r.sin}(w'+w)

7 cos } (W — w) (145

n=n'—v
The angles w’ and w here required are found by the equations

tan ¥ tan 1w — tan 9 (116)

tan v = —_—
co8 (A4 y)cosn cos (A — y)cos n’

observing that for a negative value of tan w’, »’ is to be taken

in the 2d quadrant, but that for a negative value of tanw, w is

to be taken numerically less than 90°, and with the negative sign-
To find m, we have, by eliminating a from (78),

8in m cos n cos8 ¢ 4 s8in n 8in ¢ = sin b
whence
sin b

slnm:—tan”tan?-l-m



OUT OF THR MERIDIAN. 219

then we take .
gin p == — tan n tan ¢
b
"7 CO8 1 CO8 & CO8 @ (147)
have

m=np-p

'he constants being thus found, we proceed to find the cor-
tion of the chronometer by the equatorial star. We must
t reduce the transits over the several threads to the collima-
1 axis, which may here be done by the formula (188), omitting
last term, which is insensible when the instrument is so near
meridian a8 we here suppose it to be. If, therefore, we first
1 ¢ by the formula

sin { = — tan n tan 8 (148)
| then put

F=oc08sncosdcost

must apply to the observed time on each thread the correction

i
= — 149
I=+ (149)
ere ¢ is the equatorial interval of a thread from the middle
cad), and to the mean of the results we must apply also the
rection %, to reduce to the collimation axis. Let the resulting
e, reduced for rate to the assumed epoch T, be denoted by (7).
en, if ©, is the true sidereal time at the same instant, we have

6,=(T)+aT,
, by Art. 167,

t=06,—a+m
ence we derive*

ATy =a— (T +t—m (150)

ve wish to take into account the diurnal aberration, we must
| to the right ascension of each star the correction (#.021 cos ¢
dcosz.

T1. In the above, we have supposed ¢ to be given. To inves-
vte the effect of an error in the assumed value of ¢, let ¢ + ac

It is easily seen that the general formula (1560) reduces to Haxssx’s formula (86)
n the instrument is in the meridian. ’



20 PORTABLE TRANSIT INSTRUMENT

be its true value; then the correction of n corresponding to A
is, by (145),
sin § (W + )

An=_Moosl(uf—w)

and, by differentiating the expressions (147), (148), and (149), w
find the corresponding corrections of m, ¢, and I to be

Am:—Aﬂ-—tan——g-‘— = AC: sin}(w’-i—w)tancp
CO8'R COB M ¢08 ¢ (v’ == ) cos’n cos m
at = oo AN- tand = ae, 0D (W + w)tan 3
cos®n cos ¢ cos § (W' — w) cos*a cost
Al — ac

" cos dcos n cost

The correction of the quantity (T') = ¢ 4 m will be composed o
the corrections of I (by which (T') is obtained), of m, and of i
Denoting the whole correction by az, we have

ar = al — At 4+ am

Substituting the values of the corrections, we find

AT ==

Ac [ 1 sin}(w'+w)tanw sin } (v 4 w) tang
cosn Lcos w cos § (W — w) cos § (w' — ) cos n cos m,

By observing that } (1w’ — w) = }(w’ + w) — w, the first tw
terms within the parentheses become

cos } (W — w) — sin } (W + w)sinw _ cos § (w4 w)

cos } (W — w) cos w - cos } (Ww'—w)
whence
_ ac . tan ¢
"= cosn cos}(w’—w)[coﬂ(w’+ w)+ ein d (0 + w) Q087 COSM,
Finally, if we put
tan g/ = — S0P (151
CO8 7 CO8 m
the expression becomes*
Ar — cos [} (v 4 w) — ¢'] qse

cos n cos ¢’ cos § (' — w)

— e

* As given by Haxsen, Astr. Nach., Vol. XLVIIL. p. 120.
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ve denote the ¢oefficient of ac in this equation by C, and the
» chronometer correction by a7, the first computed correction
1g (aT), we have

AT = (aT)—Cac (153)

'or another observation in the reversed position of the axis
coeflicient of ac computed by (152) being denoted by C’, and
computed chronometer correction by (aZ”), we have, since
sign of ac is changed,

AT = (aT") + C'ac (154)

, combining the two results, we can determine both a 7" and

If we have taken a number of stars in each position, we
treat all the equations of this kind by the method of least
Ares.

2. The designation ¢ equatorial star,” in the preceding ex-
1ations, has been used to designate the star from which the
onometer correction has been deduced; but it is by no means
essary that this star should be very near the equator. A star
ch passes near the zenith will be preferable, since an error in
determination of n will then have little or no effect upon the
iputed time.

XAMPLE.*—In 1848, August 17, at Cronstadt, latitude ¢ =
59'.5, the following observations were taken. The value
ne division of the level was 00.113. The correction for in-
ality of pivots was p = + 0°.14 for circle west. The equatorial
rvals of the threads, numbered from the circle end of the
, Were

fy i ) L)
+ 384:.50 + 18-.74 — 1614 8333

» agsumed collimation constant was ¢ = — (.38 for circle west.
he chronometer correction was approximately a I'= + 40;
osing rate, 1°.72, or 7= + 1°.72 daily.

T

* SawirscH, Pract. Astron., Vol. L. p. 848.
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1st position of the instrument: Circle West.

l E. I W. l
Level. Direct —120 | +270 B = 4+ 052
Reversed —178 +21.2 p=+0.14
Mean B = - 446 b= +40.66

Transits observed with chronometer ¢ Haut No. 19.”

Thread. I II III v v

o Urs. Min. — — 17* 23= 100 — —
B Draconis 880 3.9 17 28 85.0 14 29+.3

I E. I W. |
Level. Direct —18.0 +21.0 B = 4 049
Reversed —124 + 26.8 p=+0.14
Mean B = 4 44.35 b=+410.63
2d position: Circle East.
| E. w. |
Level. Direct —18.4 +21.0 B= 4 0°.24
Reversed —174 4 23.1 p=—0.14
Mean B = 4 24.08 b=+40.10
Thread. \4 v IIx II I
o Urs. Min. — — 17 52= 45.5 — —
r Draconis 8.1 85°.8 17 556 1.4 31-.6 671

l E. | v
Level. Direct —16.2 + 23.6 B = 4 030
Reversed —183 + 215 p=—0.14
Mean B = 2465 ~ b=+0.186

For the given date we find, from the Nautical Almanac,
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o é
o Ors. Min. 1» 8= 4570 88° 28’ 24”.2
B Draconis, 17 26 55.73 652 256 256 .5
y Draconis, 17 583 0 .85 61 30 61 .0

Computation of the observations, circle west.—W e shall reduce
the observed times for the chronometer rate to the common
epoch 7,=18'. To allow for the diurnal aberration, we take
for the approximate times of the observation of @ Urse Minoris and
B Draconis, 17* 24" and 17* 29", which, subtracted from the re-
spective right ascensions, give for their eastern hour angles, ot
the values of 7, T 40 and — 0* 2", and hence the values of
0-.021 cos p sec 8 cos r for the two stars are — 0°.17 and + 0.02,
which are to be added to the right ascensions. The corrected
quantities are then:
alrs. Min. o' = 1* 8=45'68 T'=17>28~ 996 &'= 88°28'24".3
8Draconis, a = 17 26 55.75 T =17 28 84 .96 8 = 62 25 25 .5

o —T'= 7 40 85.57 ' 8’4+ 8=140 58 49 .7
e —T =— 1 89.21 3 —3= 86 258.7
2r= 7 42 14.78=115°33"41".7
y= 57°46'50".9
Hence, by the formulee (148) and (144),
logsin (3'+2)9.799838  logsin (3'— 3) 9.769736  log cosd’ 8.425554

log cos y 9.726857 log sin y 9.927878 log cosd 9.785199
log L sin 2 0.072976 log L cos 2 9.842858 log2  0.301030
log tan 1 0.230618 log cos 4 9.704899 8.511788
1= 59°82'89".2 log L 0.187459 :
log2cosd’cosd 8.511783
n= 4 1°21 22”8 log tann’ 8.874324
By the formulse (145) and (146),
A4r= 117° 20/ : A—r= 1°4¢
log sec (A4 y) n0.3380 log sec (A — y) 0.0002
log secn’ 0.0001 log sec '  0.0001
log tan 8’ 1.5748 log tan 8  0.1138
log tan v’ 21.9124 log tan w 0.1141
w=  90°42 w= 052°27
tW+w)y= 71 8 t(wW—w) 19 8

log sin ¢ (W + w) 9.9772
logsecd (W — w) 0.0247
e=—0.33=—4"95 log ¢ n0.6946
y=—4 .97 lOg v n0.6965
N —yv=n= 4 1°21' 27".8
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By the formule (147):
log (— tan ») 28.374769 b=+ 0645 = { 9”68
log tan ¢ 0.238415 log b 0.9859
log 8in p " 1n8.613184 logsecn  0.0001
p=—2°2l' 7.0 logsecn 00004
= + 19 4 logsecp  0.3009
m=—2 20 47 .6 log 3 1.2873

The constants of the instrument being thus found, we proceed
to find the chronometer correction by 8 Draconis. We first fiud
t and the thread intervals by (148) and (149):

log tann 8.8374769 log cosn 9.99988
log tan 8 0.113828 log cos & 9.78520
t=—1°45' 54".6 log sin ¢t n8.488592 log cos t 9.99979

log P 9.78487

I I v v ¢ =—0.33
log ¢ 1.53782 1.27277 n1.20790 n1.52284 log ¢ n9.518

log I1.75295 148790  7n1.42808  nl.78797 log%, n9.733

1456662 48075 —2649 — 5470 S o5t
F
Applying these reductions, we have, for the time of passage over
the middle thread, and the chronometer correction by (150),

B Draconis.
17* 28= 34¢.62
34 .65
85.00
84 .91
34 .60

17 28 84.76
L - 05
F

Red. for rate to 18* = - 0.04
(T) =17 28 84.18
a=17 26 55.75

o—(ID=— 1 8348
t—m=+40°8453"0=4 2 19.53
Chron. correction at 18* —= AT, = + 41.10
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mputation of the observations, circle east.—This being in all
pects similar to the above, we shall only put down the prin-
al results. The approximate hour angles (r) of a Urse Minoris
1 y Draconis are T 10 and — 0* 8, whence the correction of
right ascensions for diurnal aberration are — (.12 and + 0°.02.
ducing the times for rate to 18*, we find

rs. Min.oa'= 1*» 8=45.568 T'=17*52=45:49 o'=88° 28’ 24".2
raconis o =17 53 0.37 T =17 66 1.839 8=51 80 61.0

ence
r = 54° T 88".8 A= 55° 55 54."2
=4+ 126 2.5 ¢ =+ 038 = 4 4".95
+r= 110° ¢ A—yr= 1° 48’
v = 90 81 w= 51 82
y= + 5.0
n=-+ 1°25'575 b=+ 0.18 = + 1".95
pn=— 2 2854.7 8=+8"9
t=— 1 48 9.6 log F—=  9.79366
r the reductions of the threads for y Draconis, we find
v v II I .
+ 5360 + 256°.96 — 80-.14 — 5548 = -+ 058
1 hence
y Draconis.
Transit over middle thread = 17* 55~ 1°.59
¢
—_= 0.58
7 +
Red. for rate to 18* = — 0.01

(I)=17 56 2.11
a=17 58 0.87

a—(I=— 2 1.74
t—m =4 2 42.75
An: + 41 .01

e mean value derived from the observations in both positions
the instrument is, therefore,

aT,— + 41406 at 18>,
general, however, unless the declinations of the two stars are
arly equal, the true value of a7 will not be the mean of the

ues found in the two positions; but we shall have to proceed

follows.
Vor. IL—15
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To estimate the effect of an error in the assumed value of ¢ i
this computation, we might here put ¢’ = ¢ in (152), since n an
m are here small; but, for the sake of illustration, we shall u
the complete formulee. We find

Cirele Wesl. Circle East.
o= 60°12 60° 1'.4
t(W+w)—¢= 11 84 11 0
log cos [} (v + w) — ¢'] 9.9911 9.9919
log sec } (W — w) 0.0247 0.0257
secn 0.0001 0.0001
sec ¢’ 0.3013 0.3013
log C 0.3172 log C’ 0.8190
Hence
(Circle west) AT, = + 4110 — 2.075 ac
(Circle east) aT,= + 41.01 4 2.084Ac
whence 008
Ac =+ 159 = + @~.0216

(Circle west) AT, = + 41.10 — 0-.04 — 4 4106
(Circle east) AT, = + 41.01 4 0.05 — + 41.06

This result agrees with the mean value found before, becaus
here the declinations of the stars were nearly equal, and the pos
tion of the instrument with respect to the meridian was nearl
the same in both observations.

As the value of ¢ is often but imperfectly known, it will b
best always to take a pair of stars in each position of the axi
and then to compute the two clock corrections upon the suppos
tion of ¢ = 0. The true correction will then be found by con
puting Cac as above, and the value of ac will be the true valu
of ¢. Thus, in the preceding example, if we had first take
¢ = 0, we should have found from P Draconis (aT) = + 40°.4
and from y Draconis (aT’) = + 41°.70, and, computing the coeff
cients. C and (' as above, we should have had

(Circle west) AT, = + 4042 — 2.075¢
(Circle east) AT, = 4 41.70 4 2.084¢
whence
=128 _ 0308
4.159
(Circle west) AT, = - 40°42 4 0.64 = 4 41°.06
(Circle east) AT, = + 41.70 — 0.64 = + 41 08
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ICATION OF THE METHOD OF LEAST S8QUARES TO THE DETER-
NATION OF THE TIME WITH A PORTABLE TRANSIT INSTRUMENT
THE VERTICAL CIRCLE OF A CIRCUMPOLAR STAR.

8. We here suppose the observations to be made essentially
irected in Art. 170, with this difference, however, that we
not restrict the observation of the star near the pole to its
it over the middle thread. The instrument being brought
the vertical of a circumpolar star: 1st, the transit of this star
any one of the threads is observed; 2d, the transitsof a number
juatorial stars are observed ; 3d, the axis of the instrument is
rsed, and the transit of the polar star again observed over
thread ; and 4th, the transits of a number of equatorial stars
ybserved. The level is read for each star. If, however, the
impolar star has passed all the threads by the time the axis has
- reversed, the azimuth of the instrument must be changed,
| to bring the star near a thread ; then, clamping the instru-
t in azimuth, the transit over this thread will be observed,
also the transits of a set of equatorial stars as before. In
case the observations, being made in two different vertical
es, must be separately computed according to the following
10d. It is hardly necessary to observe that the observations
1e equatorial stars may either precede or follow that of the
impolar star, as may happen to be most convenient. In this
10d, we form an equation of condition from the observation
ach star, and all those for which the azimuth of the instru-
t is the same are combined by the method of least squares.
t ¢ denote the collimation constant for the mean of the
ads, and 7 the equatorial distance of a thread from the
n; then, r denoting the hour angle of the star when observed
e thread, ¢ + ¢ must be substituted for ¢ in our fundamental
tion (79); and, since this quantity is always sufficiently small,
hall put it in the place of its sine. Thus, we have for each
ad

¢ + i = — sin n 8in & + cosn cos 4 sin (r — m)

n several threads are observed, the mean of the observed
8 corresponds to that point of the field which we call the
n of the threads only when the instrument is in the meridian.
»n the instrument is not in the meridian, two methods of
edure offer themselves. The first is that which has been used
e preceding articles, and consists in reducing each thread
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either to the middle or the mean thread by means of the co
puted intervals. But to compute these intervals we must,
has been seen, know the position of the instrument. The seco
method, which we owe to BEsskL, is not only more simple
practice, but is wholly independent of the position of the inst:
ment; and, a8 it will be useful both in the present problem a
in that of finding the latitude by transits over the prime vertic
I shall treat of it here. '

If we denote the number of observed threads by ¢, we hav:
equations of the above form, { and r being different in ea
The mean of these equations is

c+$"i=—sinnsind+cosncosagz_'sin(r—m)

where 2 is the usual summation sign. Now let

T = the mean of the observed times on the several
threads,
T — I = the observed time on any thread;

then I'is the interval found by subtracting each observed ti
from the mean of all, and, consequently, the algebraic sum
all these intervals is zero. Also let

8 = the clock correction,
t=a—(T+9

fhen for each thread we have

t=e—(T'—I46=t+1I
sin (1 — m) = sin (! — m 4 I) =sin (¢ — m) cos J 4 cos (¢ — m)si:

%Xein(r—m) =s8in(t — m) %EcosI+ cos (t — m) %ZsinJ

Let k and x be determined by the conditions

lcosn: lZcosI
k q
l sin x = —12‘ gin I
k - q

then we have.

%Z'sin(r—m)=%sin(t——x—m)
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ce, putting
n=t—x=a—(T+x+9) )
=Lz } (135)
q
equation becomes

€08 n cos 4 sin (r, — m)
k

¢+ i,= —sinnsind 4

s, ¥ and k being found, we find r, by using the corrected
> T'+ x instead of 7T, a8 in (155), and then this single equation
esents the mean of the ¢ equations. We may bring this
ation still nearer in form to that for each thread, by substi-
n
& 1

7 cos 8 = % cos &

y 8in 8, = sin &
ch give

%i' = — sin n sin 3, 4 cos n cos 3, sin(r, — m) (156)

re y is 80 nearly equal to unity (as will presently appear) that,
he divisor of the small term ¢ + 4, it may usually be omitted.
8, the mean equation is precisely of the form for one thread,
n we use both a corrected mean time and a corrected decli-
on. The quantities x and d,, or else x and log %, are readily
1d by the aid of tables such as Tables VIIL and VIILA at
end of this volume, the construction of which is as follows.
) equations which determine % and x may be written thus:

lcos x=1— 122 sin*§ I
k q
%sin %= %Z(I— sin I)
since 2 7= 0, this last equation is the same as the one before

on. But the quantity 7— sin 7 is of the order I3, and there-
 extremely small, so that we may put cosx = 1, and hence

1 lroginnyr
k q

% =12‘(I—sin1)
q
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and since
tan61=ktan8
we have* ‘1 '
—1 8in2¢ — 1\* sin 48
3 =2 .
TS U k+l)2sinl”+&°'

or, substituting the value of £%,

1 .
gZod T gings

8 =0+ —
1— 2 zeintys W01

BgssEL givest a table from which with the argument I we find
sin’ $7 The means of the tabulsr

sin 1”

quantities taken for the several values of I are respectively x and
the numerator of the coefficient of 28. A small subsidiary table
corrects for the neglect of the denominator. In the tables at the
end of this volume I have adopted a different arrangement. By

the logarithmic formula
log(l—2)=—~M(z+i2* 4 &e.)
in which M = 0.4342945, we find

F—sin I in seconds, and

logl::.-—-log%=ll[[% "2sin'}I+§(%£2 sinr;I)'+&c.]

where the second term of the series will mostly be inappreciable.
The approximate value of log %, neglecting this term, will be

logk:%ZZMsin’iI

and, employing this value in the second term, the complete
value will be

1 . (log k)?
1 =2 3 0 2
og k 7 2Msein*}I 4 2

Table VIIL gives, in the column log , the value of 2Msin®} 1
corresponding to each interval . The mean value of log &,
which is required in reducing several threads, will be found by
taking the mean of the several values from the table. When

* PL Trig., Art. 2564. + Aatron. Nach., Vol. V1. p. 245.
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xtreme precision is desired., this mean is to be increased by the
nall correction given in Table VIII.A, which contains the value

 the term (Lz—ng—)w with the argument “mean log k.” The

lumn marked % gives the value of — sin I in seconds for each
alue of I; and the mean of the several values is likewise to be
ken as the correction of the mean of the observed times 7.
he sign of Iis different for threads on opposite sides of the
ean, and the sign of x must be the same as that of I. Hence
e mean x will be evanescent when the observed threads are
mmetrically disposed about the mean.

These tables, then, effect the reduction of the threadsto a smgle
stant in a remarkably simple manner, without requiring a pre.
jous knowledge of the position of the instrument. We hawve
nly to add x to the mean of the observed times, and to find the
orrected declination by the formula

tand =k tan3 15T,

hen, taking the mean of the equatorial intervals i of the ob
rved threads, we proceed to use equation (156), as representing
1e mean of all the threads. The divisor y is found, from the
quations which determine y and 4, to be

1
l—(l —_ ;)cos’d

cos (3, — 9)

r=

here we may put cos (3, — d) = 1. S8ince ¢, is zero when all
1e threads are observed, we may put y = 1 in such cases with:
nt hesitation, since it is then the divisor only of the very small
usntity c. But in the method of observation here adopted we
1ay in all cases put y = 1; for we suppose the slow-moving sta
) be observed on but one thread, in which case we have rigor.
nsly y = 1; and for the equatorial star (even if we extend this
enomination to stars of the declination 50° or 60°) the intervals
will always be less than 2*, and then the mean log & will alway:
e less than 0.00001, and log y will be less than 0.00002, We
ke then, as complete, the equation

¢ + i, = — sin n 8in 3, 4 cos n cos 3, sin (r, — M)

ubstituting sinr, cosm — cosr, sinm for sin(r,— m) and ther
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substituting the values of sin n, cos n cos m, cos n sin m, from (78),
the equation becomes

¢+ i,=—b(singsind, 4 cospcosd cosr,) 4 cos acosd sin r,
+ sin a (cos ¢ sin 3, — 8in ¢ cos 3, cos r,)

This equation will be satisfied when a is the true value of the
‘azimuth of the instrument and r, has been found by employing
the true clock correction #. But, if ¢ and ¢ denote assumed
approximate values of these quantities, az and a# their required
corrections, and if 7, is found by the formula

n=0—(T,+9 (159)

then we must substitute in the above equation a + aa for a, and
r,—ad for 7, We thus find (neglecting the products of the
small quantities b, az, and ad)

¢ + {,= —b(sin ¢ sin 3, 4 cos ¢ cos 4, cos r,)
+ cos a cos 4, sin 7, 4 sin a (cos ¢ sin 3, — sin ¢ cos 3, cos r,)
— aasinacosd, sint,+ Aa cos a(cos ¢ 8in 3,—sin ¢ cos 3, cos r,)
— a8 cos 4,(cos a cos 1, + sin a 8in ¢ sin 7))

To adapt this for computation, let 2 and 4 be the zenith distance
and azimuth of the point of the sphere whose declination is 3,
and hour angle 7,: then we have (Vol. I. Art. 14)

co8z =  sin ¢ sin 3, 4 cos ¢ cos 3, cos T,
sin z cos 4 = — 008 ¢ sin 3, 4 sin ¢ cos 3, cos 1, (159)
sin z sin 4 = cos 4, 8in 7,

and our equation becomes

¢4 i,= — bcos 2z —sin(a — 4)sin z — aa cos (@ — 4)sin 2z
— A¥ cos 8, (cos a cos 7, -} sin a sin ¢ sin r,)

Here a — A must be of the same order as ¢ + i, and there-
fore may also be put for its sine, and its cosine may be put = 1.
In the coefficient of a9 we may put cos  for cos 4. Transposing
the equation, and collecting the known terms, by putting

h=1t+ bcosz 4 (a— 4)sin 2 ason
we obtain the equation of condition

¢+ Aasin z + Adcos 8(cos a cos 7, | sinasin gsint,) +A=0 (161)
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in which the sign of ¢ must be changed when the axis of the
instrument is reversed. It must also be observed that, (as in
meridian observations where z = ¢ — 4), sin 2 must be negative
when the star is north of the zenith: this sign, however, will be
given by the equations (159) if attention is paid to the signs of
the other quantities. To compute z and 4 by logarithms, let g
and G be determined by the conditions

g sin G = sin J,
g co8 G = cos 3, cos 7,
then
cosz =g cos(p —G)
sin z cos A = g sin(¢ — @)
sin z sin 4 = cos 4, 8in 7,

or (observing that tan 8, = k tan d)

tan @ — k tan 8
co8 T,
tan r, cos G '
tan d = —1—— 162
sin(y — &) (162)
tanz=ta————n(¢_G)
cos A

in which G and 4 are to be taken less than 90°, positive or
negative according to the sign of their tangents, and the sign of
tan z will be determined by that of tan (¢ — G).
If we put -
tan F'= tan r;sin¢ (163)
the coefficient of A% may be computed under the form

__¢os 3 cos r, co8 (a — F)

P cos F

(164)

The whole process of forming the equation of condition for
each star is, therefore, as follows: '
1st. Find x and log % from Table VIIL., and add x to the mean
of the observed times on the several threads. Call the resulting
time 7}, and find
n=a0—(T,+9)

in which & is the assumed clock correction reduced to the time 7.
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2d. Compute 4, z, P by the equations (162), (168), and (16
and % by the equation
h=i,+bcosz+4(a — A)sinz

in which ¢, is the mean of the equatorial intervals of the observ
threads from the mean thread, b is the inclination of the rotatis
axis, and a is the assumed azimuth of the instrument.

Then the equation of condition is

+c+ aasinz+4+ P.as3 4+ h=0

in which the sign of ¢ is to be determined by the position of
rotation axis of the instrument.

From all the equations thus formed, the most probable valu
of ¢, aa, and a# will be found by the method of least squares.

If the azimuth of the instrument has been changed duri:
the observations, these must be divided into two sets, and tv
different assumed azimuths a, a’, with the corrections aa and ac
will be used in the formation of the equations.

It is hardly necessary to remark that all the quantities i,
a — A, ¢, aa, ad are expressed in the same unit, either of time .
arc: the latter will perhaps be most convenient.

ExampLE.—The following observations were taken by BEss!
with a very small portable instrument, to determine the time.

Munich, 1827, June 27.

Circle East. I I I v v Level.
X Scorpii 8= 1202 7T=52¢.5(11%...%...% | cevuvnver | cencnennn —14.0
e Ophiuchi 14 22.4/]14 2.6/11 13 43.2/13=22:.7/13= 16— 0 .6
aUrs@ Minoris| .ccoeeeee | voeeennne 11 ... ....J20 8.2 ......... —0.0

Circle West.
aUrsee Minoris | «ocoveeee | cerennnes 1821975248 ccuvvene | cennnnnnn + 14.5
*a(A4non.) 21=35+.5{21=56°.2/]18 22 16.2/22=37°.0{22=58°.8|41 .6
24 Scuti Sob. (26 11 .4/26 31.6/18 26 52.327 12.8|27 84 .4(41 .8

The azimuth of the instrument-was changed between the tw
sets of observations, circle east and circle west.

The place of observation was in the garden of Dr. STEINHEIL
house, where the latitude was ¢ = 48° 8’ 40",

The chronometer was a pocket mean time chronometer c
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Knsggr. Its correetion to sidereal time at 12* (chronometer time)
was assumed to be 4 = 5 1= 8'.00, and its rate on gidereal time
was - 9°.19 per hour (losing).

The equatorial intervals of the threads from the mean thread
were as follows for circle west :

OUT OF THE MERIDIAN.

1 1I s} v v
+ 598”.08 -+ 303".09 + 6”.19 — 204791 — 612"”.46

The value of one division of the level was 47.49. The pivots
were of unequal thickness, the correction for which had pre-
viously been found to be — 1/.89 for circle west.

The apparent places of the stars on the given date were as
follows :

o é
x Scorpii 16* 2= 86.71 — 9° 86’ 84”.2
¢ Ophiuchi 16 9 1890 | — 4 16 8.9
o Urse Minoris 059 6.28 + 88 28 2.5
*a(4non.) 18 18 8 .49 + 14 52 36 .7
24 Scuti Sob. 18 19 24.11 — 14 389 56 .0

The reduction of the observations of yScorpi and e Ophiuchi on
the several threads to a mean will serve to illustrate the mode
of using our Table VIIL, although in this case the quantity x is
quite insensible and log % nearly so. We have, then,

Circle East. r I x log & §
x Scorpii I. | 11* 8=12.2 |— 985/ 0.00 | 0.0000001 |— 598”.08
IL 7 62.5 [+ 9.85/0.00 1 | —3808 .09
Means 11 8 2.35 0.00{ 0.00 | 0.0000001 | — 450 .59
¢ Ophiuchi |11 14 22 .4 |—89.90] 0.00 | 0.0000018 | — 598.”08
14 2.6 (—20.10 5 |—808 .09
18 43.2 |— 0.70 0 |— 6.19
18 22.7 |4 19.80 5 |+ 294 .91
18 1.6 |4 40.90( 0.00 19 |4 612 46
Means 11 13 42.50 0.00] 0.00  0.0000009 0 .00
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To form the equations of condition for the three stars observed,
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circle east, we now find by the formulse (158, &ec.)*

T'4+x2=T1
Assumed ¢
Rate to 124
T+ ¢
o
N
(in arc)
logseo 7,
log tan
log k&
log tan @
G
9— G
. log tan 7,
log cos G
log cosec (¢ — @)
log tan 4

log cos 4
log tan (¢ — @)
log tan z
log sin z
log cos 2z
4
Assumed a
a— A
b
(a — A)sin z
bcosz
fo
h
Ltanr st ¢ =1 tan F
F
a—F
log cos 4
log cos r,
log cos (¢ — F)
log sec F
log P

X Seorpis. « Ophiuchi. a Urse Min.
114 8m 24,85 114 18m 42¢.50 11420= 8.20
4+ 56 1 8004+ 6 1 8.00(4+ 65 1 8.00
— 7.96 — 7.09 — 6.12
16 8 57.89 16 14 88.41 16 21 0.08
16 2 86.71 16 9 18.90 059 5.28
— 6 20.68 — b5 2451+ 88 5.20

—1° 85 1072 | —1° 21’ 7".65 129° 81’ 18”.0
0.000166 0.000121 70.196290
n9.228677 n8.878022 1.549578
0.000000 0.000001 0.000000
n9.228848 n8.873144 n1.745868

— 9°36'47".2 | — 4°16'18”.2 | — 88° 58 17".8
57 456 27 .2 52 24 58 .2 187 6 67 .8
n8.442887 n8.872975 n0.088561
9.993858 9.998798 8.254067
0.072724 0.101080 0.167161
n8.508929 n8.472798 n8.504789
9.999774 9.999808 9.999778
0.200180 0.118688 n9.967894
0.20086 0.11887 n9.96812
9.92788 9.89904 n9.83296
9.72697 9.78617 9.86484

— 1°50°56".85 | —1°42 47.85 | — 1° 49 52".74

— 142 0.

+ 8 55".85 | + 4".85 | 4 7 62".74

— 2.96| — 0.84 | 4+ 1.54

+ 453".29 | + 87.84 | — 821".80

— 1.68 | — 0.61 | + 1.18

- 450 .59 0.00 | 4 294 .91

+ 112 + 8".88 | — 25".76
n8.814894 n8.245032 79.956618

— 1° 10’ 54" — 1° (26" — 42° 439"

— 81 6 — 41 84 40 22 89
9.99886 9.99879 8.45026
9.99983 9.99988 n9.80871
9.99998 9.99997 9.88184
0.00009 0.00007 0.12946
9.99876 9.99878 #8.26526

* We have neglected the diurnal aberration, as an insensible quantity in observa-

{ions with 8o small an instrument.
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Hence the equations of condition, circle east, are:
x Scorpii  — ¢ + 0.8469 Aa + 0.9857 a8 4+ 17.12=10
¢ Ophiuchi — ¢ + 0.7926 aa + 0.9971 a8 + 8 33 =0
o Urs. Min. — ¢ — 0.6807 aa — 0.0184 a# — 25 .76 =0

In the same manner, we find for the stars observed, circle west,

a Urse Min. *g 24 Secuti Sob.
T 49 18* 21~ 803 18 23~ 82:.34 18 28~ 8-.81
T, 99° 29’ 18".76| — 1°20’ 57".76| — 2°11'10".5
log & 0.000000 0.000001 0.000001
logtan 4| n8.617908 n8.618105 n8.618199
log sin 2z n9.82674 9.78943 9.94926
log cosz 9.87007 9.92217 9.66941
A| —2°22'32"22 | —2°2286".20 | — 2° 22" 88”.06
Assumed @’ | — 2 22 40 .
ad—A| — 7.78] — 8 .80 | — 1 .96
bl + 6 .22 | + 5 .61 4 6 .36
(@—A4)sinz| 4 5 .22 | — 2.09 | — 1.74
beosz| + 3 87| 4+ 4 .69 | + 2 .90
i + 6 .19 0 .00 0 .00
h| + 15 28 | + 2 .60 | + 1.16
log P| n7.74071 9.98501 9.98544

and hence the equations for these stars are

o Urs. Min. + ¢ — 0.6710 aa’ — 0.0055 a8 4 16”.28 =0
*a + ¢ + 0.5488 aa’ 4 0.9661 a8 4 2 .60 =0
24 Scuti Sob. +c¢ 4 0.8897 aa’ 4 0.9670 a8 4+ 1 .16 =0

The six equations involve four unknown quantities, which
might be determined from the four normal equations formed in
the usual manner. But, where the number of equations is so
little greater than that of the unknown quantities, it is not
worth while to employ this method. We can here obtain the
same result by eliminating az from the first set and ae’ from
the second, and then combining the resulting equations for the
determination of ¢ and ad. Thus, substituting the values of aa



238 TRANSIT INSTRUMENT

and aa’ found from the equations for & Urse M. in the eqna-
tions of the other two stars in the two groups respectively, we
have the four equations

y Scorpii  — 2.2427 ¢ 4 0.9629 a8 — 30".89 — 0
¢ Ophiuchi  — 2.1642¢ + 0.9757 a% — 26 .66 — 0
*q + 1.8179¢ + 0.9616 a8 4-15 .10 =0

24 Scuti Sob. -+ 2.3259¢ + 0.9597 a8 + 21 42 =0
from which we derive the normal equations

18.4281 ¢ — 0.2908 a# 4 204”.25 =0

— 02908 ¢ 4 3.7249 A% — 20 68 =0
which give :
A% = 4 47.69 = 4 081

¢c=—11".01 = — 078

Hence we have, finally,
8= 4 5 1= 381

By the four time stars, severally, we have 3'.43, 318, 3:.34, 3:.29.

The methods which have here been given, for finding the
time with a transit instrument out of the meridian, are intended
for the use of observers in the field who have but little time to
adjust their instruments and wish to collect all the data possible,
reserving their reduction for a future time. The greater labor
of these reductions, compared with those of meridian observa-
tions, is often more than compensated by the saving of time in
the field.

DETERMINATION OF THE GEOGRAPHICAL LATITUDE BY A TRANSIT
INSTRUMENT IN THE PRIME VERTICAL.

174. The transit instrument is said to be in the prime vertical
when the great circle described by its collimation axis is in the
prime vertical. The rotation axis is then perpendicular to the
plane of the prime vertical, and lies in the intersection of the
planes of the meridian and horizon. We owe to BEssEL the ap-
plication of the instrument in this position to the determination
of the latitude of the place of observation.

The fundamental principle of the method may be briefly
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stated as follows.* Let PZ Fig. 45, be the meridian; SZ8’
the prime vertical of the observer; SMS’

the diurnal circle of a star which crosses Fi‘}“’

the meridian between the zenith and the
equator. Such a star crosses the prime
vertical above the horizon at two points
§ and 8’ on opposite sides of the zenith < / | |\ -
and at equal distances from the meridian.  # - °

If then we observe the transits at these

two points with an instrument perfectly adjusted in the prime
vertical, and note the times by a clock whose rate is well known,
we determine the hour angle ZPS’ = {, which is equal to one-
half the elapsed sidereal time between the two observations;
and, therefore, in the right triangle PZS’ we know this angle.
and the hypothenuse PS’= 90° — 4, from which we find the
side PZ = 90° — ¢; whence the formula

tan ¢ — tan & sect?

in which ¢ is the latitude. It is evident that only those stars
can be observed on the prime vertical whose declinations are
between 0 and ¢. The nearer the observations to the zenith, that
is, the less the difference between the declination and the latitude,
the less the effect of errors in the observed times upon the value
of sect, and, consequently, upon the computed latitude.

The advantage of this method of finding the latitude lies
chiefly in the facility with which all the instrumental errors may
be eliminated by using the instrument alternately in opposite
positions of the rotation axis, reversing it either between the
observations on two different stars or between observations of
the same star, or using it in one position on one night and in
the reverse position on the same stars on another night. Dif-
ferent methods of reduction apply to these several methods of
observation, which will be hereafter investigated. 'We must first
show how to place the instrument in or near the prime vertical.

175. Approximate adjustment in the prime vertical—The middle
thread must be carefully adjusted in the collimation axis, or as
nearly so as possible. Then compute the sidereal time of pass-
ing the prime vertical for some star whose declination is small,

* See also Vol. I. Arts. 192 and 198.
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that is, a star which passes the prime vertical at a low altitude.
If ¢ = the hour angle in the prime vertical, 3 = the declination,
and ¢ = the assumed latitude, we have

. cost — tan é cot ¢

and, if @ = the star’s right ascension, © = the sidereal time of
passing the prime vertical,

__, (— for east transit
9=¢+t{+ « west « }

At this time, therefore, by the clock (allowing for the correction
of the clock), bring the middle thread upon the star, observing
to keep the rotation axis as nearly horizontal as possible. The
zenith distance at which the star will be observed may also be
previously computed, to facilitate the finding. For this purpose
we have

" which gives the true zenith distance, from which we should sab-
tract the refraction in the case of very low stars.

After the instrument has thus been brought near the prime
vertical by one star, the rotation axis should be carefully levelled,
and the adjustment verified by another star. In the first adjust-
ment the frame of the instrument would be moved ; but in the
second only the V which is provided with a small motion in
azimuth. When the instrument is provided with a graduated
horizontal circle, the most satisfactory method is to adjust it
first in the meridian and then revolve it in azimuth 90°.

In preparing for an observation on the extreme threads, we
must know the interval required by the star to pass from one of
these to the middle thread. It will be shown hereafter that if
i = the equatorial interval of the sidereal thread from the middle,
the corresponding star interval I, near the prime vertical, will be
nearly

I— i 1
" 7 " gingcosdsint  singsinz

and it is easily shown that when the hour angle ¢ becomes ¢ + I
the zenith distance becomes z =+ 15 I cos ¢, where the fagtor 15
is used to reduce I from time to arc. The first observation on a
side thread at the east transit will, therefore, be expected about 1
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onds before the time of transit already computed, and
ater zenith distance by about 15 I cos ¢ ; while the first
yation at the west transit will also be expected I sect
ore the time of transit computed, but nearer the zenitl
ut 15 7 cos¢. These simple calculations are accurate enc
the purpose of preparing for the observation. When
rvals of the threads are not known at first, they wil
ained accurately enough from the early observations for
uent use in finding stars.

‘or stars whose declination is very nearly equal to the
e, the zenith distance and hour angle on the prime ver
y be more accurately computed by the formulse

sinz=1/sin(p—d)sin(9-|-o) sint=s£1—z

8in ¢ cosé

18. Correction for inclination of the aris.—When the rote
8 i8 in the meridian, but is inclined to the horizon, the g
le described by the collimation axis is still perpendicul:
- meridian, but intersects it in a point whose angular dist
m the zenith of the observer is precisely equal to the inc
n of the rotation axis. This point may be called the zenii
instrument; and the great circle described by the collime
8, the prime vertical of the instrument. If we put

¢’ = latitude of the zenith of the instrument,

p= “  observer,

b = inclination of the rotation axis, positive when nortk
end is elevated,

have

p=¢+b

1 the only consideration of the level correction require
8 case is to apply it directly to the latitude found fron
trument by the same methods that are used when the a:
ly horizontal.

But if the rotation axis is not in the meridian, nor the mi
ead in the collimation axis, the simple solution given in
i requires some modification. I proceed now to con
 instrument in the most general manner, with deviatio
muth, level, and collimation, and to show how to elim

y effects of these deviations.
Vor. II.—16
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177. T find the latitude from the observed times of transit of a
given star over a given thread east and west of the meridian, the rota-
tion axis being in the same position at both

mg.; > observations.—Let the rotation axis lie

in the vertical circle Z4, Fig. 46, and

A / suppose the north end elevated, so

w 4 that the great circle of the instrument
L) is E’Z"W', and a thread at the dis-

aS'S tance ¢ south of the collimation axis

* describes the small circle SS’. Let A

be the point in which the rotation axis

produced meets the celestial sphere,

and through 4 and the pole P draw

the great circle APZ'. This great circle is perpendicular to

E'Z'""W’,and the observations of the star on the thread at S and

S’ are equally distant from it. We may call PZ’’ the meridian,

E'Z'" W' the prime vertical, and Z'’ the zenith of the instrument.

Now, the equations (78) and (79) of Art. 123, being entu‘ely

general, apply to the instrument in this position, but it is con-

venient to make some modifications of the notation. The point 4

being now near the north point of the horizon, its azimuth is
nearly zero and its hour angle nearly 180°. If we put

the azimuth of 4 = 90° 4 (a) = — a, or (¢) = — (90° 4 a)
the hour angle of 4 =90° —m =180° 4 2, orm = —(90° 4-2)

where we distinguish the a of the equations (78) by enclosing it
in brackets; then a is the small azimuth of the rotation axis
reckoned from the north towards the east, and 1 is the hour angle
of the meridian of the instrument (or, a8 we might call it, the
west longitude of the instrument); and the substitution of these
quantities in equations (78) gives

cos8 n cos A — — 8in b cos ¢ 4 cos b cos a sin ¢
cosnsin A= cosbsin a (165)
sinn = sin bsin ¢ 4 cos bcosacosg

and as 7 in (79) is the hour angle east of the meridian, while it
is here more convenient to reckon it, in the usual manner,
towards the west, we shall change its sign, so that the factor
gin (r — m) will become

sin(—r 4 90°4 A)=cos(r — Q)
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1d the equation (79) will become
8in ¢ = — sin 7n 8in ¢ 4 cos n cos 3 cos (r — ) 166

or the convenience of future reference, I shall here recapitulat
e notation used in these our fundamental equations: namely,

¢ = the latitude of the place of observation, positive when
north;
= the declination of the star, positive when north;
t = the hour angle of the star;
a = the azimuth of the rotation axis, positive when east of
north ;
= the inclination of the rotation axis, positive when the north
end 18 elevated ;
¢ = the collimation constant of a thread, positive when the
thread is north* of the collimation axis;
A = the longitude of the meridian of the instrument, positive
when west ;
n = the declination of the north end of the axis.

) further, when the star is observed at both the east and wes
ansits, we put

7, ¥ = the hour angles of the east and west observations,
respectively ;
T, T" = the clock times of observation;
AT,a T’ = the corresponding clock corrections;
o = the right ascension of the star;
28 = the elapsed sidereal time between the east and
west observations on the same thread;

e have

tr=T+4+ AT —a '=T 4+ aT —e
=4 (I"+aTl"— T —aT)
A=3(T"+aT + T+ aT)—a

hence =7 —2=2—1

e see that & will be well determined when the clock rate, o
T’ — aT, is known ; but to find 2 we must also know the clocl
rrection and the star’s right ascension.

% When the thread is north of the prime vertical, the emall cirole of the spher
aich corresponds to it is soutk of the prime vertical, and vice versa.
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Now, let A and B be assumed so as to satisfy the conditions

hsinﬁ:sinb
h cos § = cosd cos a

then the equations (165) become

cos n 8in A = cos b sin a

cos n cos A = h sin (¢ — f)
} lely)
sin n = A cos (¢ — B)

Substituting in (166) the values of cos n, sinn, given by these
equations, and also cos (r — ) = cos (A — 7/) = cos &, we have

. . . - cos @
smc:—hcos(cp—ﬁ)smd-{-hsm(g:—-ﬁ)cosdoo—si

to reduce which we assume %’ and ¢’ to satisfy the conditions

h'sin ¢’ = sin ¢
h’cosq/...ooeaw } (168)

cos A
which transform the preceding equation into
gin ¢ = hh'sin (p — ¢ — )

sine
hR

whence
sin(p — ¢ — f)=

sin 8

But, as ¢ is never more than 16/, and A’ = will never be less

than }, while % differs from unity only by a quantity depending
upon sin’q, the angle ¢ — ¢’ — B will never exceed 80’: so that
we may write, without sensible error,

¢sing
sin 3

p—¢—F=

To find 8, we have
tan S = tan bseca

or, since b is only a few seconds and a bnt a few niinntes,
B=b
and ¢’ is determined by (168), which give
tan ¢’ == tan 3 80 4 o8 4 (169)
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1d theh we have
csin ¢
sin &

p=¢+b+ (170)
is evident that the factor cosA in (169) corrects for azimuth

viation, the term & in (170) for inclination of the rotation axis,
CB

d the term <22 for the distance of the thread from the col-
nation axis. ™" °

In these equations, # and A are obtained from the observed
mes on the same thread, the rotation axis being in the same
sition at the two observations. The constant ¢ has then the
me sign at both observations, + for north threads,— for south
reads; and its value must be known for each thread. We
duce then, by (169) and (170), from each thread separately, a
lue of the latitude, and take the mean of all the results as the
titude given by the instrument in this position of the axis. But
the pivots are unequal the striding level does not give the
ue value of b directly. (See Art. 187.) Moreover, the constant
s composed of the equatorial interval of the given thread from
e middle thread combined with the collimation constant of the
iddle thread, and will, therefore, involve both the error in the
termination of the interval and in the adjustment for colli-
ation.

Now, to eliminate all these instrumental errors, repeat the
servations on the same star on a subsequent night in the
verse position of the axis. Let p be the (unknown) correction
r inequality of pivots, ¢ the (unknown) correction of ¢ for error
‘the interval of thread and collimation adjustment; let ¢, ¢’
> the latitudes given by (169) for the same star on different
ghts and in reverse positions of the axis; b, &’ the inclinations
" the rotation axis given by the spirit level. The true inclina-
ons are b + p and b’ — p, and the true value of the collimation
nstant for the given thread is ¢ 4+ ¢: so that in the first posi-
on of the axis we have

o sin ¢
p=¢+b+p+(+9 oin 0

1d in the second position,
o i sin ¢’
p=¢+V—=p—(c+9T"

1d the mean of these is
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9=i(?’+b+¢"+b')+°+Q[Sinsv'—sm¢’

2 gin &

go that the inequality of pivots is wholly eliminated, and th
error of thread and collimation is reduced to the term

q [sin ¢ — 8in ¢"] _q gin (¢’ — ¢"")cos ¢

z arl
2 gin & 2 8in 8 (nearly)

which for ¢ = 17, ¢’ — ¢’ = 1°, is 0"".008 cos ¢ cosec , and tha
part of this small quantity which depends on the collimation of
the middle thread will have different signs for north and soutl
threads, and will also wholly disappear from the mean. Ther
will remain, therefore, in the result only that part of this tern
which depends on the errors of the thread intervals. As ths
thread intervals can easily be determined in the meridian withir
1", this remaining error in the latitude will be insensible i
practice, and we may assume the mean of two nights’ observa
tions to be wholly free from the instrumental errors.

There remain yet the errors of observation and of the clock
These affect both the angles # and 2. As 4 is always small, thei
effect will not generally be appreciable in cos4, and their effec
in sec # will be less the nearer the star is to the zenith; for the
clock errors that appear in ¢ are only the variations of rafe, an
the less the interval the less the effect of these upon ¢, and, a
the same time, the less the angle & the less effect will any chang
in & produce in sec &.

The expression for the error in ¢ resulting from an error ip t
is found by differentiating (169); whence

dg sec? ¢’ = d8 tan & sec & tan & cos A — d¥9 tan¢’ tan ¢

or nearly

d¢=%?sin2¢tan0

and sin 2¢ is greatest for ¢ = 45°, in which case we have
ds

dp = ?tanﬂ. For ¢ = 1*, dp = d&# X 0.13; or an error in & of
1=15" produces an error in ¢ of less than 2. If we assume
then, that ¢ can always be obtained within 1°, we ought to expec
the mean of the latitudes obtained in two nights from the same
thread and with the same star to agree with that found in the
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me way from any other thread, within 2/, when the observa
ons are taken within one hour of the meridian. This, in fact,
the experience of observers in the use of this method.
Finally, the latitude is affected by an error in the tabulated
clination of the star. When ¢ < 45°, the error in the latitude
always greater than the error of the declination; but when
> 45°, the error in the latitude will be less than the error in
e declination, if we use stars whose declinations fall between
e limits 90° and 90° — ¢, as will be seen at once by examining
e equation

sin 2¢

sin 24

ich is found by differentiating (169) with reference to ¢ and 3.
is evident, therefore, that this method is better suited to high
itudes than to low ones, although satisfactory results may be
tained by it even in latitudes not greater than 80°.

178. Instead of deducing a value of the latitude from each
read, it is usually more convenient to reduce the observations
 the several threads to the middle thread, and then to find the
lue of the latitude from the mean. This value will, of course,
~the same as the mean of the several values found from the
reads individually. I proceed, therefore, to investigate the
rmula for reducing the observations on the side threads to the
ddle thread.

Let

i = the equatorial interval of any given thread north of the
middle thread,
I = the corresponding star interval,

de = ds.

en, 7 being the hour angle of the star when on the middle
read, 7 — I is its hour angle when on the given thread : so that
now denoting the collimation constant of the middle thread,
d, consequently, ¢ 4 i being now put for ¢ in (166), we have

sin({ 4+ ¢)=—sinnsiné 4 cosn cos 3 cos(r— 4 — I)
ile for the middle thread we have
sin ¢ = — sin n 8in & |- cos 1 cos & cos (r — 2)

e difference of these equations gives
2 cos (31 + ¢)sin $i =2co8ncos d8in(r — A — 4 I)sind 7l
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In th~ first member, since ¢ and ¢ are both small, we may pu
2cos }isin } i, or siné, and hence

sin §

2sindl= )
eos n cos ésin(r — A — /)

If the azimuth a of the instrument is even as great as 20’ (anc
it will always be much less), it is easily shown that log & in (167
will not be less than 9.999993, that is, it will not change th
fifth decimal place by a unit in the computation of log cosn
and, as this degree of accuracy is evidently even more than suf
ficient in computing 7, we shall here take cos n = sin (¢ — b), anc
hence o
sin

26in $ 1 = - ~ -
sin (p — b)cos d sin (r — 2 — } 1)

an

This very exact formula will be required, however, only wher:
the star is very near the zenith. In most cases we can emplo}
ein ¢ for sin (¢ — b) and put } 7 instead of its sine.

‘When the star has been observed on the middle thread, botl
east and west of the meridian, we may find r — 21 =4 witl
sufficient accuracy for computing the reductions of the threads
by taking the half difference of the observed times on thi:
thread ; and hence the formula will be

2sin § I = — At (172)
sin (¢ — b)cos & sin (8 — 3 1)

or, in most cases,
i
1

~ sin gcosdsin(d —4I)

- Qe

~ In applying these formule, the signs of i, Z, and ¢ must be

carefully observed. Thus, i will be positive for north and
- negative for south threads; & positive for a star west, and
negative for a star east of the meridian. The value of I re.
quired in the second member may be found with sufficient
accuracy from the observations themselves; and, in order to
obtain it with the proper sign, it is to be observed that the ob-
served time on the given thread is always to be subtracted from
that on the middle thread.

Having reduced the several observations to the middle thread
by adding the values of I thus found, the means of the results
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* the east and west transits, respectively, will now be denotec
T and 7", after which & and A will be accurately found, anc
> latitude computed precisely a8 in the preceding article. The
antity ¢ in equation (170) will now denote the collimation con:
nt of the middle thread.
The level constant should be determined baoth before and afte:
ch transit east and west, and the mean of the four values
iployed for b, particular care being required in the determina
n of this quantity, since any error in it affects the resulting
itude by its whole amount.

ExampLE.—The following observations were taken by HaNss?
Heligoland with & transit instruament in the prime vertical.*
e hours are given only for the middle thread, and the observa
ns on threads VII., V1., and V. are placed immediately below
»se on L, II., and IIL., respectively.

1824, July 81.—Cirels North.

y Draconis. I. and VIL (II. and V1. |IIL. and V. IV. Level.

| .. (|14 28-8| 18~ 86-8 | 12~ 46 |16* 11~ 54-.

ast "““““{ 9 26. |10 18. |11 838 }—0"40
27 85. |28 26.8[20 17.5]19 30 9.8

Lol { 32 87.5(31 50. |81 0. }“1"37

ek correction (sidereal) at 144 22™ — | 1= 47°.40. Daily rate, 4-4°.12

1824, August 8.— Cirole South.

y Draconis. LI. and VIL | II. and VI. | IIL and V. , Iv. Level.

. . 8= 57-. 9= 47, | 10~ 36°. |16 11 27°.6
“’“"m‘"‘{ 18 59. |18 9.5|12 17.5] }"1‘-“

82 15. |81 26. |30 36.5(19 20 44.
Vest {27 14. |28 8. |28 55. }—0-03

Clock correction at 144 8™ — | 1™ 59+.98. Daily rate, | 4°.27

The threads are numbered from the eircle end of the axis, s
at for “circle north” stars at the east transit are observed firs
‘thread VII. Their equatorial intervals, as found by observa
ns in the meridian, were—

I hi g m v i o
rclenorth) ¢, --82:.882 -+ 21.667 --10.968 — 100.862 —21:.426 — 81-.67

* Astron. Nach., Vol. V1. p. 117,
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The value of one division of the level was 2/°.5 (of arc).

The collimation constant was ¢ = 4 2/.18 (in arc), circle north.
The assumed latitude was ¢ = 54° 10’.8.

For the given dates, the apparent places of the star were—

y Draconis [ é
1824, July 31, 17* 52= 34°.42 -+ 51° 30 57".64
“ Aug. 8, « « 3437 « « 58 .04

‘We shall first reduce the observations of July 81. To compu
the thread intervals, we find an approximate value of ¢ from tl
observed times on the middle thread, the difference of which
8* 18" 15'.8, and, since in this time the clock rate is + 0.6, v
take 24 = 8* 18= 16°.4, and hence

(Approx.) ¢ = 1 39= 8.2
Taking the differences between the observed times on each si
thread and that on the middle thread for both the east and we
transits, the mean of the two values for each thread may be us
as a sufficiently exact value of I to be used in the second memb
of (172), namely:
I o m v vi vII

(Approx.) I, 4 2= 84,8 4 14209 4 0m520.2 — O™ 50.2 — 1™ 400.6 — 2% 27

¢ —}7,148750.8 148816.7 148842.1 1489388.8 148958.5 144029
whence the reductions to the middle thread are, for the we
transit,

I, + 2 84:.97 4 1m420.74 4 O™ 52004 — O™ 50+.16 — 1 40r.40 — 2= 28».
and the same values, with their signs changed, are used for t!
east transit. These being applied to the observed times, we have-

East. West.

I 16*11=53.88 19* 30~ 9-.97

II 54 .06 9.54

III 53 .96 9.54

IV 54 .00 9 .80

v 63 .96 9.84

V1 53 49 9 .51

VII 54 .01 9 .49

T=16 11 53.90 =19 30 9.67

aT=+ 1 4771 AT = 4 148.28

T+aT=16 18 41 .61 T4+ aT' =19 3157.95

19 81 57.95 16 13 41.61

¢ sum = 17 52 49.78 $4dif. = 1 89 8.17

a=17 52 384 42 = 8 = 24°47' 2".66
A= 15 .36

—_ 00 8’ 50"
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nce, by (169) and (170),

log tan 8 0.0996440
log sec 8 0.0419648

c=-42"18
log cos 2 9.9999997 loge 0.3385
log tan ¢’ 0.1416085 , log sin ¢’ 9.9089
_ ¢=04° 1047741 log cosec & 0.1064
gsmng F 2.26. i, 0.8538
sin ¢

= — 2.21

@ =54 10 47 46

r the observations of August 8, we find, from the observed
1e8 on the middle thread,

(Approx.) ¢ = 1* 89= 8.5

d from the observed times on the side threads compared with
> middle thread, '

I g m v vi v
prox.) I, —2m 30,8 —1%41.2 — O™ 52:.0 4 O™ 49.5 + 1m 4105 + 2™ 80e.¢
9 — 37, 1440 28.9 1489 59.1 1239 34.5 1¥88 43.7 148817.7 1287 53.1
th which we find the true values of I to be as follows:

I, — 2= 811.28 —1m 414,10 — O™ 51461 + 0= 50+.55 - 1™ 427,10 + 2=81+.5

plying these to the observed times, and taking the means, we
ve—

East. West.
T =16*11= 27°.61 T = 19> 29~ 44°81
aT=+4 2 035 AT =+ 2 0.94
T +aT=16 13 27.96 T4 aT' =19 81 45.75
A= 0° ¢ 87". = 24°47" 13".6

ith these we find, taking now ¢e=— 2/7.18,
¢ = 54° 10/ 50”.25

csing _ _ 3.2
sin
b= — 141
o= 54 10 46 .08

e mean of the results in the two positions of the instrument
therefore, ¢ = 54° 10’ 46’”.77. From numerous observations
the same kind, HanseN found ¢ = 54° 10’ 46/'.58.
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179. To find the latitude when the instrument is reversed between 1
east and west transits of the same star on the same night.—Reduce tl
observations to the middle thread, and let 7"and 7" be the me:
of the resulting clock times at the east and west transits, respec
ively. If the middle thread was north of the eollimation axis
the east transit, it will be south of that axis at the west trans
and the interval 77 — T will be sensibly the same as the interv
between the two transits over the collimation axis itself. W
may, therefore, compute the latitude precisely as in the precedin
method, and regard ¢ as zero. Thus, our formule will be

8= }[(T"+ aT)— (T + aT))]

A=}[T 42T + T+ AT]—a

tan ¢’ = tan & sec & cos 4 an

g=¢+0b
in which & is the mean of the level determinations in the tv
positions of the axis, and is, therefore, free from the error
inequality of pivots. This method, then, enables us to obta
from the observations of a single night a value of the latitu
free from all the instrumental errors.* We may remark here th
the result by this method, as well as the mean of the results
two observations in reverse positions of the axis by the precedn
method, is free from errors arising from flexure of the rotati
axis.

Examrre.—The following observations were taken at Cro
stadt with a transit instrument in the prime vertical, the axis «
which was reversed between the east and west transits.

1848, August 9: Cronstadt. Assuimed ¢ = 59° 59.5.

Circle South. ) ¢ n I Iv v Level.
E. |y Cassiopes|18m 28+, [17= 46+, | 06 24m 6+, [81m82. | ......... + 6.86
& Cassiopes|20 82.128 6.0 26 21.|29 19.[82m4ar. | 46 .56
Circle North.
) —2n m
W. |y Cossiopez| ......... 1% 20 |15 9m56e. | 16m 26+ | 20m 210 {
. . _1 .5o
& Cassiopess |57 86+, | 0 45.|2 4 11.[ 7 0. 9 60. 110

# There is a theoretical inacouracy in finding 2, since this quantity will be affect
by the oollimation error; but the error will have no sensible effect upon the cosine
8o small a quantity, unless ¢ is unusually large. It will, indeed, be always inapp:
ciable when the observer has bestowed ordinary care upon the adjustment of t
middle thread.
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'he level was observed before the east transit of y Cassiop. and
r that of 8 Cassiop.: so that the mean b = 4 57.46 will be
d for both stars at the east transit. But at the west transit
level was observed before and after each star: so that for
2ssiop. at this transit we shall use b = — 2/7.09, and for
1ssiop., b = — 1/7.80.

'he threads are numbered from the circle end of the axis,
| thread I. was first observed at both the east and west
1sits. The equatorial intervals from the middle thread were—

I Il v R 4
rcle North) i, 4 34°.40 + 18.74 — 16214 — 8338

o collimation constant, as found from observations in the
ridian, was ¢ = + 4/.50 (in arc) for *circle south.”

'he chronometer correction (sidereal) was - 80°.20 at 0* 24=;
daily rate, + 0°.90.

[he apparent places of the stars for this date were—

a é
y Cassiopece, 0* 47= 21°.49  59° 52' 2".8
& Cassiopee, 1 15 40.88 4 59° 26 6 2

o reduce the observations of y Cassiopee, we first find the
yroximate value of # from the difference of the observed times
the middle thread to be

8 = 03 22% 5425

m which we find, by (172), the reductions of the side threads
the middle thread to be as follows :

I II v v
Cassiop. B+ 10= 432 4 6197 — 7= 2809 —
W. — 48 556 —5 822 —10=264

plying these, and proceeding by (178), we find,—
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East. West.
1 24= 6.2 Am
11 5.7 1 957.6
1 6.0 55.0
IV 8.1 63 .8
v e 54 .6
T=0 24 6.5 T"=1 95568
aT= +430.2 AT = 43802
T4+aT=02486.7 T4+ aT'=11025.5
110256.5 02436.7
$4sum =0 4781.1 $4dif. =02254 .4
a=0 47215 = 8 = 5°43'86".
A= 9.6
= 0° 2’ 24",

log tan 8 0.2862409
logsec 8  0.0021729
logcosd  9.9999999
log tan ¢’  0.2384137
¢ = 59° 5y 29".78
b=}(5"46 — 2".09) = + 1.69
¢ =59 59 81 47
The observations of y Cassiopee, reduced in the same manner,
give ¢ = 59° 59’ 80’7.98, and the mean is ¢ = 59° 59’ 81".23.
The preceding methods of reduction leave nothing to be
desired when the intervals of the threads are known. When,
however, these are unknown, we may resort to one or the other
of the following methods, according to the nature of the obser-
vation.

180. Tb find the latitude from the observed transits of a siar over the
prime vertical, east and west of the meridian, when the instrument is
reversed only between the observations of different nights, the intervals
of the threads being unknown.

Put

¢ = the distance of any thread from the collimation axis,
8, =} the elapsed sidereal time between the east and
west transits over the same thread when the circle
or finder is north,
8, = ditto for the same star when the axis is reversed,
b,, b, = the level constants in the two positions;

then, by (169) and (170), we shall have
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tan ¢, = tan & sec 8, cos 2
tan ¢, — tan dsec 8, cos 4
csin ¢
= b =
=t it sin &
csin
=?,+b.—+g’
sin 8

he last two equations involve but two unknown quantities,
and ¢, both of which may, therefore, be determined. Put

?o=i(¢u+bn+?o+ba)
r =3 +b —e —0b)

en our equations become

_ csin g,

?— % r+———sin8
¢ 8in

P—go=—r— 2t
sin &

ultiplying the first by sin ¢,, the second by sin ¢,, and adding
em together, we find

— @y = —r[:—;::—:}:—_'_%:—:f"]= —rtani(p, —¢,) coti(e, + ¢,
nce y is very nearly equal to } (¢, — ¢,), the second member of
is equation involves the square of 7, and is, consequently, an
ceedingly small quantity, in computing which we may, evi
ntly, put y = }(¢. — ¢.) and substitute ¢ for (¢, + ¢,), whereby
e obtain
¢=¢,—31r'sinl"coty

nis method may, therefore, be expressed by the following
uations:

tan ¢, = tan & soc 8, cos A

tan ¢, = tan & sec 4, cos 2

po=43(e, + 0, + ¢,+3) (174,
Ap = } (¢, — 9,)8in 1" cot @
® = ¢o - A¢

which the assumed value of ¢ may be used in computing ag.

181. In this form of the method, only pairs of observations
' the same star made on different nights in reverse positions of
e axis can be reduced. But it often happens that the observa
n on a thread is lost, and the corresponding observation or
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the same thread in the reverse position of the axis becomes useless.
In order to avail ourselves of every observation, we may, aftera
sufficient number of observations have been made on the same
star, determine for this star the mean difference between ¢ and
¢.+ b, and between ¢ and ¢, + b,, and these differences may be
used to reduce the observations on the several mghts independ-
ently of each other. Thus, if we put

b o=9¢—(p.+0)=—13}(o.—9,+ b, —b)— A¢
a9 =¢—(p,+b)=+4 (¢, — 9, + b, —b)— &g

each complete pair of observations on two nights furnishes a
value of a,¢ and a,p, and, the mean of all being taken, any indi-
vidual observation may be reduced by the formule

tan ¢, = tan 3 sec 8 cos 4 e=e¢,+ b+ 2,9
or, tan ¢, = tan d sec 8, cos 2 e=e¢,+ b+ a,¢

This method of reduction is given by Professor PEIRCE.*

182. The quantity 4, which is the difference between the right
ascension of the star and the mean of the sidereal times of obser-
vation on the same thread east and west of the meridian, should
have the same or nearly the same value throughout the series of
observations, since any change of sufficient magnitude to affect
the value of cosi sensibly will give different values of ¢, or ¢,
and, consequently also of a,p or a,¢, which are here supposed to
be constant. To secure this condition, the stability of the instru-
ment in azimuth must be secured, or it must be verified and
corrected from time to time by means of a terrestrial mark to
which the middle thread is referred.

183. The factor cos 2 may be omitted (not only in this, but in
all other methods) throughout the reduction of a series of obser-
vations where it can be regarded as constant, and a small cor-
rection for the azimuth of the instrument can be applied to the
final mean latitude. If we denote this mean by (¢), found by
neglecting the factor cos 4, the true latitude will be found by the
formula

tan ¢ = tan (¢) cos 2

% In & memoir on the latitude of Cambridge, Mass., Memoérs of Am. Academy d
Bejences, Vol. I1. p. 188
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¢ =(9) — } sin 1”sin 2¢ , (175)

If the azimuth deviation a is required, it may be found by the
cond equation of (167), which gives, very nearly,

sin @ — sin 1 8in ¢ (176)

If the azimuth of the instrument is known independently of
e observations for latitude, we have, by substituting a for Asin ¢,

¢ =(¢) — }a*sin 1" cot ¢ (176*)

184. The thread intervals may also be found ; for the difference
' the equations for ¢, Art. 180, gives

_ (¢o + b, — ¢, — b,)8in 8
2sin 3 (¢, + 9,) co8 § (9, — @)

r which we may take

¢ — (a9 + Ag)sin 8

" singcosay

*, in most cases, Q)
_ (a,p+ap)sind
_ - sin ¢
his will give the distance of each thread (the middle thread
cluded) from the collimation axis, whence we can deduce the
stance of each from the middle thread.

C =

4

ExampLE.—Let us apply this method to the reduction of the
servations taken at Heligoland by HANSEN, given on p. 249.
Beginning with the observations of July 81, ¢ circle north,” we
nd &, for each thread by taking half the difference of the
oserved times on this thread, east and west, and correcting for
e clock rate in the interval, which is here + 0°.28. The value
" 2 may be found accurately enough from the middle thread
one. Thus we have

Mean of times on middle thread — 17* 51= 1.9
Clock corr. = 4 1 48.0
Sid. time = 17 52 49.9
Star's e =— 17 52 84 4
A= 15.5 = 0° 8’ 52".
ence we have log tan  cosi = 0.0996487, which will be used
r all the threads, the value of log cos &, for each thread being

1btracted from it to find log tan ¢,, as follows:
Vou. IL—17
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Thread. o, log cos 3, log tan ¢ ¢
I 1*» 86= 8338 9.9602692 0.1898845 64° 2’ 25".76
II 1 87 25.28 9.9595210 0.1401227 512 368
I 1 38 16.08 9.9587918 0.1408519 7 56 84
IV 138 8.18 9.9580851 0.1416086 10 47 43
v 1 89 58.38 9.9572996 0.1428441 18 88 .18
VI 1 40 48.78 9.9565540 0.1430897 16 21 .07
VII 1 41 36.08 9.9558485 0.1437952 18 59 .87

From the observations of August 8, “ circle south,” we find

Mean of times on middle thread = 17* 50 35°.7
Clockcorr.=—= 4+ 2 0.6

Sid. time = 17 52 86.3

a=17 52 84 4

log tan & cos 2 = 0.0996457 A= 19=029

Thread. 9, log cos 9, log tan ¢, ®
I| 1»41=39.29 9.9557996 0.1438461 | 54° 19'11”.32
II 40 49.79 9.9565889 0.1431068 16 24 .93
III 40 0.54 9.9572678 0.1423779 18 40 .80
IV 89 8.54 9.9580299 0.1416158 10 49 .07
v 88 19.04 9.9587483 0.1408974 8§ 7.1
VI 87 27.04 9.9594968 0.1401499 5 18 .50
VII 86 87.79 9.9601968 0.1394489 2 40 30

With the assumed latitude ¢ = 54° 10'.8, we find log }sin1”
cot p = 8.9419, and the computation of ag for each thread is as
follows :

e log (4. —¢.)*| log &g a¢

— 16/ 45”.56 | 6.0046 { 9.9465 | 07.88
1112 67 | 5.6556 | 9.5975
— 543 96 | 50780 | 9.0149
— 0 1.64 | 04296 | 43716
4+ 526.06 { 5024 | 89688
4+11 2 .57 { 56426 | 9.5845
+1619 57 | 659820 | 9.9289

aﬂ<'35!:‘..-. E
[— 20K — I — B =T — Y )
28383858
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We have b = — 221, b= — 191, } (b, + b,) == — 27.06;
1 hence the several values of the latitude given by the different
eads are found as follows:

IN THE PRIME VERTICAL.

Thread. $(ga+ 9 % ¢
I 54° 10’ 48”.64 46" .48 45.60
II 48 .65 46 .59 46.19
IIx 48 .82 46 .76 46.66
Iv 48 .25 4 .19 46.19
v 50 .14 48 .08 47.99
VI 49 .79 47 .78 47.35
- VIO 50. 09 48. 03 47.19
Mean =ﬁ

nce ¢ = 54° 10’ 46’".74; which agrees within 0”.08 with the
ult found on p. 261. The elight difference is perhaps due to
all errors in the thread intervals employed in the former
thod.
The values of a,p and a,p for each thread may be found as
lows:

Thread. | $(g—¢)  [Htw—0st3a—0s) Ay Ag
I | —822"78 | — 822793 | 4+ 8 22".05 | — 8 28".81
II | —586.29 | —586.44 | +586.04 | —5 86 .84
IIT | —251.98 | —252.13 | 4+252.03 | —252.28
IV | —0 082 |—0 097 | +0 0.97 | —0 0.97
V | +243.08 | +242.88 | —242.97 | +242.79
VI | +581.20 | +581.14 | —581.52 | +5 80.76
VII | +8 9.79 | +8 9.64 | —81048 { +8 8.8

hen a,¢ and 4,0 have been thus determined from a consider-
le number of observations, their mean values may be used to
duce the observations of each night separately.

We may now also find the thread intervals themselves by the
rmula (177), which gives

I II III v v VI vix
+82.87 42165 41108 4 0.06 —10.48 —21-.31 —381.51

nich are the distances from the collimation axis. The equa-
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torial intervals of the side threads from the middle thread a:

therefore,
I I I v VI A}

i, -+ 82.81 4 2159 4 11.02 —10°.564 —21.37 — 31

which agree with those given on p. 249 as well as can be expect
when but four observations on each thread have been taken.

185. To find the latitude from the observed transits of a star over
prime vertical when the instrument is reversed between the east and w
transits, the intervals of the threads being unknown.—Let

" r, 7 = the hour angles of the star on the same thread at the
east and west transits;

then, ¢ denoting the distance of the thread from the collimati
axis, we have

— sin ¢ = sin n 8in  — cos n cos & cos (r — 2)
sin ¢ = sin n sin é — cos n cos & cos (¥— 1)

the sum of which gives
cot n = tan dsec § (¥ — r) sec[§ (7 + 1) — 4]
But by (167) we have

cot n cos A = tan (¢ — B)
and therefore

tan (p — f)=tan dsec § (Y — r)sec [ (¥ + v) —4A] cos 2

in which 8 = inclination of the rotation axis; and in this ca:
if b and b’ are the inclinations in the two positions, we ta
B=1(b+b).

If now, to avoid all further consideration of the clock rate,
suppose all the observed times to be reduced to some assum
epoch (7' at which the clock correction is a7, and put

T, T" = the clock times on the given thread at the east and
west transits, respectively, reduced for rate to the
assumed epoch (T,

T, T,= the same for the middle thread,

we have
t=T+4+aT—a ‘!"=T'+AT—¢
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and, since the middle thread is very near the collimation axis,

A=Y(T+ T)+aT —a
3 (@ — )= 3 (IT" — T') = }elapsed sid. time,

10+ —2 =T+ T)— T/ + T)
Hence, if we adopt the following more simple notation,

28 = the elapsed sidereal time between the east and west
observations on the same thread = 7" — T,
= the mean of the observed times on that t.hread

=3(T'+ D),
t, = the mean of the observed times on the middle thread
=§(TJ + Ty,
and put
r=t—1t, A=t + ol —a
we shall have

tan ¢’ — tan 3 sec & sec y cos 2
p=¢+10+b) }("9‘

This method of observation and reduction has the same
advantage as that of Professor PEIRCE, in not requiring a know-
ledge of the thread intervals; and it further enables the observer
to reduce each observation independently of all others, and thus
0 obtain a definite result from one night’s work.

ExamrpLE.—Let us apply this method to the observations taken
at Cronstadt, given on p. 252.

For the star y Cassiopece we have but three threads to reduce,
since thread I. was omitted at the west and thread V. at the east
transit. For the others, we proceed as follows:

t, =047~ 0.5 log tan ¢ 0.2362409

AT= 4 80.2 log cos 2 9.9999999

8id. time —= 0 47 30.7 log tan & cos 2 0.2362408
a=0 47 21.5

A=0 0 92=218"

Neglecting the chronometer rate, which is insensible in these
intervals, we have
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I I v
t| 089" 24, 0* 47 05 0 53~ 29«
tot,=y| 0 785 | 0 0 0. 0 6 285
8| 021 88. 02 545 | 021 57.
logsecy| 0.0002393 0.0000000 0.0001783
log sec 8 | 0.0019877 0.0021782 0.0019949
logtang’| 0.2384178 0.2884140 0.2884090
#| 50°59°80.6 | 59°59'29”.8 | 59°59 28".8
Mean ¢ = 59° 5% 20".78
“« b= 4+ 1.69

¢=059 59 81 .42

For 8 Cassiopee we find, in like manner, A =1’ 27", log tan é co
= (.2284381 ; and from the several threads,

 § b1 4 m Iv v
y OA 6m 12, 0» 3m 2046 0r 0= 0. 0* 2= 5385 0 6~ 1
¥ 0 48 82. 0 48 49.6 0 48 66. 0 48 50.5 0 48 83
¢ 59° 69 28”.8 59° 69’ 80".1 69° 69 28”.3 69° 69’ 29”.1  59° 69 2¢

Mean ¢’ = 59° 59 28”.90
“« b= 4 2.08
¢ =59 59 30. 98

The mean result by the two stars is, then, ¢ = 69° 59’ 81’".!
which differs only 0”.08 from the result found on p. 254, whe
the thread intervals were used.

186. 70 find the latitude from the observed transiis of a star over
prime vertical, east and west of the meridian, when the instrument
reversed, at each transit, between the observations of the star on oppo:
sides of the prime vertical. (STRUVE's method.)

‘When the star passes near the zenith, the intervals betwe
its transits over the threads become sufliciently great to allc
the observer to reverse the instrument between the observatio
on two threads. He may then, first, observe the star at the es
transit on all the threads on one side of the middle thread
prime vertical, and, reversing the axis, secondly, observe the st
on the same threads on the opposite side of the prime vertics
then, allowing the axis to remain in the last position, third
observe the star at the west transit on the same threads, and the



IN THE PRIME VERTICAL. A

versing the axis, fourthly, observe the star on the same threac
2 the same gide of the prime vertical as at first. By this mod
' observation the same thread is alternately a north and a sout
read at precisely the same distance from the collimation ax
- each of the four observations made upon it. Now, in th
juation (166) we have ¢ — 2 = § elapsed sidereal time betwee
e east and west transits over the same thread in the sam
sition of the axis: so that, if we put

t =} elapsed time between the two observations on a thread
in one position of the axis,

t’ = ditto for the same thread in the reverse position of the
axis,

e have, ¢ being the distance of this thread from the axis,

— 8in ¢ = sin % sin 3 — co8 n cos & cost
sin ¢ = sin » 8in & — cos n cos 3 eost’

e sum of which gives
cot n =tan ésecd (t + ¢') secd (t —¢t')
ut by (167) we have
cot n cos 2 = tan (p — )

. which for B we must here employ the mean of the lew
terminations in the two positions, or 8 = }(b + 4’). Henc:
noting ¢ — B by ¢/, we find

tan ¢’ =tan dsec} (¢ + ¢t')sec} (t —t’) cos 4 17¢
p=¢+8 }(

here 2 will be the same for all the threads, and may be foun
ith sufficient accuracy from any single thread by taking th
fference between the right ascension of the star and the mea
' the two sidereal times of observation on that thread.*

Each thread thus gives a value of the latitude free from all th
strumental errors. The clock errors, however, have nearly th
me effect as in all the other methods: error in the clock ra:
fects £ and ¢ ; error in the clock correction affects A,

‘When there is time, the middle thread may also be observec

* Or we may negleot the factor cos A, and apply a correction to the final mea
itude, a8 in Art. 188.
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.once a8 a north thread and once as a south thread, and the lati.
tude will be found from it, according to the method of the pre-
ceding article, by the formula

TRANSIT INSTRUMENT

tan ¢’ — tan & secf cos A

\

where ¢ will be one-half the elapsed sidereal time between the
observations on the middle thread. In taking the mean, the
value of the latitude found from the middle thread should have
but one-half the weight of the value on any other thread, since
it depends on two observations instead of four.

This method is not much used in the field, as portable instru-
ments, usually not very firmly mounted, and never provided with
reversing apparatus, cannot be quickly reversed without risk of
disturbing the azimuth.

ExampLe.*—In the following observation, the axis was re-
versed immediately after the star had crossed the middle thread
at the east transit, and was then left in the same position until
after the star had crossed the middle thread at the west transit,
when it was again reversed, and, consequently, restored to its
first position.

Cronstadt, August 16, 1848.

East transit. West transit.
& Cassiopes.
b=+41"7 b=+41"2
Thread.| Chronometer. Chronometer.
I 04 20= 185 26 9= 50.5
Circle 8. II 0 22 56. 2 7 16.
111 020 9. | .ceenne
IIT | ceeeeenee 2 4 0
Circle N. II 0 29 88. 2 0 32.
I 0 32 45. 1 67 24.
b=—2"7T | b=—1"86

+ chronometer correction at 1* 15" was + 40°.1; its daily rate,
The star’s place was

*.74 on sidereal time.

e = 1*» 156~ 4071

8 = 59° 25' 7".75

* Bawirecn, Pract. Astron., Vol. I. p. 877.
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‘e find from the middle thread A = 8.9, cos2 = 1. The cox
itation for the several threads may be arranged as follows:

I II ors
Diff. obs’d. times S. | 1» 49= 820 1% 44= 20°.0 | 1*» 37" 51-.0
Chron. Rate 4+ 0.1 4+ 0.1 4+ 0.1
Diff. obs’d. times V. | 1 24 89.0 180 54.0
Chron. Rate 4+ 0.1 4+ 0.1
2¢t | 149 82.1 144 201 |1 387 51.1
2¢' | 1 24 89.1 130 54.1
t+¢t)| 0 48 82.8 0 48 48.56| 0 48 55.5!
}¢—t)| 0 6 133 0 8215
log secd (t + t') | 0.0098171 9248 9722
log sec} (¢t —t") | 00001600 0466
log tan 3cos 42 | 0.2284455 4465 4465
log tan ¢’ | 0.2384226 4164 4177
¢ | 69° 69 81".61 80".83 80”.60
B — 0.35 —0 85 — 0 .85
¢ | 69 59 31 .26 29 .98 80 .25

iving the value found from the middle thread but one-half th
eight of either of the other two, the mean is ¢ = 59° 59’ 80"".5:

187. To find the latitude from stars observed al only one of the
ansits over the prime vertical.—Notwithstanding the simplicity ¢
e preceding methods, it is not always possible to apply the:
the field. If the observer has but a short time to remain :
station, he may fail to find a sufficient number of bright sta:
hich pass near his zenith, and, if he uses those which pass :
eater zenith distances, much time is lost in waiting. But':
> can use stars observed at only one of their transits, he may i
7o or three hours obtain sufficient data for a very accura
termination of his latitude. The following method is base
pon that originally given by BEsseL,* with some modification
hich appear to me to facilitate its application.

If in the general equation (166), where ¢ denotes the distan:
" & thread from the collimation axis, we substitute ¢ + ¢ for th
stance, denoting now by ¢ the distance of the thread from tl

* Astron. Nach., Vo). V1. Nos. 181 and 182,
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mean thread, and by ¢ the distance of the mean thread from t}

axis, we have
i+ c= —sinnsind 4 cosncosdcos(r —2)

in which r is the hour angle of the star, and n and A are dete
mined by the conditions (167).

Each thread gives an equation of this form. The mean c
these equations may be found by the aid of our Tables VIIL an
VIII.A., according to the method already explained in Art. 17
Thus, T being the mean of the observed times on the sever
threads, 7 the interval obtained by subtracting each observed tin
from this mean, x and log % the mean of the several values c
these quantities taken from Table VIII. with the argument .

we have
I'=T+4=x

and, since here 7 is the west hour angle,
T, = T'l +A T—a

Then, ¢, denoting the mean of the equatorial. distances of tk
threads from the mean thread, we have

€08 n cos & cos (7, — 2)
k

¢ + f,=— sin n sin 3 +
or, putting
rcoe&,:-};cosa

7 8in é,=sin &
the mean equation is

c—'—::i‘=—sin n sin 8, + cos n cos 3 cos (r, — 1)

Developing cos(r, — 1), and substituting the values of sin 1

cosn cos 4, cos n sin 2, from (167),

e+,
4

=—h cos(¢p—p)sin 3,4 hsin(p—p)cos 8, cost,}-sina cosbcos s, sin

in which % and g are determined by the conditions

hsin g =sin b
hcos B=cos bcosa

But, since we can always put cos b =1, these conditions giv
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= B cosa, and A = cosa; and even if a were as great as 1° anc
= 20”’, we should have b = 8 — 0/7.008: so that we may alway:
ut b = 8.

‘We shall here assume that the instrument can be readily
rought within 20’ of the prime vertical, and then we may safely
ake h = cosa = 1, and substitute a for its sine. Hence we have

+i,_

- —cos8 (¢ —b)sin 8, + sin (p — ) cos 4, cos 1, 4 a cos 3, sin

ot ¢, and z be determined by the conditions

cos 2 8in ¢, = 8in &,
CO8 2 COS @, = COB J, CO8 7,
sin 2 = cos ¢,8in 1,
en

f;;‘_i!=sin(¢—9,—b)cosz+asinz

here ¢ — ¢, — b must be of the same order as a and ¢ + %, and
1erefore may be substituted for its sine. Again, since in this
iethod of finding the latitude no observation will be regarded
3 having any value unless some threads on each side of the
iean thread have been observed, i, will always be so small that
o error will arise in practice by putting y = 1.* Our equation
, therefore,
c+i,=(p—¢,—b)cosz 4 asinz

ow let

¢, = the assumed latitude,

a, = the assumed azimuth of the instrument,

Ag, Aa = the required corrections of these quantities;

ren, substituting ¢, + ag and a,+ aa for ¢ and a, dividing the
juation by cos z, and denoting the known terms by £, i.e. putting

f=¢,+b— ¢, —a,tan z 4 i sec z (180)

cgecz—aatanz —ap +f=0 (181)

e have

hich is the equation of condition furnished by each star. From
1 the equations thus formed, the most probable values of ¢, aa,
nd ag will be found by the method of least squares.

* Should wn extreme oase occur where the true value of y was required, it could
adily be found by the equations ycosd, = %oos ¢, ysin é; = sin 4.
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The values of ¢, and z will be most readily found by th
formule
tan ¢, = tan ¢, sec r, = k tan J sec z,
tan z = tan r,cos g, } (182

and it must be observed that tan z will be negative when tan:
is negative, that is, when the star is east of the meridian. Th
gign of the term c¢secz must also be changed when the axis o
the instrument is reversed.

ExampLE.—The following observations (among others) wer
taken by BesseL with a very small portable transit instrumen
for the express purpose of demonstrating the advantages of thi
method.* '

Munich, 1827, June 27.

Circle North. I 1I III Iv v Level.

= Lyre  E.48= 6¢.4/46 544112457 43¢.2/44= 3172|483 16+.8| 4 44.87:
vHerculisW.| 9 36 4{11 88.4]12 13 36.8/15 84.8[17 85.6/4 0 .40:
rCygni  E.29 88.0[28 47.212 27 65.2127 2.6126 8.0|40 .11

Circle South.
¢Herculis W.[44 47 .2/43 19.2(12 41 49.2/40 17.2/38 87.6]—1 .96
66 Cygni E.|48 40.8/50 6.6/12 51 31.2/52 69.6;54 32.8|—1 .87

These observations were taken in the garden of Dr. STEINHEIL'
house, where the assumed latitude was 48° 8’ 407,

The chronometer was a pocket mean time chronometer o
KEsseL. Its correction to sidereal time at 12* (by chron.) ws
aT= + 5 1= 8.81,1 and its rate on sidercal time was + 9.1
per hour.

The equatorial intervals of the threads from the mean of al
expressed in seconds of arc, were as follows, for circle north;

I II 111 v v
+5987.08 4 808".09 6719 — 294”91 — 612".46

The value of one division of the level was 4//.49. The pivot
were of unequal thickness, the correction for which had bee
previously found to be — 1".89 for circle north.

* Astron. Nach., Vol. IX. p. 415. + See the example on p. 284.
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The apparent places of the stars on the give

ollows :

a é
= Lyre 18* 50= 7.74 | 48° 48’27
v Herculis | 16 57 27.66 | 46 81 23
rCygni | 20 16 4.50 | 89 42 82
¢Herculis | 16 8 21.85 | 45 23 40
66Cygni | 19 85 33.81 | 46 7 14

We shall illustrate the use of our formuls
eduction of the observations of 7 Lyre in full.
loying the mean time columns of Table VIIL,

~ Lyre T I x
I 11» 48~ 6.4 —2»24:0 | — 0.04
II 46 54 .4 —1 12.0 0.00
III 45 43.2 — 0.8 0.00
Iv 44 81.2 +1 11.2 0.00
A\ 43 16 .8 +2 266 | 4 0.04
Means | 11 45 42 .40 0.00
E{ence we have
T,=T+4 x= 11*45= 42°40
aAT= 5 1 1.12
T, 4+ aT= 16 46 43.52
a= 18 50 7.74
r,=—2 8 24.22=— 80°51'¥%
log sec r, 0.0862574 log tan r, n¢
log tan & 9.9806553 log cos ¢, ¢
log k 0.0000120 log tan z n!

log tan ¢, 0.0469247

logsecz (

We shall assume o= 48° 8’ 40", a,=T' 52", &
ation given by BEssEL ;* and hence we have

# These quantities are, of course, arbitrary; but it simpli

sondition to make them as nearly correct as possible.

An app

isimuth may be found from any star by the formula ¢y= (¢, —
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@, = 48° 6 217.64

b=+ 20.00
—a,tanz= 48 8.38
48 8 49 .97

f= 4+ 997

The equation of condition from & Lyre is, therefore,
1.0767 ¢ 4 0.3990 aa — a¢ + 9797 =0

In the same manner, the equations for the other stars are found
to be

1.0269¢ — 0.23836 aa — A¢ + 10”.83 =0
1.1645¢ 4 0.5967 aa — ap 4+ 15 .93 =0
— 1.0468¢ — 0.3094 saa — ap — 17 .01 =0
— 1.0504c¢ 4 0.3214aa — ap — 12 62 =0

From these five equations we find the normal equations,

5.7688 ¢ + 0.8708 aa — 1.1709 ap + 717.46 — 0
0.8708 ¢ 4 0.7688 aa — 0.7741 2 + 12 .16 = 0
—1.1709¢ — 0.7741 aa + 5.0000 a9 — 7 .10 =0

whence
c=—12"19 aa = — 4".09
ap = — 2".06 with the weight 4.203

Substituting these values in the equations of condition, we
find the residuals as follows:

° o0

—2".72 740
+1 .88 177
+1 .86 1.85
—0 .92 0.85
+ 0 .93 0.86

The number of observations being m = 5, and the number of
unknown quantities # = 3, the mean error ¢ of a single observa-
tion is

e = (ﬂl — 252
m—u
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d the mean error of ag is

2".52
l.'o = =
/4208
ence we have, finally,

17.28

¢ = 48° 8’ 87”.94 with mean error + 1”.23

The true latitude, found by referring the position of the in-
rument to the Observatory of Munich, was 48° 8’ 89’.50. Thus,
e ebservations, taken within about one hour with a very small
strument, sufficed to determine the latitude within 1’7.5. From
e observations of two other evenings combined with the above,
e latitude found by BrsseL was 48° 8’ 40”7.08, which was only
/.58 in error.

DETERMINATION OF THE DECLINATIONS OF STARS BY THEIR
TRANSITS OVER THE PRIME VERTICAL.

188. The transit of a star over the prime vertical has been
ed in the preceding articles to determine the latitude of the
ace of observation when the star's declination is known.
onversely, if the latitude is otherwise known, the observation
ay be used to determine the star’s declination. The modifica-
ons of the formule given in Arts. 177, &c., necessary for this
1rpose, are obvious.

‘When the star passes very near to the zenith, the errors in the
me of transit have comparatively small effect upon the com-
ited declination ; for, by differentiating the equation

tan ¢ — tan ¢ cos ¢
e find
dé = — }sin28tant.dt

 that the effect of a given error d? in the hour angle upon the
mputed declination diminishes with the hour angle itself.
But an error in the assumed latitade ¢ is not eliminated,
ough in certain cases it will have less effect than in others;
r we have

sin 23

48 = dp-
? gin2g

he several values of the declination of the ssme star deter-
ined on different dates will, therefore, be affected by the con-
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stant error depending upon the error in the latitude, but the
differences in these values will nevertheless be accurately found.
Hence, the most important use of such observations is not so
much to determine the absolute declination of a star as the
changes of its declination resulting from aberration, nutation,
and parallax.

189. In order to eliminate the instrumental errors in the most
complete manner, STRUVE proposed the system of observation
given in Art. 186; and, in order to facilitate the application of
this system, he gave a new form to the instrument constructed
under his direction for the Pulkowa Observatory,—a form which
has since been adopted in other observatories.

Plate VI. exhibits the principal features of the Pulkowa prime
vertical transit instrument,* made by RepsoLp. The telescope
TT is at the end of the horizontal axis DE, which rests in Vs at
VV. The pier PP is of a single piece of stone. The apparatus
for reversing the instrument is permanently secured within the
pier, as shown in the plate, the vertical rod R and its arms aa
being raised by the crank fby means of the bevelled wheels ¢,
and thus lifting the telescope out of the Vs. When the telescope
is lifted sufficiently to clear the Vs, it is revolved 180° (the exact
semi-revolution being determined by a stop d), and is then again
lowered into the Vs. The time required in this operation is but
16 seconds; and if the astronomer has commenced an observa-
tion with the tube north, he can continue the observation with
the instrument reversed, tube south, after 1 minute and 20
seconds, this time being sufficient for the observer to rise,
unclamp the instrument, reverse it, and resume his position for
the observation. Thus, even with an instrument of large dime::-
sions, the system of observation given in Art. 186 is easily carried
out.

The pressure on the Vs is in part removed by the counter-
poises WW acting at NN,

The pressure on the two Vs is equalized by placing at D a
weight equal to that of the telescope.

The level LL may remain upon the axis during reversal.

The finder F is similar to that described in Art. 120.

The reticule at the focus m contains 15 vertical threads and

% Description de Dobservatoire astronomigue central de Poulkova (St. Petersburg,
1846), p. 167.
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o horizontal threads, as shown in Fig. 2. All the transits
e vertical threads should be made to occur exactly mi
tween these two horizontal threads, the telescope being !
follow the star's change of altitude by a fine motion ¢
ot shown in the plate), the handle of which is within rea«
e observer’s hand. The equatorial interval between th
me vertical threads is 15’ 15’/ or 61* of time.

There is also & movable micrometer thread parallel tc
nsit threads.

The field is illuminated by light thrown through the horiz
is and reflected by a mirror at E towards the reticule.

190. ExampLE.—The following observation was taker
RUVE with the instrument above described.*

1842. January 16. o Draconis.

East Vertical.—65°.6 R. West Vertical.—5°.4 R.
Tube 8. Tube 8.
Level. 4 40485 — 8548 + 405 —85.85
40 4 85 .8 40.55 856.86
40 4 86 .8 40.5 86.4
40 4 85 .8 40.45 854
Threads.
I 17 54=30.7 19* 42= 51° 4
II 66 8.685 42 13 .65
III 55 44 4 41 38.0
IV 66 22.25 40 59 .85
A 57 0.6 40 21.7
VI 67 40.9 89 414
VII 17 58 19.56 19 89 2.7
Tube N. Tube 8.
VII 18 1= 4.0 19* 86~ 17°.85
VI 1 455 85 387.0
A\ 2 29.8 84 52.385
IV 8 12.7 84 938
III 8 b57.6 83 24.7
II 4 89.8 82 42.1
I 18 65 26.35 19 81 55.6
Level -} 8742 — 8940 4 874256 — 8847
87 .2 89 .0 87 .26 88 .7
87 .2 89 .0 87 8 88 .7
87 .15 89 .1 87 .25 88 .7

——

* Astronomische Nachrichten, Vol. XX. p. 209.

Vor. IIL.—18
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The value of one division of the level was 17.002. The lat
tude, ¢ = 59° 46’ 18”7.00. The correction of the interval betwee
the east and west transits for the rate of the clock was 4 0°.0¢
The temperature of the air is recorded at the time of the obse
vation (in degrees of Réaumur), as the value of a division of th
level depends in some degree upon it.

According to formula (179), the declination will be foun
from these observations by the formula

tan 8 — tan ¢’ cos ¥ (¢t 4 ¢)cos }(t — ')

where, 8 being the mean inclination of the axis, we have ¢’ = ¢ —
t{=1 elapsed time between the observations on the same threa
for “tube south,” # =the same for ‘tube north.” We omit th
factor cos A, because a fixed instrument can always be adjuste
8o accurately that we can put cos A =1.

But, instead of computing & directly by this formula, we ma
find an approximate value by using the constant value of ¢ i
the second member, and then apply a correction for the incl
nation 8. Thus, we find*

tan ¢’ = tan ¢ cos 4 (¢ + t)cos ¥(t — t")

8in 28’
Ad =
P nze (18
8=238"+4 a¢

in which we make ad additive by supposing B to be positiv
when the south end of the axis is too high.

The distance ¢ of any thread from the collimation axis may b
found from the two equations

— 8in ¢ = c08 ¢ 8in & — 8in ¢ cos 3 cos ¢
8in ¢ = cos ¢ 8in 38 — sin ¢ cos & cost’

the difference of which gives
sinc = — sin ¢ cos & sin #(¢ + ¢') sin $ (¢ — ¢) (184
* We have tan 8 = t:_ng" whence we readily deduce
¥ tang
: " _ ,__ ., 8in(d+ &)
8in (6 — d') = sin (¢’ — ¢) (e o) 7ETy)

which gives the formula for Ad used in the text, when its sign is changed for th
reason given.
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The computation of the preceding observation may be arranged
 the following form :

I II IIx Iv v Vi i

2¢ | 1848w 20070 | 4T 50.00 | 45%530.00 | 44m 370,00 | 4321019 | 42% 02.50 | 40m430.20
w.—x.{,‘, 126 20.34(28 2.30(29 27.19 |30 56.00 |52 22.64 |33 51.59 |35 13.94
$(+2)| 0 48 42.53 |48 46.87 |.48 50 .22 (48 53.60 (48 55.96 48 58.05 | 48 00 .31
d(¢—#)| 0 5 2786| 4 45.67| 4 6.62| 832525 2 44.64| 2 225 1 234

log cos 4 (¢ + £) | 9.9001167 0871 0642 o1 0249 0106 0020

log cos § (¢ — 1) | 9.99087656 9063 9301 9616 0689 9828 9022
log tan ¢ | 0.2345728 6728 6728 5728 8728 6728 5728
log tan 8’ | 0.2245660 6062 5671 5658 5668 5662 5670

8/ |568°11'307.00 | 39”.04 0.8 38”.90 89712 30”04 o'

Mean &' = 69° 11’ 89”.077
B =+ 07.808 ad= 4+ 0.815
3=159 11 39 892

By comparing the mean value of &’ with the several values
und from the different threads, we find the probable error of a
ngle determination by one thread in the four positions is in
is case only 07.08. This observation, however, was taken
hen the atmosphere was unusually steady. From a discussion
" the observations of 29 days on this star, STRUVE finds the
obable error of a single determination by one thread to be
/125, and that of the mean of seven threads, consequently, only
’.047. To this is to be added the probable error of the level
termination, which, from the above example, is evidently ex-
edingly small. STRUVE concludes that, under the most favorable
nditions of the atmosphere, the declination is determined by
is method with a probable errorof not more than 0”7.05, and in
erage circumstances with a probable error under 0’.1.

191. If we wish to compute the time of the transit of the star
rer the meridian of the instrument from these observations
ith the utmost rigor, we must take into account the difference
" level at the east and west transits over the prime vertical.
he effect of a difference of level is the same as that of a differ-
ce of latitude: hence, differentiating the equation

cos r = tan ¢ cot ¢

which r is the hour angle at the west transit, we have
Aptand Ag 8in 8
sin'gsint  sin ¢ /[sin (¢ + 8)sin (¢ — 4)]

15ar =
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The mean of the times of transit over the east and west vertical,
ot 7), will be increased by 3 ar. Putting then 8’ — 8 for agp, the
correction of the time 7, will be expressed by the formula

AT — (8— B')sin &
" 80 sin ¢ 1/[8in (¢ + &) sin(p — 3)]

Thus, in the preceding observations, we have at the east transit
B = + 0".689, and at the west transit 8/ = + 0"7.924, and

(T,) =18 48= 41°.09
B—F=—0"285 AT =— 0.08
Corrected 7,=18 48 41.01

(185)

We can now find the exact azimuth of the instrument. The
clock correction at 18* 48™ was - 881, and the apparent right
ascension of o Draconis was 18* 48™ 50°.17 : hence

Sid. time = 18* 48 49-.82
o =18 48 50.17

A=— 0.85 = — 12".75 in aro,

where 2 is the angle which the meridian of the instrument makes
with the true meridian. Hence, a being the azimuth of the
rotation axis, we have, by the formula @ = 2 sin ¢,

a=—11".0
Finally, if we wish to determine the effect of the azimuth upon

the observed declination, we have the formula

t&nt’:-t—a—n—ﬁ
cos A

in which d, is the declination deduced by assuming cos A =1,
and J is the true declination. From this we readily deduce

8 — 8, = (41)*sin 1" sin 28 (186)
and hence, in the above example,

3 — 8, = 0".00017
which is altogether insignificant.

192. The extreme precision of the method is evident from the
above example. Nevertheless, there remains yet a doubt as to
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e perfect accuracy of the declination deduced, arising from the
esibility of a change of azimuth between the east and west
ansits. It is evident from the formula

gin ¢ = — sin n 8in & 4 cos n cos & cos (r — 1)

at an increase of A by the quantity al has the same effect as an
jual decrease of the hour angle z, and a change of — alin
oduces a change of —}al in the hour angles used in com-
iting 4. To find the effect of this upen the computed 3, we
wve, by differentiating the equation

cos 7 = tan J cot ¢
ith reference to = and 4,
A8 = — AT CcO8?d tan ¢ sin ¢
, putting §al for — ar, and eliminating r,
cos 31/[sin (¢ 4 9) sin (¢ — )]

ad = %ai. o
?
— 2a.°% 3 y/[sin (¢ + &) 8in (¢ — &)] (187
8in 2¢

The following table, computed by this formula, is given by
'RUVE to exhibit the effect of a change of azimuth aa = 1”, for
fferent values of ¢ — d.

$—3d aé
0° ¢ 0"7.000
0 20 0 .042
0 40 0 .060
1 0 0 .074
2 0 0 .108
8 0 0 .186
4 0 0 .162

The values of ad here increase very nearly as Vg —d. For
Draconis, the correction would be ad = 0”7.055. STRUVE inves-
gated the probability of a change of azimuth occurring in his
strument. He found that the fluctuations of the azimuth during
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a whole year had not probably exceeded one second of arc on
either side of its mean value, and that even the extreme changes
of temperature from winter to summer had not produced any
sensible effect upon it. Hence he concludes that since the tem-
peratures at the east and west transits of a star on the same day
never differed by more than 2° R. or 43° Fahr., and generally but
a fraction of a degree, the variations of the azimuth could not
have produced any error which amounted to even 07.01. Itis
important to observe that, during the period referred to, the
screws for adjusting the azimuth were not touched.

198. Micrometer observations in the prime vertical—When a star
passes within a few minutes of the zenith, its laferal motion
(across the threads) becomes so slow that the observation of the
transit over the side threads would occupy too much time. The
star may indeed be within the limits of the extreme threads
during the whole time from its east to its west transit. In such
cases, the movable micrometer thread takes the place of the
fizxed threads. This may be used in two ways: either by setting
the micrometer successively upon round numbers, identical
before and after reversing, in which case the observations are
reduced precisely as those made on fixed threads; or by setting
at pleasure and as often as the time permits, in which case the
observations are reduced as follows.

The micrometer reading for the case when the movable thread
isin the collimation axis is known approximately: let its assumed
value be denoted by M, and its true value by M 4 ¢. Let us sup-
pose that for “tube south” the micrometer readings increase as
the thread is moved towards the north; then, if m is the reading
at an observed transit, the thread is at the distance m — (M + ¢)
north of the collimation axis, and this distance is to be substituted
for ¢ in our fundamental equation (166). In this equation, we
ghall also put 2 =0, » = 90° — ¢, on the supposition that the
azimuth and inclination of the axis are each zero, since the
resulting declination may be corrected by the methods above
explained. We have then

sin(m — M — ¢) = — cos ¢ s8in 3 4 sin ¢ cos & cos 7
=sin(p — 3) — 28in p cosd sin’$ r

or, since in the case here considered ¢ — & is but a few minutes,
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2sin pcosdsin®}r

m—M—c=¢—8— —

'or convenience in computation, let us put

e =M—mn
2 =¢—30
2s8in*dr .
RBR=————singcosd
sin 1” ¢

. . . 2s8in*dr
n which sin ¢ cos 8 will be constant, and log 7 mey be

aken directly from our Table VL. ; then the equation becomes
z4+c=R—e (188)

n which e is given by the observation for each thread, and R is
0 be computed for the several values of r found from the ob-
erved sidereal times and the star’s right ascension.

This equation applies to the case of ¢ tube south.” When we
ave ¢ tube north,” the equation becomes

: 2s8in ¢ cos d8in* } v
—_m+Mte=9¢ —8— 1"

o that, putting in this case

€=m—M

7e have
z2—c¢c=R-—¢ (189)

The instrument is reversed but once. The first series of ob-
ervations is taken before the meridian passage, and the second
fter it. We thus find from the means of the observations the
alues of z + ¢ and 2 — ¢, whence both zand ¢. The uncorrected

eclination is then
d=9¢p—2z

o which we apply the correction for the level, as in Art. 190,
nd, if necessary, also the correction for the azimuth according
0 (186).

It is evident that this method may be applied even to stars
vhose declinations are somewhat greater than the latitude.

ExamprLE.—The following observations are given by StRUVE
rom among those taken with the Pulkowa instrument :*

”

* Astr. Nach., Vol. XX. p. 217.
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1842, January 15. v Ursee Majoris.

East Vertical. (— 6°.6R.) West Vertioal.

Tube S. Tube N.

Level. 4 40425 —3743 + 8840 — 8947

40 3 87 .35 88 .0 89.7

40 .3 37 .85 88.0 39.7

40 .3 37 .85 88 .0 89.7

Transits. Microm. Transits. Microm.

9 80= 29°. 9r.315. 0 48= 42-.5 14771

80 66.5 9.5650 48 14 14 .527

81 246 9.775 47 46 14 .276

82 0 10.083 47 17 14 .068

82 28 10.298 46 44 18 .825

82 54 10 .470 46 9 18 .597

83 29 10.691 45 385 13 .361

84 4 10.879 45 11 13 .232

34 387 11.062 44 40 13 .077

9 85 11 11 .226 9 4 12 12 .942

Level. 4 4048 —874.25 + 8840 — 3947

40 .35 37.8 38 .0 89.7

40 .35 87 .25 38 .0 89.7

40 .25 87 .3 . 88 .0 89 .7

B = + 04328 — + 0.324

In these observations, in order to avoid any possible error of
lost motion in the micrometer screw, the thread is always set in
advance of the star by a final positive motion of the screw, that is,
by that motion which increases the readings.

The value of a revolution of the micrometer screw was found
by the formula

r = 28".682 + 0”.000292 (9.6 — T
in which T'is the temperature indicated by the Réaumur ther-
mometer; and, since in this example 7'= — 6°.5, we employ

r = 28".6867 log r = 1.45768

The apparent position of the star on January 15, 1842, was,
according to ARGELANDER'S Catalogue,

o = 9 89~ 461 3 = 59° 46’ 24".

The clock was slow 8.3, and hence the clock time of the star’s
culmination was 9* 39 87°.8, for which we may, for simplicity,
take 9* 39 88, since a small error in this quantity will not affect
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the final value of z when the hour angles on the opposite sides
of the meridian are 8o nearly equal as in the present case.

With the value ¢ = 59° 46’ 18/, we find log sin ¢ cos 3=9.68848.
The assumed value of M = 12°.000; and hence the observations
may be reduced as follows:

Tube 8.
r log’.::,‘,' R m — M | log(m—A) . R~—¢ =5+ ¢ | Diff. from mean,
—9= 9+ | 2.21581 | 717,49 | 2r.685 | 0.42894 | 77.02 | — §".68 — 0".09
8 41.5| 2.17118 | 64 .61 | 2.450 | 0.88917 | 70 .28 b5 .77 — 0 .88
8 18.5| 2.12825 | 67 .77 |2.225| 0.34788 | 63 .88 6. —0 .62
7 88 2.06842 | 49 .76 | 1.917 | 0.28262 | 64 .99 5 .28 4 0 .21
710 2.00863 | 48 .86 |1.702 | 0.28096 | 48 .82 4 .96 4+ 0 48
8 4 1.94946 | 38 .72 | 1.580| 0.18469 | 48 .89 8 .17 4+ 0 .27
6 9 1.87075 | 82 .80 |1.809| 0.11694 | 87 .66 8 .26 +0.19
b 84 1.78420 | 26 .46 [ 1.121 | 0.04961 | 82 .16 6 .70 —0 .26
5 1 1.693885 | 21 .49 |1 0.988 | 9.97220 | 26 .91 5 .42 + 0 .02
4 27 1.68974 | 16 .91 10.774 1 9.88874 | 22 .20 b5 .29 +0.156
Mean — 6 .488
Tube N.
M—m s—c

44=34:. | 1.61222 | 17".81 | 0n.942  9.97406 | 27”.02
2 | 1.69678 | 21 .6411.077 | 0.08222 | 80 .90

83 | 1.78160 | 26 .81 .
57 |1.84204 | 80 .28 | 1.361| 0.13886 | 89 .04 .81 + 0 .87
.697 | 0.20880 | 45 .81 .54 —0 .86

—9".21 — 0.08

9

9

8

81 1.92106 | 86 .27 9
.825| 0.26126 | 52 .86 9 .80 —0 .12
9

8

9

9

9

26 | —0.08
08 | 40.15

1.99651 | 48 .06
89 |2.06081 | 49 .98 | 2.068 | 0.81656 | 69 .82 84 | —o0.16
8 |[2.11852 | 56 .49 |2.276| 0.85717 | 66 .29 .
88 | —0.16
a8 | 40.02

86 |2.16198 | 68 .16 | 2.527| 0.40261 | 72 .49
178
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4.5|2.20867 | 70 .83 [2.7711 0.44264 | 79 .49

Hence we have

Tube 8. 2z 4 ¢ = — 5"488
« N z—e=—9.178
z2=—17.3808 c¢=+41".870
¢ = b9° 46’ 18”.000
=9 —2=259 46 25 .808
Corr. for incl. of the axis — + 0 .824
3=>59 46 25 .632

From the differences in the last column of this computation,
we find the probable error of a single observation to be 0//.194,
produced by the error of observation and the error of the micro-
meter. This agrees well with the probable error found for
o Draconis, which was 0/7.08 for four observations on one thread.
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The probable error of four observations of » Urse Majoris is
07,194 + 2 = 07097, which is somewhat greater than 0'7.08,
apparently because it involves the additional error of the micro-
meter.

The probable error of the mean value of z or of the value of
found by the preceding micrometer observations is 0".194 -+ /20
=0.048. The results obtained by the micrometer have, there-
fore, very nearly the same degree of precision as those obtained
by the fixed threads, when each method is skilfully applied.

The extreme precision of the observations with this instrument
in the hands of STruVE is strikingly exhibited in the accordance
of the values of the aberration constant determined from the
changes of declination of seven stars, which have already beep
cited in Vol. I. Art. 440.

CHAPTER VI
THE MERIDIAN CIRCLE.

194. TaE Meridian Circle, or Transit Circle, is a combination of a
transit instrument and a graduated vertical circle. This circle
is firmly attached at right angles to the horizontal axis, and is
read by verniers or microscopes (see Arts. 18 and 21), which are
in some cases attached to the piers, and in others to a frame
which rests upon the axis itself.

By means of this combination, the instrument serves to deter-
mine both co-ordinates of a star’s position,—the right ascension
from the time of its transit, and the declination from the zenith
distance measured with the circle ; or, if the star’s place is given,
it serves to determine either the local time or the latitude of the
place of observation.

For the measurement of declinations, it takes the place of the
Mural Circle, which consists of a circle mounted upon one side
of a pier, the circle being secured to the end of a horizontal axis
which enters the pier. As the latter instrument cannot be re-
versed, and its axis is not symmetrically supported, it is not suited
to the accurate determination of right ascensions, and is to be
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regarded as designed solely for the measurement of declinations.
Even for this purpose the meridian circle is preferable, as it
admits of reversal; and there is always an advantage in com-
bining determinations made in reverse positions of an instrument,
whereby unknown errors may be either wholly or in part elimi-
nated. I shall, therefore, not treat specially of the mural circle.
It is not probable that any more instruments of that form will
hereafter be constructed; and the method of using those that
exist will readily be understood by any one who bas mastered
the meridian circle.

195. Plates VII., VIII., and IX. represent a meridian circle of
RepsoLp, belonging to the U.S. Naval Academy, and mounted
at Annapolis in 1852. It is almost identical in form with the
meridian circles constructed by the same artist for STrRuve and
BesskL at the Pulkowa and Konigsberg Observatories.

It has two circles, CC and C’(’, of the same size, but only one
of -these, CC, is graduated finely; this is read by four microscopes,
two of which are seen at RE. The microscopes are carried upon
a square frame which is centred upon the rotation axis itself:
the form of this frame is shown in Plate IX., where the instru-
ment is represented upon the reversing car. The horizontal
sides of the frame carry two spirit levels /, /, by which any change
of inclination of the frame with respect to the horizon may be
detected.

The second circle C’C’, constructed of the same size as the first
for the sake of symmetry, is graduated more coarsely, is read at
either of two points, and is used only as a finder.

The counterpoises WW act at XX, points nearly equidistant
between the telescopes and the Vs, and very near to the circles;
an arrangement which prevents the possibility of any appreciable
flexure in the horizontal axis, at the same time that the pressure
on the Vs is reduced to a very small quantity.

The inclination of the rotation axis is measured with a hanging
level LL.

An arm F@, turning upon a joint at F) receives, when hori-
zontal, an arm which is connected with a collar upon the rotation
axis. By turning a screw, the head of which is at G, the tele-
gcope is clamped in the collar, and then a screw (not seen in the
drawing) acting horizontally near G' gives fine motion to the
telescope by acting upon the vertical arm.
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Another arm fg, nearly similar in its form and arrangement to
F@, receives a vertical arm attached to the microscope frame.
Screws acting horizontally at ¢ upon the vertical arm serve to
adjust the frame.

These arms are shown in Plate VIIL. as they appear when
thrown down and out of use while the instrument is being
reversed. In this plate is also seen the arrangement of the
vertical arms and the friction rollers by which the counter-
poises act upon the horizontal axis, together with the form of
the Vs,

The field is illuminated by light thrown into the interior of the
telescope through tubes at 44 and reflected towards the reticule
by & mirror in the central cube. The quantity of light is regu-
lated by revolving discs with eccentric apertures at the extremi-
ties of the tubes nearest to the Vs. These discs are revolved by
means of a cord to which hangs a small weight S.

The reticule at m contains seven transit threads and three
micrometer threads at right angles to the transit threads. These
three threads have a common motion, their distance from each
other being constant. This distance being known, an observa-
tion on either of the extreme threads can be reduced to the
middle thread. The micrometer thus arranged is intended for
the measurement of small differences of declination, and alsc for
the measurement of absolute declinations when used in con-
junction with the graduated circle, as will be fully explained
hereafter.

The graduated circle of this instrument is nearly 80 inches in
diameter, and reads directly to 2/’ by the graduations on the
micrometer heads of the reading microscopes; and by estimating
the fraction of a graduation of the micrometer head, the reading
is carried down to 0”.2. This is a sufficiently great degree of
accuracy of reading to correspond to the dimensions and optical
power of this instrument; but in larger instruments the reading
is sometimes carried down to 0’’.05, or even less.

The discussion of the errors of the circle of this instrument is
given in Arts. 28, 82, and 38.*

* The errors of the circle may not be constant, since they may fluctuate with the
temperature of its various parts. We may, however, assume that the errors at
different temperatures will be the same, provided the expansion of the circle for an
inerease of temperature is uniform throughout all its parts. For the greatest pre-
cision, therefore, we should endeavor to secure this condition of uniform tempersnws,




MERIDIAN CIRCLE. 285

A mercury collimator should be placed permanently beneath
the floor directly under the centre of the instrument, covered by
& movable trap-door.

I proceed to consider the methods of observing with the meri-
dian circle. Its application as a transit instrument will be suffi-
ciently clear from the preceding chapter. It is necessary to treat
here only of the use of the circle and micrometer in the mea-
surement of nadir distance, zenith distance, polar distance, or
altitude of a star, from which either the declination of the star
or the latitude is found.

196. Nadir point.—The first of the methods of using the instru.
ment which I shall treat of is that in which all observations with
the circle are referred to the nadir. Let us first suppose the
instrument to be perfectly adjusted in the meridian, and the
observation of a star to be made at the instant of its transit. The
nadir point is obtained by directing the telescope vertically
towards the mercury collimator. To take the simplest case, let
us suppose the sight line to be determined by a fixed horizontal
thread (at right angles to the transit threads). Let this thread
be brought into coincidence with its reflected image.” The sight
line is then vertical, and the reading of the circle (by which we
always understand the mean of all the microscopes added to the
degrees and minutes under the first microscope, or microscope
A) represents the nadir point of the circle. Let this reading be
denoted by C. The telescope being then directed towards a
star, and the fixed horizontal thread being made to bisect the
star at the instant ot the transit over the middle vertical thread,
let the circle reading be C’. Then the apparent nadir distance
of the star, which I shall denote by N, will be

N'=C—C,

and, for this purpose, it is advisable to make the piers sufficiently high and broad to
protect the whole circle; for, since the temperature of the piers will often differ
from that of the circle, the radiation from them will tend to produce unequal tem-
peratures in the different parts of the oirole, unless the latter is equally exposed to
this radiation throughout. But even this arrangement will fail of its objeet if the
temperature of the piers is not uniform ; and therefore they must be protected against
fluctuations of temperature as muoh as possible; for example, by first coating them
with ofl or some other preparation to exclude moisture, then wrapping them in cloth,
and finally encasing them in wood, as proposed by Dr. GouLp for the meridian circle
of the Dudley Observatory.
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and this distance is usually reckoned from 0° to 360° from the
nadir, through either the south point or the north point, accord-
ing to the direction in which the graduations increase. This
direction is different in the two positions of the rotation axis.
Supposing the position of the axis to be indicated by that of
the circle itself, let us assume that the nadir distance is reckoned
through the south point for circle east, and through the north
point for circle west. If we denote the apparent zenith distance
of the star south of the zenith by 2/, we shall then have

_ o __ AT - for circle east
7= = (180°—X) { — for circle west }

In obtaining the circle readings C, and C’, the correction for
error of runs, when such error exists, must be applied as explained
in Art. 22. But, with the aid of the telescope micrometer, we
can avoid the error of runs, as follows. In observing the nadir
point, set the circle so that an exact division is under or nearly
under the zero of one of the reading microscopes, that is, so
that all the microscopes will read nearly 0’/ : their mean will not
require any sensible correction for runs. But the fixed thread
will then not be in coincidence with its image. Measure the
distance of the fixed thread from its image by the micrometer.
One-half this distance, being applied to the circle reading, will
give the reading for absolute coincidence. In like manner, in
observing the star, set the circle again upon an exact division,
and bisect the star with the micrometer thread; the distance of
the micrometer thread from thefixed thread, being applied to
the circle reading, will give the required reading C’.

But, when the micrometer is employed, it is altogether prefer-
able to dispense with the fixed thread and to depend solely upon
the movable one. Thus, to determine the nadir point, having
brought the circle division which is nearest to the nadir point
reading under microscope 4, let the mean reading obtained
from all the microscopes be called C,, Bring the micrometer
thread into coincidence with its image, and let the micrometer
reading be M,, which we shall suppose to be converted into arc
by multiplying by the value of a revolution found according to
Art. 46 or 47. It is now evident that when the telescope is
directed upon a star, if the micrometer reading remains M, while
the thread bisects the star and the circle reading is C’, the nadir
distance is C’ — C,, precisely as if the micrometer thread were
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fixed. But the reading C’ will, in general, involve an error of
runs, to avoid which, set the circle as before upon a neighboring
exact division, and let the reading be still called C’; then bisect
the star with the micrometer thread, and let the reading be M’;
the nadir distance of the star will be

N'=(C"—-0C) + UM — M) (190)

In practice, this method will be found much simpler than it at
fist appears. The finder should always be adjusted so that
whole minutes in its reading correspond to whole minutes of the
principal circle. Then, in all observations of the nadir point,
we set the finder to the same exact division; and, in observing
the star, we compute its approximate nadir distance to the nearest
minute, and set the finder upon this minute.

In the above formula, we suppose the micrometer readings to
increase with the circle readings.

ExamMpLE.—On May 4, 1856, the telescope of the Meridian
Circle of the Naval Academy was directed to the nadir by setting
the finder upon 0° ¢/, and the mean of the four microscopes gave
the circle reading

C, = 859° 59 54".70 (or — 0° ¢/ 5”.80)

The micrometer thread was then brought alternately north and
south of its own image in the collimator, so as to form each time
a square with the middle transit thread and its image (as in Art.
147), and the micrometer readings were as follows:

Image N. 8. Means.

b-8344 | 4048 | 6787410
82.9 | 40.4 36 .65
38.0 | 403 36 .65
335 | 405 87 .00

M, — b 86485

so that M, was the reading when the micrometer thread was in
coincidence with its image.

The telescope was then directed to Polaris at its upper culmi-
nation by setting the finder at 229° 82’ (the latitude being 38° 59/,
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the declination 88° 82/, and the refraction 1/, approximately),
and at the time of the star’s transit, the micrometer thread
bisecting the star, there were found

Circle reading €' = 229° 32' 7".47
Microm. « M'= b’ 504.6

The value of one division of the micrometer was 07.927. Hence

C' — C, = 229° 82' 12".77
M — M, = 4 13475 = + 12 .75

(V') = 229 82 25 .52

This is the apparent nadir distance upon the supposition that the
position of the reading microscopes (which rest on the axis of
the telescope*) remained absolutely fixed while the instrument
revolved from the nadir to the star. To determine this, the
spirit level was applied to the microscope frame. At the nadir
reading, the inclination of the frame was ,=— 1’/.23, and at the

observation of the star it was i = — 17.54 ; and hence we have
. (V") = 229° 82’ 25".52
¢ — i, = —0 .81

N'=229 32 25 .21

In this observation, the circle was east, and the nadir distance
was reckoned through the south point.

197. Bince G, and M, will be applied in reducing all the obser-
vations made on the same day, or so long as these quantities are
regarded as constant, it will be convenient to combine them once
for all. We may either convert the micrometer reading into
seconds of arc and add it to the circle reading, which will give
the circle reading when M,= 0; or convert the seconds of the
circle reading into divisions of the micrometer and add it to the
micrometer reading, which will give the micrometer reading
when C,=0. Thus, if we take the latter method in the pre-
ceding example, we have C,= — 5'".80 = — 5472 of the micro-
meter. We then take (M)=C,+ M,= 5 86%.85 — 5472 =

* As this construction involves the necessity of an additional observation, and
thus introduces another source of error, it appears to be preferable to attach the
reading microscopes permanently to the piers, provided the piers are well guarded
sgainet changes of temperature which might alter the relative positions of the
microscopes.
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67 81413, which we may call the micrometer zero; and in any
pbservation of a star when the circle reading is C’ and micro-
meter reading J’, the nadjr distanee will be simply (N") = C”
+ M’ — (M). In this example, therefore, we should have

C'=229° 82’ 71”47
M — (M) = + 19447 = +18 .06
() =229 82 25 .53

198. Instead of a single micrometer thread, BesseL used a
double one, consisting of two very close parallel threads. The
sight line is then & line which bisects the angle between the
threads, and a star is always observed when it is estimated to be
midway between them. It was the opinion of BesseL that even
greater accuracy was attainable in this way than in bisecting g
star by a single thread. Although there may be some doubt of
this being true for all observers, still the method has advantages
in determining the nadir point. The sight line determined by
the middle point between the threads will be vertical when each
thread is in coincidence with the image of the other thread. But,
as we cannot depend upon such directly observed coincidences,
the micrometer reading for coincidence is found by taking the
mean of two observations, at one of which the
image of one of the threads is placed midway
between the threads, and at the other the image
of the other thread is so placed. Thus, at one — &% __
observation we make the observation a, Fig. 47,
and at the other the observation b, and take the mean of the
corresponding readings.

Pig. 47.
a

199. Reduction to the meridian.—In the above method of obser-
yation, the determination of the nadir point is made very precise
by repeating the readings of the circle and micrometer, but the
reading for the star depends upon a single observation. In order
to give both measures at least equal precision, we must make
several bisections of the star by the micrometer thread during
the passage of the star across the field. But, since the star in
general describes a small circle in the field, all the measures on
either side of the meridian will require a correction. In inves-
tigating this correction, I shall suppose that the instrument is not
precisely in the meridian, in order to see what effect its errors

have upon the observed declination.
Vor. I1.—19
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In Fig. 48, constructed as in Art. 123, let O be the position of
the star. The great circle described
by the telescope is N’Z’S’, and Z’ is
the zenith of the instrument. The
arc AO drawn from the pole of the
great circle N'Z’8’ to the star inter-
sects this circle in O/, and OO’ re-
presents the micrometer thread which
bisects the star, since this thread is
also perpendicular to the plane of the
instrument, and 0’0 = ¢ is the dis-
tance of the star from the collimation
axis. If the telescope were directed to the. pole, the thread
would coincide with PP’, P’ being the point in which the great
circle AP intersects N'Z’S’. Hence, P’ is the apparent pole of
the instrument, and the apparent polar distance of the star, as
given by the instrument, is P’0’= 90° — 8’ (denoting the in-
strumental declination by &’). But, since the triangle P’A 0’ is
right angled at P’ and O’, the angle P’A0’is measured by
P'0O’. We have, therefore, in the triangle PAO (with the nota-
tion of Art. 128), the sides PA = 90° —n, A0 = 90° + ¢, PO
= 90° — 4, with the angle APO = 90° 4 r — m, and the angle
PAO =90°— 4. Hence, by Sph. Trig.,

Fig. 48.
N'n N

sin 8 = — sin 7 sin ¢ 4 cos n cos ¢ sin &’
cos 8s8in (r — m) =  cos n 8in ¢ -} sin % cos ¢ sin &’ asn
cos 8 cos(r — m) = cos ¢ cos &’

in which & is the corrected declination,* = is the east hour angle
of the star, and m and n are the instrumental constants as deter-
mined by transit observations (Art. 151). But, since n is exceed-
ingly small (seldom more than 0*.5 = 7”".5) and ¢ not more than
15’ even when the star is observed near one of the extreme
transit threads, the product sin ¢ sinn will be insensible, and we
may always put cosn =1. The first and third of these equa-
tions, therefore, become
sin 8 = cos ¢ gin &'
€08 8 co8 (r — m) = cos ¢ cos 3’

whence
: tan 8 = cos (r — m) tan &’ (192)

* That is, J is the apparent declination (affected by refraction and parallax) as it
would be given by an observation in the meridian with a perfeotly adjusted instrument.
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from which it appears that the only correction for the error of
the instrument with respect to the meridian is the subtraction
of the constant m from the hour angle. The value of & will be
found more conveniently by developing it in series by Pl. Trig.
Art. 254; we find

3=+ q a.m 28 ¢ sl.n 44’
sin 1” 2 sin 1”

+ &c.

in which

_ sin* } (r — m) _ . _
7= 1 —sin'}(r —m) tan*d (r —m)

As it is more convenient to employ sin®}(r — m) instead of
tan? } (r — m), because tables of the former quantity are in com-
mon use (see Tables V. and VIL.), we develop ¢ in the form

¢ = —sin*}(r — m) [1 — sin?} (r — m)] !
= — sin*} (r — m) — sin* } (r — m) — &e.

and, substituting this value, we find

in3 _— int¢l1 —
d=10'— M(T ™) sin 28’ — w sin 28'sin*s’ (193)
sin 1” sin 1”

e lfe
where the last term is usually insensible, and the term !ﬂ—:i(f?'—ﬂ
sin 24’ is called the reduction to the meridian.* In computing
this term, we may use J for ’. The correction is always sub-
tractive from the instrumental declination. If, however, we wish
to apply it to the observed nadir distance N/, we must observe
the sign of N’in (190). For circle east, the reduction will be
additive to N/, and for circle west, subtractive from N’.

Exampre.—In the observation of Polaris on May 4, 1856, p.
287, the star was not only observed at the time of its transit, but
it was bisected by the micrometer thread a number of times
during its passage over the field, the clock being noted at each
bisection, as in the following table, which contains also the re-
duction of the observations:

* The last term of the series becomes & maximum for a given value of r — m

sint § (1 — m) .
_— , which

sin 1" tve
amounts to 0”.01 only when 1 — m = 6™ 28. For J — 88° 80, the term amounts
to 07.01 only when r — m — 12™,

when 6 — 60°, in which case the value of the term is
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? » M —My= M “=T=| B |avig |Difm
14 1m 5]e. | 5 504.5 | 4 184.65 = 4 12”.65|4 2™ 52'.|— 07.41 |4 127.24|— 0”.20
2 17 50 .9 14 .05 18 .02| 2 26 0 .30 12.72|4-0 .28
2 49 60.8| 18.95 12.98) 1 64 | 0.18 12.75/+ 0 .81
8 16 50.56 | 18.65 12.65) 1 27 | 0.11] 12.54/46.10
8 86 50 .2 18 .86 12.88) 1 8 0 .06/ 12 .32|—0 .12
4 0 650 .4 18 .66 12 .66/ 0 438 0 .03 12 .58(4 0 .09
4 80 50.8 | 18.95 12 .98/4+0 183 | 0.00 12 .93(4 0 .49
4 b7 60 .4 18 .66 12 .66!—0 14 0 .00 12 .56{4 0 .12
6 11 49 4 12 .66 11 .68 1 28 0 .11 11 .562|— 0 .92
6 87 50 .4 18 .66 12 .66] 1 &4 0 .18/ 12 .88/— 0 .06
70 49.8 | 12.95 12.000 2 17 | 0 .26 11.74/—0.70
7 24 51 .2 14 .86 18 .80 2 41 0 .86 12 .94/4-0 .60
7 66 50 .9 14 .06 18 .02/—8 12 [—0 .b61|4 12 .51I4 0 .07
Mean 4 12 .44

The column 7 contains the observed clock times; M’ the micro-
meter reading at each bisection of the star; M’ — M, is found
from the observation of the nadir, which gave M,= 5 36.85,
and M" is the value of M’ — M, in arc, the value of a division
being 07.927. To find ¢ — m, we observe that the hour angle 7
is found by the formula

‘r=a.—(T+AT)

@ being the right ascension of the star and a7 the clock correc-
tion, and hence
tr—m=ao—AT—m—T
or, putting
. /=a— AT —m
we have
T— M= G’ _— T

In the present example, the value of m was 4 0°.42, and a T was
+ 1™ 2:.85. The apparent place of the star, from the American
Ephemeris, was

o = 1* 5~ 46°.29 3 = 88° 82’ 26".00

Hence, o’ = 1* 4= 430, the difference between which and each
Tis given in the column 7 — m.

The reduction to the meridian, here denoted by R, is conve-
niently computed by the aid of Table VI., under the form

__2sin’j(r—m)

n 17 cos 3 8in ¢ (194
sin

R =

This reduction is here to be applied to the observed nadir dis-
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tance with the same sign as to the declination, for the finder wae
west, and the nadir distance, being reckoned through the south
point over the zenith, increases with the declination. The two
quantities M’ and R being applied to the difference of the circle
readings for the nadir point and the star, we have the apparent
nadir distance of the star in the meridian, The sum M’ 4+ R
ghould then be the same for each observation, and we have here
found its value for each in order to determine the probable error
of observation. From the “differences from the mean” in the
last column, we find that the probable error of a single observa-
tion was (//.28, which includes the error in bisecting the star by
the thread, the error arising from unsteadiness of the star, and
errors of the micrometer. ‘

The meridian nadir distance of the star from the mean of all
the observations is then found as follows:

(From page 288) C" — C, = 229° 82 12".77

M'+RE=  +12 44

Corr. for incl. of microscopes = i’ — i, = — 0.31
N'=229 32 24 .90

The observation was taken to determine the latitude, and, ih
order to find the refraction, the barometer and thermometer
were observed both before and after the observation, as follows:

| At 130m, l At 1 12m, l Means.

Barometer 80%.176 80%.210 80,193
Attached Therm. 56°. 56°.5 56°.8
External « 54 .9 54 .6 64 .76

Hence, using BesseL’s Refraction Table, we find

— 2/ = 49° 82’ 24".90
Refraction — 1 8.05
—2z=—49 38 32 95
=288 82 26 .00

¢ =88 58 53 .06

200. Horizontal point.—Observation of a star by reflection.—The
second method of using the instrument is that in which the
apparent altitude of & star is determined by taking half the
angular distance between the star and its image reflected in a
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basin of mercury. The direct observation of the star is usually
made before the meridian transit, and that of the reflected image
after the transit, or vice versa, and each is reduced to the meridian.
The difference of the two reduced circle readings (plus the dif-
ference of the micrometer readings if the observations are made
on the movable thread) is twice the meridian altitude. The half
sum of these readings is the reading when the sight line is hori-
zontal, and represents the horizontal point of the circle.*

In observing equatorial stars by this method, the circle is set
approximately for the direct observation, and the microscopes
read off before the star comes into the field. Then one or more
bisections of the star are made, with the micrometer thread,
before the star arrives at the middle transit thread. The teles-
cope is then quickly turned towards the mercury and clamped at
the approximate position of the reflected image, several bisec-
tions are made with the micrometer, and finally the circle is
again read off. That no time may be lost in setting the circle
upon the reflected image, a spirit-level finder attached to the
tube of the telescope is previously set to the approximate depres-
sion of the image ; the telescope is then revolved until the bubble
plays.

In the case of stars near the pole, the circle may be read off a
number of times during the transit, as in the following example
from BEesskL.

ExaMpLE.—The following observations of a Urse Minoris were
taken by BEesskL with the Repsold meridian circle of the Konigs-
berg Observatory in 1842, April 22. The star, or its reflected
image, was brought in the middle between the two close threads
of the micrometer by moving the telescope by the tangent screw,
the micrometer thread being used as fixed, and the circle was
read off after each observation. Five direct observations are
preceded and followed by three reflection observations.

* The determination of the horizontal point by reflection observations should be
used, in conjunction with the other methods given in the text, for the sake of verifi-
cation. Indeed, it is desirable that «/l the instrumental constants should be found
by at least two independent methods. The construction of the instrument so that
this shall always be possible presents difficulties, which, however, have been sucoese-
fully overcome by Dr. B. A. GouLp in the large meridian circle constructed under
his direction for the Dudley Observatory.
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a Ursse Minoris.—Upper Culmination.

Clock. T—m Cirole. R Meridian.
0> 45~ 54+ 17= 20 146° 15’ 117.0 | 4 15”.8 | 146° 15’ 26".8
49 1 14 13 16 9| 4-10 .6 27 b6
51 6 12 8 20 2| 4+ 7.7 27 9
564 9 9 5 88 44 44 0| — 4 8| 88 44 89 .7
b8 53 4 21 41 5] -1 .0 40 5
1 2 54 0 20 40 5 0.0 40 .5
7 28 4 14 42 8| — 0.9 41 9
12 6 8 52 45 6] — 4 1 41 5
18 26 15 11 146 1615 4| 412 .1[146 15 27 5
21 27 18 13 10 4 +17 4 27 8
28 46 20 32 6 4] 4221 ! 271 5

Mean. Direct 33 44 40 .82
«  Reflect. 146 15 27 .50
App. merid. zen. dist. 83 44 36 .66

Barom. 29*.808 Att. Therm. 47°.1 F. .
Ext. ¢« 49 0« }Reﬁ'actlon -+ 88 .76

Correction of the circle graduation 4 0”.470
Corr. for distance of mercury + 0 .018 + 0.49
Star’s polar distance 1 381 63 .58

Complement of latitude 85 17 9 .44
¢ = b4 42 50 .56

In computing ¢ —m by the form a’— 7, we have assumed
a’=1* 8 14*. The circle readings are the means obtained from
the readings of four microscopes.

The reduction to the meridian R is computed for the reflection
observations by the same formulse as for direct ones, only
changing its sign.

The correction of the circle graduation was derived by BrsseL
from a special investigation of the errors of those divisions which
come into use in the observation of Polaris by direct and reflection
observations at its upper culmination. For a given zenith dis-
tance z, the four divisions that come into use in the direct obser-
vation by the use of the four microscopes are z, 90°+ z,
180° + 2, 270° + z; and in the reflection observation, 860° — z,
90° — 2, 180° — 2, and 270° — 2, The correction 0’7.470 is here
the mean of the corrections of these eight divisions for z= 33° 44/,
the sign of the correction for the reflection observations being
changed.*

* See BessEL, in dstron. Nach., Nos. 481 and 482.
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The correction for the distance of thé mercury from the
instrument is simply the difference of the latitude of the mercury
basin and the centre of the telescope. For in this method we
really measure the angle between the direct and reflected rays
which is formed at the surface of the mercury, and, consequently,
the latitude determined is that of the mereury. The basin was
here north of the instrument, and the deduced latitude would
require a subtractive correction, or the aenith distance an additive
one.

To find the horizontal point of the circle corrected for the
division errors, we have, according to BesseL, for z = 83° 44’ in
the direct observation, the correction + 0/7.156, and for the sup-
plement of this the correction — 0’/.784, the half difference of
which is the correction + 0"7.470 used above, and the half sum
— 0,314 is the correction of the horizontal point found by
taking the mean of the circle readings in the direct and reflected
observations. Thus, we have

Mean of circle readings = 90° 0/ 4”.16
Corr. of graduations = —0 .81

Hotirontal point =90 03 .8

The zenith point of the circle is, therefore, 0° 0’ 87.85. So long
#s the state of the instrument is unchanged, this is the constant
correction of all zenith distances observed, additive or subtract-
ive, according as the object is south or north of the zenith.

201. The nadir, horizontal, and zenith points of the circle are
all determined when any one of them is determined,* and there-
fore we ought to be able to combine the results obtained by the
mercury collimator and by reflection observations of stars.
Nevertheless, observers have sometimes found discrepancies
between the two methods which appeared to be greater than
could fairly be ascribed to errors of observation. Among the
sources of error which may produce such discrepancies, we may
here mention the personal equation in bisecting a star by a micro-
meter thread. Prof. J. H. C. Corrint has demonstrated the
existence of such an equation, more or less constant, between
different observers, by comparing the declinations of the same

# Provided the errors of division and of flexure have been duly eliminated.
+ Aastronomical Journal, Vol. IIL p. 121.
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star obtained by the different observers using the mural circle of
the Washington Observatory duting the years 1845 to 1849
inclusive, the declinations having all been reduced to the same
epoch. He also found a constant difference between the decli-
nations of zenith stars observed by himself when they were
observed as southern stars—i.e. with the body fronting south—
and when they were observed as northern stars, and this under
conditions which excluded the hypothesis of a parallax resulting
from a maladjustment of focus. This difference amounted to
nearly 0’.5.

A really constant error in bisecting a star will affect the zenith
distances of all stars alike, but will have opposite effects upon
the deduced declinations of stars north and south of the zenith.
It will also have opposite effects upon the declination of the
same star deduced from direct observations and by reflection;
and hence the discordance between the results of these two
kinds of observations will be twiece that error. It will also cause
the zenith points determined from north and south stars to differ
by twice the error of bisection.

Professor CoFrIN also suggests that the discrepancies referred
to may possibly be produced, in part at least, by a habit of
making the bisection constantly before or constantly after the
instant for which it is recorded, in which case the error will vary
with the declination. Thus, if the observation is recorded as
made at the time the star passes the middle thread, and the
observer always makes the bisection at a constant time before ot
after the transit, the error will be simply the reduction to the
meridian for this time, and, consequently, proportional to sin 24}
but if he observes at the constant distance ¢ from the middle
thread, the error in the time being csecd, the corresponding
error in the declination will be proportional to c*sec®d sin 24,
that is, proportional to tan d.

Inclination of the micrometer thréead is another source of errory
which should always be attended to and removed by adjustment
if possible, or by computing the correction for it. It is evident
that the error in the observed declination will be proportional
to the distanee of the point at which the observation is made
from the middle thread. The inclination will be determined by
bisecting a star at two extreme points on the right and left of
the field. The difference of the two observations, when both
have been reduced to the meridian, will give the required correc-
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tion for inclination. A star near the pole will be preferable for
this purpose, as a number of bisections may be made at each
extremity of the field.

202. ExaMpLE.—AS an example involving all the various cor-
rections, I extract the following from the Greenwich Observa-
tions :

Zenith distances observed with the Transit Circle.—Greenwich, April 16, 1852.

Microscopes of Circle.
Object. Pol micrometer. .
A | B ‘ [ D | B ¥
» Bootis (Reflected) | 147° 20/ |27.178 |27.130 Izrz:o 17.802 |2r.085 |27.150 197.110 1
w Bootis (Direct) 83 o [0.9432 |0 .901 [1.038 |0.612 [0 .820 |0 903 20 .163 7
Nadir point 179 40 [0.753 10 .712 0. 818 |0 .420 |0 .636 [0 .743 21 364

At the observation of 7 Bootis there were also observed
Barom. 29».86, Att. Therm. 88°.2, Ext. Therm. 86°.8.

The pointer, which is used in setting the circle for an observa-
tion, gives the degrees and next preceding 5’ of the circle
reading.

One revolution of a circle microscope is called a “nominal
minute,” and the mean value of 4".902 corresponds to &/, so that
the nominal minutes are reduced to true minutes of arc by in-
creaging them by their J} part. Since the mean of the micro-
scopes is to be found by dividing their sum by 6, and the deci-
mal part of the quotient is then to be converted into nominal
seconds by multiplying by 60, the nominal seconds in the mean
are obtained at once by simply adding the decimals of the
several microscope readings (making the integers the same ip
all) and removing the decimal point one place. Thus, in the
first observation, making 2 the common integer, the sum of the
decimals is .610, and hence the mean is 2’ 67.10 (nominal),
which increased by its & or y3; part is 2’ 87.62 of arc. This
requires a further correction for variation of the value of a
microscope revolution from its mean value, that is, for error of
runs (Art. 22). The correction for runs on the given date was
+ 07.576 for 100 nominal seconds, and, therefore, the correctios
of the first observation is + 077.576 X 1.261 == 4 0’".78.
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There is next to be applied the correction for error of gradua
tion and of flexure. These are combined in a table given in
the introduction to the observations, from which their values, as
used in the following reduction, are taken with the argument
“Pointer reading.”

The value of one revolution of the telescope micrometer was
297626, and the reading multiplied by this number is always
additive to the circle reading.

The distance of the star from the meridian is expressed by
the number in the last column of the above table, here denoted
by N, which is the number of the transit thread at which the
bisection is made. The middle thread is assumed to be in the
meridian ;* and, since the average distance of two adjacent
threads was 207”7.81, the number of the middle thread being 4,
the distance of the star from the meridian is represented by

¢ = 207".81 (N — 4)
The formula for reduction to the meridian is put under the ap-
proximate form -
R =} *sinl” sin 28 = } * sin 1" sin 3 cos 8

and r is also found approximately by the formula r = ¢ secd:
hence, according to this (rather inaccurate) method, we have

R = }c*sin 1” tan 8
which for the Greenwich instrument gives
R = 0".1042 tan ¢ X (VN — 4)

a8 given in the explanations of the observations.

The micrometer thread was inclined so that an observation at
one of the side threads required the correction — 02.775 X
(N—4).

The complete reduction of the above observations is, there-
fore, as follows. In computing the reduction R we have as-
sumed ¢ = 19° 8.

* I am here stating the method employed at the Greenwich Observatory, not re-
commending it. For stars near the pole it is not sufficiently accurate, as will be
found by reducing some of the observations of a and A Ursz Minoris by our com-
Pplete formula (193). A difference of 0”.2 or 0”.8 occurs in some cases.
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» Bootis (R) »n Bootis (D) Nadir Pt.

Mean of mieroscopes 4 2 610 4+ 052".16] 4 O 40".82
Reduction to arc = + 2 .62 + 1.04f 4 0 .&
Correction for runs + 0.781 + 0 .80 + 0 .24
Division error + 1.61] + 1.24) 4 0 .86
Telescope micrometer + 926.15] 4+ 957 .3 410 32 .93
Reduction to meridian —_ 0 .82 + 0 .82

Corr. for inclination of thread + 2 .83 — 2 .83

Pointer 147° 200 82° ¢ 179° 40
Corrected merid. circle reading |147 81 389 .02/ 32 10 60 .08/179 51 15 .67

Hence, by » Bootis, we have

App. zenith dist. (R)  82° 28’ 20 .98
« “ « (Dy 82 10 50 .08
Mean app. zen. dist. 32 19 35 .53
Refraction 4 38 .01
z2 =232 20 13 .54

¢ =51 28 38 .20

3=19 8 21 .66

The half difference of the apparent zenith distances (R) and
(D) is evidently the zenith point correction, and is here + 8’ 45'”.45
additive to all circle readings. According to the nadir point
observation, it is 4 8’ 44’’.83. The practice at the Greenwich
Observatory, however, is to employ for a number of consecutive
days a mean value of the zenith point correction obtained from
all the values determined during the period. Thus, the mean
value employed from April 12 to April 24, 1852, a period in-
cluding the above observations, was + 8’ 45//.16. The practice
recommended by BessgL of employing the nadir point readings
determined at the time of the observation is preferable.

203. The zero points of the circle may also be determined by
reversing the axis, if the microscopes rest on the axis and, con-
sequently, are reversed with it. Let a collimating telescope be
placed anywhere in the meridian with its axis directed towards
the rotation axis of the meridian circle, and let it be provided
with a cross thread in its focus. Direct the telescope upon the
collimator, and bring the micrometer thread upon the intersection
of the cross thread. Let C'be the circle reading corrected for
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the inclination of the microscope frame, micrometer reading, &c.
Now reverse the rotation axis, and make a similar observation
upon the collimator. Let O’ be the corrected reading. Then it
js evident that 3 (C' — (") is the true zenith distance of the colli-
mator (supposing the readings to commence at the zenith), while
3(C + () is the true reading when the telescope is vertical, and
represents the zenith point. This method may occasionally be
nsed for the purpose of comparison with the methods already
given; but it is too troublesome for constant use. Moreover,
observations depending on the spirit level are not so reliable as
those made from the surface of mercury, which, when at rest,
must be perfectly horizontal.

Another method, suggested by the ever-inventive BBssEL
(before the introduction of the mercury collimator, however), is
also dependent on the spirit level, but admits of greater accuracy
than the above, because a level of larger dimensions may be used.
The level is applied to the collimating telescope, which is placed
in the horizontal plane of the axis of the meridian circle. When
the bubble is in any given position, the sight line of the colli-
mator makes a given angle with the vertical. If, then, the colli-
mator with its level is first placed south and then north of the
gircle, and the bubble of the level brought to the same reading
jn each case, the zenith distance of the cross thread observed by
the circle must be the same, but on opposite sides of the zenith.
The mean of the two circle readings will therefore be the zenith
point reading. Instead of bringing the level of the collimator
to the same reading, it will be preferable to observe the inclina-
tion in each position north and south, by reversing the level in
the usual manner; then the difference of the inclinations will
be applied as a correction to the mean of the circle readings to
obtain the true zenith point. This method has the advantage
of nat requiring a reversal of the axis of the meridian circle.
Plate III. Fig. 2 represents a collimator with its spirit level, as
required in this method. Two piers, one north and one south
of the circle, are each provided with Vs, which receive the col-
limating telescope alternately.

Finslly, to complete the enumeration of methods depending
en the spirit level, the collimating telescope may be placed ver-
tically over or under the telescope of the meridian circle. The
level is then attached to the collimator at right angles to its
optical axis. Two observations are made upon the cross thread
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of the collimator as before, the collimating telescope being
(between the two observations) revolved 180° about the vertical
line. The mean of the circle readings, corrected for difference
in the inclination of the collimator as shown by the level, will
be the zenith or nadir point reading.

204. Flexure.—Notwithstanding the conical form which is
given to the telescope tubes of large instruments, their weight
produces a sensible flexure, which may change the position of
the optical axis of the telescope with respect to the zero points
of the circle. It is important, therefore, to investigate the
amount of this flexure. The following is BEsseL’s method.

Two collimators, such as that represented in Plate ITI. Fig. 2,
are mounted in the horizontal plane of the axis of the circle, one
north and the other south. The cross threads of the collimators
admit of adjustment (by a micrometer screw, for example), so that
they may be brought to coincide with each other, the meridian
circle being raised upon the reversing apparatus during this
adjustment. The two intersections of the cross threads of the
collimators now represent two infinitely distant points whose
angular distance is exactly 180°. The meridian circle being
replaced, observe this angular distance in the usual manner. It
is evident that the errors of division of the circle will not enter,
since the same two divisions come under the opposite reading
microscopes in the two observations in reverse positions. The
difference of the two circle readings will, therefore, be exactly
180° if there is no flexure. But if the difference is less than
180° by a quantity z, then 4z is the correction for flexure in the
horizontal position of the telescope. In this way, A1ry found
that when the Greenwich transit circle was directed upon the
south collimator, the circle reading was 89° 46’ 157.52, and
when upon the north collimator, 269° 46’ 16’7.85; the difference
180° 0’ 0”.83 is the apparent distance of the two opposite points
measured through the nadir, and hence one-half of 0/.88, or 0"".41,
is the effect of flexure in increasing apparent nadir distances or
in diminishing apparent zenith distances.

In different positions of the telescope, the mechanical effect of
each particle of metal, supposing it to act simply as a weight
attached to a lever, will vary as the sine of the zenith distance:
so that if f is the horizontal flexure, fsin z expresses the flexure
in general. It is not quite certain, however, that the flexure
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always follows this simple law; and to determine the law experi-
mentally, we should have the means of mounting a pair of col-
limators in a line making any angle with the vertical.

The flexure determined by the above method is properly
called the astronomical flexure, as it gives the deviation of the
optical axis, which becomes a direct correction of our astro-
nomical measures. It is evident, however, that it does not
express the absolute flexure of the tube. If when the tube is
horizontal both ends drop the same distance, the optical line
determined by the centre of the objective and the micrometer
thread will merely be moved parallel to itself, and no flexure
will appear from the circle readings; for the collimators do not
determine merely a single fixed line in space, but rather a
system of parallel lines, or simply a fixed direction.

The effect of the flexure upon an observation is, then, zero
if the absolute flexures of the two halves of the telescope are
equal ; and when these are unequal, the effect is proportional to
their difference. This leads directly to the method of elimi-
nating fléxure, first suggested by the elder REpsoLp in 1823 or '24,
by interchanging the objective and ocular of the telescope. Let
us suppose that at any given zenith distance the centre of the
objective drops the linear distance a, and the horizontal thread
in the focus drops the distance a’, so that a and a’ represent the
absolute flexures of the two halves of the tube. Theaq, if the
whole length of the tube is denoted by 2r, the angles of depres-

sion of the two portions may be expressed by 2 and 2 respect-

ively. If then y is the angle which the sight ]me now makes
with the direction it would have had if no flexure had taken

place, we have y = a—2—r— that is, the astronomical flexure is

proportional to the absolute flexure. Now let the objective and
ocular be interchanged, and the telescope revolved 180°, so as to
be again directed upon a point at the same zenith distance as
before. The absolute flexures being the same as before, that of the
object end is now a’, and that of the eye end is a: so that the

. . a
astronomical flexure is now =T Hence the mean of

two observations of the same star made with the objective and
ocular reversed will be free from the effect of flexure. More-
over, the half difference of the measured zenith distances will
be the astronomical flexure. It is here assumed that the abso-
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lute flexures of the two halves remain the same when the ob-
jective and ocular are interchanged. For a discussion by HaNSEN
of the conditions necessary iu the construction of the telescope in
order to satisfy this condition (if possible), see Astr. Nack., Vol.
XVIIL p. 70.*. '

As to the effect of gravity upon the form of the circle, see
BgssgL's paper, Astr. Nack., Vol. XXV,

205. Observations of the declination of the moon with the meridian
circle—In these observations, the micrometer thread is usually
brought into contact with the full limb, and a correction is
applied to the deduced declination of the limb for the moon's
parallax and semidiameter. When the observation is not made
in the meridian, the reduction to the meridian (194) is also to be
applied, together with a correction for the moon’s proper motion.
The most precise formula for making these reductions is that
given by BesseL, which is deduced as follows.

In Fig. 46, p. 290, let O now represent the apparent position
of the moon’s centre, and suppose the observed point of the
moon’s limb to be designated by M (not given in the figure).
Conceive an arc to be drawn from 4 tangent to the moon’s limb.
The point of contact M, and the points 4 and O, form a triangle,
right angled at M, of which the side MO is the moon’s apparent
semidiameter = ¢/, the side AQ = 90° 4 ¢, and the angle at 4
may be denoted by d. We have then

sin & = sin d cos ¢
Let

8, = the observed declination of the limb, corrected for re-
fraction,
8’ = the apparent declination of the moon’s centre;

then in the triangle AOP we have the sides 40 =90° +e¢,
P4 =90° — n, PO =90°— &, and the angles PAO =4, ¥ 4,
APO = 90° + (r — m); whence, as in Art. 199

sin 8’ = — sin n sin ¢ 4 cos 7 cos ¢ sin (3, == d)
cos 8'sin (r — m) =  cos n sin ¢ 4 sin n cos ¢ sin (8, I d)
608 &' cos (r — m) = cos ¢ cos (3, ¢ d)

# See also Dr. GouLp's remarks on the meridian circle of the Dudley Observatory,
Proceedings of the Am. Association for the Adv. of Science, 10th meeting, p. 116.
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But, as before, we shall neglect the insensible term sin % sin ¢,
and put cos n =1, and then the first and third of these equa-
tions will suffice to determine 8’. Moreover, since in the case
of the moon = will not exceed 1", the neglect of m will cause
no sensible error in cos (r — m). Hence we take

sin ¢’ = cos ¢ sin (3, ¢ d)
cos 8’ cos r == 08§ ¢ co8 (8, T d)

or, developing the second members,

sin &’ = cos ¢ cos d sin 3, = sin & cos ¢,
cos &' cos r = €08 ¢ cos d cos J, 3 sin &'sin 4

whence, by eliminating cos ¢ cos d, we find
= sin & = sin 8’ cos 8, — cos ’sin 4, 008 * (195)
If now we put

¢ = the moon’s geocentric declination,

8§ = “ “ semidiameter,

= “ eq. hor. parallax,

¢ = the geocentric or reduced latitude of the place of
observation,

p = the earth’s radius for the latitude ¢,
4, 4/ = the moon’s distance from the centre of the earth
and from the place of observation, respectively, the
equatorial radius of the earth being unity,

we have, by the formule of Art. 98, Vol. L,

4'sin ' =4 sin & — p sin ¢
Acosd’ =40083 — pcos ¢ CoBT

this last being equivalent to the more rigorous one in (188) of
Vol. L, when the moon is near the meridian; and by Art. 128,
Vol. I, we also have

4'sin =4 s8in 8

Bubstituting these expressions in (195), after multiplying it by
4, we find

Fd4sing=4sin (3 — &) + 24 cos dsin 3 sin’}r
— p 8in (¢’ — 8) — p cos ¢'8in g gin’r
Vor IL—20
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Dividing by 4 = —— this becomes

I sin 8 = sin (¢ — 9,) 4 2 cos 3 8in 4, sin?
— p 8in 7 8in (¢’ — 8)) — p 8in x cos ¢’ sin 4, sin® ¢

where the last term is evidently insensible. If then we put
. sin p = p sin 7 sin (¢' — &) (196)
we have
8in (8 — 8,) = sin p 5= sin 8 — 2 cos 8 sin ¢, sin*dr
The last term (which is the reduction to the meridian) will
seldom exceed 1’7, and may be put under the form

sin12=(1_;)'sin* 17. sin 28. ¢
The quantity r is here the true hour angle of the moon, to
find which, let

u, = the sidereal time of the observation,

= “ “ moon’s transit,

2 = the increase of the moon’s right ascension in one
sidereal second ;

r=(1—2) (s —m)

then

and hence
2256 .
R= —oin 17 8in 28 (1 — )* (p — )? @

The first two terms of the value of sin (¢ — 4,) differ but little
from sin (p = 8). To find their exact value, we have

sin p 7 8in 8 = sin (p = 8) + sin p (1 — cos 8) 5 s 8 (1 — cos p)
=s8in (p & 8) + 2sinpsin*}s = 2 sin 8 8in*}p

The last two terms of this will seldom amount to a tenth of a
second, and therefore the formula may be regarded as perfectly
accurate under the form

sin p = sin 8 = sin (p F 8) IF ¥ (p = 8) 8in 1" sin p sin s

Now, since 8 — 8, and p = s differ by so small a quantity, the
ratio of the sine to the arc will be the same for both of them:
hence we shall have, with the utmost precision,

8=28+pFsFi(pFs)sinpsins —R 199
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as given by BesseL.* The upper or lower sign is to be used
according as the north or the south limb is observed.

The declination thus found is reduced to the time g, of the
observation. But if we wish its value at the time of the meri-
dian passage, we must add to it the correction (u — )4, in
which 4’ is the increase of the declination in one sidereal
second, or :

r=_252
60.1643

where ad = the increase of declination in one minute of mean
time, a8 now given in the American Ephemeris. The value of
1 — 2is found as in Art. 154: namely, taking aa = the increase
of the moon’s right ascension in one minute of mean time, we

have
Ao

= 80.1643

1
—_—l=
1 B

i
so that, putting

we shall have
log(1 — ) =ar.co.log B

and log B may be taken from the table on page 179.

In practice, it will generally be most convenient to apply the
several reductions directly to the observed zenith distance, as in
the following example.

ExampLE.—The declination of the moon was observed with the
meridian circle of the Washington Observatory, 1850, September
17. The nadir point was first observed as follows:

Circle Microscopes.

A B c D |Means | Micrometer thread in co-
Nadir point incidence with its image:
0.9 |19 |2".2 |14 |17.60| mean of 10 readings =

at 20*.5 : e
0.7 1.4(2.01.6][1 423898

Means |0 .80|1 .85|2 .10{1 .50|1 .51

The value of one revolution of the micrometer = 84’7.356, or

* Tabulee Regiomontans, Introd. p. LV.
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1’ = (r.0291; and hence, by the method of Art. 197, the micro-
meter zero (or reading of the micrometer when the circle reading
was 0° 0/ 0”) was

(M) =88984 + 0n.0291 X 1.51 — 88-.978

The observation of the moon was as follows, 8.L. denoting
south limb:

Circle Microscopes. Mioro-
Clock =, | meter

A |B c Dle. =N.

Moon, 8. L.[55° 52’ 45”.7I4 ”.8I45”.2 46”.1| 447.95 |21217=21¢397.956

Barom.80%. 114 Att. Therm.64°. Ext. Therm.52°.8 82 (39 .904
43 |39 .875

The circle was west, in which position the readings are zenith
distances towards the south. The correction for runs was
—0/7.75 for 8', and since the excess of the reading over a multiple
of 3’ is 1/ 44/7.95, the proportional correction for runs is — 0/.43.

The clock time of transit of the moon’s centre over the meridian
was u = 21* 17~ 16°.80. ‘

The latitude of the observatory is ¢ = 88° 53’ 89/.25, and
therefore ¢ — ¢’ =11’ 14"7.54, log p = 9.9994802. The longitude
is 5* 8™ 12* west of Greenwich.

For the date of the observation, we take from the Nautical
Almanac

d=—16°17
a3 = + 6".377 in 1™ mean time, = =—=054 9”.64
Ao = 200150 « « « « s = 14' 456"49

whence log (1 — 1) =9.98521 and ' = -+ 0".1060

The correction for the micrometer, or M — (M), converted into
seconds, is additive to the circle reading. The reduction to the
meridian, or R, found by (197), is also algebraically additive to
the circle reading, attention being paid to the sign of 3; and the
correction for change of declination to be added to the circle read-
ing will be — (2 —g4) .  Bince the sum of these three corrections
should be the same for each micrometer observation, the precision
of the observations will be shown by computing this sum for
each. Thus, we find
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PR, | M—(H) | R —(—m)* | Sums.
— 42 83".60 — 0".00 + 0'.44 84".04
—15.2 81 .82 — .03 +1 .61 88 40
—26.2 80 .82 — 09 +2 .78 88 .51

Mean — 88 .65

Hence we have
Circle reading =  55° 52’ 44".95

Corr. for runs = — 0 .43

Mean corr. for microm., &c¢. = + 33 .65

Apparent zenith distance= 56 53 18 .17
By Table II. Refraction= 4+ 1 25 .60

f—8=9p—8—(p—¢) ¢—8= b5 5448.77
=55°48' 29" } —(p+8= — 6927 .24
By (196),p=44' 41".75 —4(p+38)sinpsing= — 0.10

¢ —3= b4 6616 .48
¢= 88 b3 39 .25

d=—16 187 .18

206. Observations of the declination of a planel, or the sun.—The
larger planets are observed in the same manner as the moon,
that is, by making the micrometer thread tangent to the limb,
and when the planet is treated as a spherical body the observa-
tion is also reduced in the same manner.

In the case of the sum, both limbs may be observed. The
reduction to the meridian may be facilitated by a table giving
the logarithm of the factor

b= % sin 17 (1 — A)sin 28

for each day of the fictitious year (Vol. I. Art. 406), such as
Besser’s Table XII. of the Tabule Regiomontane. This table
also gives for each day of the year the value of

a = increase of the sun’s declination in 100 sidereal seconds,

80 that the reduction of the observed declination to the meridian,
including the correction for the change of declination in the
interval r, is

ar



3810 MERIDIAN CIRCLE.
The correction for parallax may be put under the form

8"”.57116
r

pein (¢' — 3)

in which r = sun’s distance from the earth, the mean distance
being unity, and in each observatory this quantity may be com-
puted for the latitude, and for each day of the year, and also
inserted in the table. In order to embrace every thing necessary
for the complete reduction of the observed declination, the table
contains also the sun’s semidiameter for each day of the fictitious
year.

207. Correction of the observed declination of a planet’'s or the moon’s
lmb for spheroidal figure and defective dlumination.—Let us con-
gider the most general case of a spheroidal planet partially
illuminated. The correction to reduce the observed declination
of the limb to that of the centre is equal to the perpendicular
distance from the centre to the micrometer thread, which is
tangent to the limb and perpendicular to the meridian. The
formulee for computing this perpendicular in general are (Vol. L
p- 580) "

4 . ) .
tan&’:tan sin y = sin #8in ¥V
c
g,_ssinﬂcosz

sin ¢

in which 8’ is the required perpendicular, ¢ the angle which it
makes with the axis of the planet (reckoning from the north
point of the disc towards the east), ¢ is a constant depending upon
the eccentricity of the planet’'s meridian, V the angular distance
of the earth and sun as seen from the planet, and s is the equa-
torial radius of the disc, or greatest apparent semidiameter at the
time of the observation. The perpendicular here coincides
with the declination circle, and consequently we have at once
# = — p, or 180° — p, according as the north or the south limb
is observed; p denoting, as in the article referred to, the position
angle of the axis of the planet. From the discussion in Vol L
Art. 854, it follows that (putting — p for &) the north limb will
be full (and, consequently, the south limb gibbous) when sin p
and sin V have the same sign. 'We shall, therefore, here change
the sign of sin y, and take
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tan p
c
r__ 8 BiDp

=y

ta.np’=

siny=sginp'sin ¥V
(199)

in which s,= the greatest apparent semidiameter at the mean
distance of the sun from the earth, and r’ = the planet’s geocen-
tric distance. We then have the rule: the north or the south limb
i3 the full limb according as sin y s positive or negative. The formulm
for computing p,V, and ¢ are given inVol. L. Arts. 848 et seq.,
and s,is given on p. 578.

The gibbosity of Saturn, however, is wholly insensible, and
even that of Jupiter at the north and south points of the limb
cannot exceed 0’7.05, which is 8o much less than the usual errors
of declination observations that it may be disregarded. Hence,
for Saturn and Jupiter the correction will depend only upon the
figure of the planet, and will be computed by the equations

__tanp d,_fg.sinp__ci, cos p

tan g == T ¢ sing ¢ cosp

in which for Jupiter we take log ¢ = 9.9672, and for Saturn
¢ =1/(1 —eecos*l) = /(1 —[9.2706] cos*l), ! and p being taken
directly from the tables for Saturn’s Ring given in the Ephemeris.

A further simplification may be permitted in the case of

Saturn ; for, on account of the small values of p, the ratio hadd 4

. . . cs m
will be very nearly unity, and if we take ¢/’/= 7" we
have the true value of s’” within less than 07/.05.

It is bardly necessary to remark that when we neglect the
gibbosity of Jupiter or Saturn, the mean of the observed decli-
nations of the north and south limbs gives at once the declination
of the centre.

For Mars, Venus, and Mercury the correction will be only for
defective illumination ; but in this case we can avoid the separate
computation of p and V, as follows. Substituting in the equa-
tion for sin y (199) the values of sinp and sin V given in Vol. L
p- 577, and moreover observing that, since these bodies are
regarded as spherical, we have ¢ = 1, and, consequently, p’ = p,
there results )

sin y = % [cos 8’ sin D — gin 8’ cos D cos (o' — 4)] (200)
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in which
o', 8’ == the planet’s right ascension and declination,
A, D = the sun’s “ “« “

R, R’ — the earth’s and the planet’s distances from the sun;

and a positive value of sin y will here also indicate that the north
limb is full and the south limb gibbous, and a negative value
the reverse. Adapting this formula for logarithms, we have,
therefore,

tan F = tan D sec (o' — 4)

R sin(F—4")sinD (201)
R’ sin P

sinz=

or, more conveniently, perhaps,
tan F = tan &’ cos (o’ — 4)

R sin(D— E)cos &' (201%
R cos &

siny =

E being taken less than 90°, with the sign of its tangent.
Then we find the reduction to the centre of the planet by the
formula

s"_—_;:acosz (202)

If the declination of a cusp of Venus or Mercury has been
observed, we must find p by the formula (Vol. L. p. 577)

tan p = cot (o' — 4) sin (F — 8') sec F (203)

in which F has the same value as above, and then the reduction
to the centre of the planet will be

8,
s"=-—o
’IOOBP

For the moon, when the gibbous limb has been observed, the
formule (201) may be used for computing y; but on account of
the small difference of R and R’, we may put their quotient =1.
Bince the declination of the gibbous limb will not be observed
except when the moon is nearly full, it will be best to reduce
the observations as if the observed limb were full, according to
Art. 205, and then to apply a small correction for gibbosity.
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This correction will be as=8 — 3 cosy = s versin y. Hence the
formulee for the moon will be

tan E = tan &’ co8 (o' — 4)
__8in (D — E)cos d’
- cos E

A3 = 8 versin y

gin (204)

ExampLE 1.—The apparent declination of the southern cusp
of Venus, at its transit over the meridian of Greenwich, July 16,
1852, observed with the transit circle, was

&' =15° (Y 45".60
From the Nautical Almanac, we have

o =811 1446 log ¥ = 9.4675
A=1T 43 42.80 D =21°19 8"

and from Vol. L. p. 578,
8, = 8".56

Hence, by (208), we find log tan p = 0.0081, and, consequently,
¢ = % cos p = 20".53

and the apparent declination of the planet’s centre was, there-

fore,
4=15°16"18

ExamMpLE 2.—The apparent declinations of Jupiter’s north and
south limbs, observed at Greenwich, March 18, 1852, were—

N.L. ¢'= — 17° 21’ 57".86
8.L. &/=—17 22 37 .61

To illustrate the complete formulee, let us take the gibbosity
of the planet into account. For this purpose, we take from the
Naautical Almanac

Jd= 230°66'4 . A=224°26'0
¢=— 17 22.2 ¢ = 23 2756 log ¥ = 0.6783

and from Vol I. p. 574,
n = 857° 56'.5 i =25° 25'.8
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Hence, by the formuls (619), Vol. L,

F=201° 28'5 1=234°52'8
V=4 —2=—10° 277
F'—=—20°47'5 log tan p = 9.4281

Then, by (199), taking log ¢ = 9.9672, we have

log sin y = n8.7025

from which it follows that the south limb was full. Hence,
taking s,= 99/.70, we find

For full limb (&) =-2.—£ =19".50
r sinp _
For gibbous limb &' = (8")cos y =19 47

The declination of the centre was, therefore, according to
these observations,

From N.L. &= — 17° 22’ 16".83
« 8.L. « « 18 .11

Considering the difference of these results, which is by no
means as great as often occurs in the Greenwich observations of
Jupiter, it appears that the practice there followed of always
applying the polar semidiameter (which is the one given in the
Nautical Almanac) is quite accurate enough for these observations.
Our more exact method will not be without application, however,
in cases where greater refinement both in observation and
reduction are attained.

ExaMpLE 8.—At Greenwich, Feb. 6, 1852, the declination of
the moon’s centre deduced from an observation of the north
limb, on the assumption that this limb was full, was

8’ = 4 13° 17" 0".58
For the time of the moon’s transit on this date, we have

o' = 158° 18'.6 A = - 819°56'.1
s = 16'31"” =— 156 86.3
whence, by (204),

x = — 2° 58
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which shows that the north limb was gibbous. The correction
was

a3 =g versin y == 1".38
and the true declination was, therefore,
¢=+418°171"91

CHAPTER VIL

THE ALTITUDE AND AZIMUTH INSTRUMENT.

208. Ta1s instrument may be regarded as a transit instrument
combined with both a vertical and a horizontal circle, by means
of which both the altitude and the azimuth of a star may
be observed at the instant of its transit through the vertical
plane described by the telescope. This combination is not often
used for the higher purposes of astronomical research, as every
additional movement introduced into an instrument diminishes
its stability and increases the risk of error. However, at Green-
wich, a regular series of extra-meridian observations of the moon
is carried on with such an instrument, for the sake of comparison
with meridian observations. The instrument has there received
the name of the altazimuth. In other places, it has been called
the astronomical theodolitz; and, in fact, the general theory of the
instrument, which will be given hereafter, will be found to be
directly applicable to the common theodolite employed in geo-
detic measurement. .

Still another name is the universal instrument, so called on
account of its numerous applications; but this name is usually
given only to the portable instruments of this class. The small
universal instruments of ERTEL are well known.

209. Sometimes the horizontal circle is reduced to small
dimensions, and designed simply as a finder, or to set the instru-
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ment approximately at a given azimuth ; while the vertical circle
is made of unusually large dimensions, and is intended for the
most refined astronomical measurement. The instrument is
then known simply as a vertical circle. Such is the ERTEL Vertical
Circle of the Pulkowa Observatory, the telescope of which has
a focal length of 77 inches, and its vertical circle a diameter of
43 inches.*

This instrument is permanently mounted upon a solid granite
pier G, Plates X. and X1I., which is insulated from the walls and
floor of the building. It stands upon a tripod which is adjusted
by foot screws. The three feet are so placed that two of them are
in the east and west line: hence, but one of these two is seen in
Plate X., which is a projection of the instrument upon the plane
of the meridian, while all three are seen in Plate XI., which is
a projection upon the plane of the prime vertical. The meridional
foot screw w carries a small circle y graduated into 860°, the index
of which is attached to the foot. One revolution of this circle
changes the inclination of the instrument in the plane of the
meridian 318'': consequently, one division corresponds to 0’/.88.

The centre of the instrument is held in place by the support
a attached to the pier,

The vertical stand consists of a hollow cone of brass, in which
turns the steel axis b. The lower extremity of this axis is convex
and smoothly finished, and is supported by a system of three
counterpoises ¢, suspended upon levers which relieve the pressure
upon the bearing points of the vertical axis, and thus diminish
the friction. At the top of the conical stand is & 18 inch azimuth
eirele, the verniers of which are attached to the axis. This is
provided with a clamp and tangent screw which is moved by the
rod d in giving the upper portion of the instrument a small
motion in azimuth.

The upper extremity of the vertical steel axis carries the strong
oblong bar e, which may be called the bed of the instrument.
On this bed rests the adjustable frame fgv, which supports the
horizontal axis ¢ in the Vs at vv. This axis should be perpen-
dicular to the vertical axis, and its adjustment in this respect is
effected by means of two opposing screws at h.

The axis ¢ has two equal cylindrical pivots of steel at vo. Itis
hollow, to admit light from the lamp x, which is reflected upon

* 8ee Daecription de Uobser. cent., &e., p. 180.
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the threads of the reticule of the telescope by a mirror in the
interior of the tube at u. The telescope and principal vertical
circle 0 are firmly and invariably attached to one extremity of
this axis. At the opposite end of the axis is a smaller vertical
circle m, which serves as a finder. From the centre of this
finding circle radiate four conical arms terminating in ivory
balls n. The telescope is swept in the vertical plane solely by
means of these balls, never by touching the telescope or prin-
cipal vertical circle. When the telescope is approximately
pointed and clamped, fine vertical motion is given to the tangent
screw by the rod 4. The instrument is swept in azimuth by
means of an ivory ball at /, the fine azimuthal motion being
given by the rod d.

The circle is read off by four microscopes attached to a square
frame a, which is fixed to the frame yfgv. The level B attached
to this frame indicates its inclination with respect to the horizon.
The circle is divided to 2/, and the microscopes read directly to
single seconds, and by estimation to 0.1, or even less. The
probable error of reading of a single microscope is given by
Perers as only 0”7.090 in observations by day, and 07.098 in
observations by night.

The friction of the horizontal axis in the Vs is diminished by
the single counterpoise p, which, by means of a lever, the fulerum
of which is at ¢, supports the principal part of the weight of the
telescope, vertical circles, and horizontal axis, by exerting an
upward pressure at r. The point r being at suitable distances
from the two Vs respectively (nearer to the principal circle than
to the finder), the friction in both Vs is equally relieved ; while
the whole weight of the movable portion of the instrument is
transferred to a point ¢, very near to the vertical axis of rotation.

The striding level s rests upon the pivots of the horizontal
axis, and, by reversal in the usual manner, serves to measure the
inclination of this axis to the horizon.

The reticule at ¢ is composed of three horizontal threads, two
of which are close parallel threads (the clear space between them
teing only 6’”), which serve for the observation of objects which
present sensible discs, or of those which are too faint to be
observed by bisection (see Art. 198). The third thread is 18”
from the others, and is used in observing stars by bisection.
The unequal distances prevent mistakes in the choice of threads.
These horizontal threads are crossed by two vertical ones, the
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distance of which is 1’ of arc. The middle point between these
determines the optical centre of the instrument, and all obser-
vations are made as nearly as possible at this point.

The extreme accuracy attainable in the observation of zenith
distances with this instrument may be inferred from the follow-
ing values of the zenith point Z (see Art. 219) of the circle, as
cited by STRUVE, from observations by PETERS upon Polaris at its
upper and lower culminations :

Upper transit. |nig prom Lower transit. |pig from
1843, z mean, z mean.

April131 0° (/ 83".13 |— 0".32 April14 | 0° 0’ 83".64 |— 0".08
14 83 .26|— 0 .19 16 33 .32|— 0 40

17 83 82,40 .37 20 33 45|— 0 .27

19 83 .27/— 0 .18 21 83 94|40 .22

20 83 .75|4 0 .30 22 83 48(— 0 24

22 83 .17|— 0 .28 24 83 .50 (— 0 .22
24 83 45| 0 .00 25 33 94|40 .22

25 83 68|+ 0 .23 26 33 98|+ 0 .26

26 33 29— 0 .16 27 83 82|40 .10

27 83 684 0 .23 28 34 12|40 40

Mean 0 0 33 45 Mean 0 0 33 .72

Hence, assuming that the zenith point of the circle was constant,
the probable error of an observed value of Z was, for either
series, = 0//.22. This error, however, is the combined effect of
error of observation and variability of Z. But the probable
error of observation was obtained from the discrepancies between
the several values of the latitude deduced from these same obser-
vations, and was = 0””.17: so that the probable error of Z
arising from variation in the instrument was = y/[(0".22p
— (0”7.17)*] = 0”7.14. The means for the two transits differ by
07.27, which results from the use of different divisions of the
circle and different parts of the micrometers. To compare them
justly, it would be necessary first to eliminate especially the
division errors.

In order to eliminate the effects of flexure, the objective and
ocular are made interchangeable (see Art. 204).

The dimensions of the various parts of the instrument may be
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taken from the plates, which are accurately drawn upon a scale
of J.*

210. The portable universal instruments are usually so arranged
that the vertical circle may be removed altogether from the
instrument when horizontal angles only are to be measured.
One of these instruments is represented in Plate XII. In Fig. 1,
the instrument is arranged for measuring horizontal angles
exclusively. In Fig. 2, the telescope of Fig. 1 is replaced by
another which is connected with a vertical circle and (unlike the
azimuth telescope) is at the end of the horizontal axis. The
weight of the telescope and vertical circle is counterpoised by a
weight at the opposite end of the axis. The focal length of the
telescope in instruments of this kind seldom exceeds 24 inches.

The following disoussion of the theory of these instruments
will apply to any of the forms above mentioned, as I shall con-
sider their two applications—to azimuths and to altitudes—
independently of each other.

211. Azimuths.—Let A H, Fig. 49, represent the true horizon,
Z the zenith. Let us suppose the vertical
axis of the instrument to be inclined to the
true vertical line, so that when produced it
meets the celestial sphere in Z’. Let A H’
be the great circle of which Z’ is the pole.
The plane of this circle is that of the gra-
duated horizontal circle of the instrument.
Let us suppose, further, that the horizontal
rotation axis, which should be at right
angles to the vertical axis, and, consequently, parallel to the
horizontal circle, makes a small angle with this circle. As the
instrument revolves about its vertical axis, this rotation axis will
describe a conical surface, and the prolongation of this axis to
the celestial sphere will describe a small circle A4’ parallel to
A H'. Let A be the point in which this axis produced through
the circle end meets the sphere at the time of an observation,
and O the position of a star observed on any given vertical thread

Fig. 49.

* For all the particulars of the use of this instrument in the determination of the
declination of a circumpolar star, consult the memoir of Dr. C. A. F. Pxrees,
Astron. Nach., Vol. XXII., Resultate aus Beobachtungen des Polantcrm am Erubclml
Verticalkreise der Pulkowaer Sternwarte.
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in the field. As the telescope revolves upon the horizontal axis,
its axis of collimation describes a great circle of which A is the
pole, and the given thread describes a small circle parallel to
this great circle. Let

¢ = the distance of the thread from the collimation axis,
positive when the thread is on the same side of the
collimation axis as the vertical circle,

b = the elevation of A above the horizon as given by the
spirit level applied to the horizontal axis, positive when
the circle end of this axis is too high,

i = the inclination of the vertical axis to the true vertical

line,

¥ = the inclination of the horizontal axis to the azimuth
circle,

a = AZH;

a’ = AZ'H,

A = the azimuth of the star O, reckoned from A4, as the
origin,

z = the zenith distance of the star;

then, in the triangle AZZ’, we have AZ=90°— b, ZZ'=,
AZ'=90°— 1, AZZ'=180°—a, AZ'Z = a’, and hence, by
Sph. Trig.,
sin b = cos a' cos ¢ sin { - 8in ¢ co8 ¢
cos b cos @ = co8 a’ cos 7 co8 § — sin ¢'8in §
cos b sin @ == sin a’ cos ¥

But, ¢, i/, and b being always so small that we can neglect their
squares, these equations may be reduced to the following

a=da
b=icosa 4+ i=1cosa -+t } (205)

In the triangle AZO, we have the angle AZ0 = A,Z0 + A,ZA

=A + 90°—a, and the sides A0 =90°+ ¢, AZ=90°—0,
Z0 = z; and hence '

— 8in ¢ = 8in b cos £ — cos b sin 2 8in(4 — a)

or, since ¢ and b are small,

b+c

sin (4 —a) “tanz | sinz

Hence sin (4 — a) is also a small quantity, and the angle 4 —a
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is either nearly 0° or nearly 180°. 'When the vertical circle at
the extremity of the horizontal axis is to the left of the observer,
as supposed in the above diagram, it is evident that A4 and a are
nearly equal, and 4 — a is nearly 0°. But if the instrument be
revolved about its vertical axis, the azimuth circle remaining
fixed, and the telescope be again directed to the same point O,
the vertical circle will be on the right of the observer, and the
angle a will be increased by 180°. In this case, therefore, 180°
— (4 — a) will be a small quantity. Putting, then, 4 —a or
180° — (A — a) for sin (4 — a), we have

A =a + bcotz + ccosec z [Circle L.]
A =a + 180° — b cot z — c cosec 2 [Circle R.]

Now, a is not read directly from the azimuth circle; but if we
put A’=the actual reading and A,= the reading when the
point 4 in the diagram is at A’ (in which case the telescope,
when horizontal, is directed towards the point 4,), we have

a=a=4'— A4, [Circle L.]
a 4 180° = 4'— 4, [Circle R.]
and, therefore,
A=A"—A, + bcotz =+ ccosecz

‘We have supposed the azimuths to be reckoned from the point
4,; but it is indifferent what point of the circle is taken as the
origin when the instrument is used only to determine differences
of azimuth, since the constant A4, of the above equation will
disappear in taking the difference of two values of A. For
absolute azimuths, let us denote the azimuth of the point 4, from
the south point of the horizon by 4,; then the azimuth of the
star, also reckoned from the south point, will be equal to the
above value increased by A,. If, therefore, we add A4, to the
second member, and then write a4 for the constant 4, — 4, we
shall have

A=A+ aAA =+ b cot z + ¢ cosec 2z + Circle L.

— Circle R.] (206)

where A now denotes the absolute azimuth of the star, and a4
is the index correction of the circle, or reduction of the readings
to absolute azimuths. The readings for circle right differing by
180° from those for circle left, we shall always assume that the

former have been increased or diminished by 180°, when two
Voi. I1.—21
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observations in different positions of the instrument are com-
pared. We must now determine the quantities ¢, b, and aA.

212. To find ¢ and b.—The most convenient method of finding
¢ with a fixed instrument is to employ a collimating telescope
placed on a level with the horizontal axis, such as that of Plate
IIT. Fig. 2. The cross thread of the collimator is observed as an
infinitely distant point or star, whose zenith distance is 90° ; and
hence cotz = 0, cosecz = 1. Observing it both with circle left
and circle right, let A’ and A"’ be the readings of the azimuth
circle (the latter reading being changed 180°); then we have

A=4" 4+ a4 +¢
A=A4"4+ a4 —¢

=} (4" — &) (207

whence

which will give ¢ with its proper sign for cirele left.
If, however, the collimator is below the level of the horizontal
axis, so that the telescope must be depressed to observe it, we

shall have
A=A4" 4 A4 4+ bcot z 4 ¢ cosec 2z

A= A"+ aA — b cot z — ¢ cosec 2

in which z = the zenith distance of the collimator = 90° + de-
pression of the telescope, as given by the vertical circle; and
then
¢=}3(4"—A)sinz—bcosz (208)

and b must be observed with the striding level applied to the
axis, a8 in the case of the transit instrument.

‘When the telescope is furnished with a micrometer, the value
of ¢ can be found with still greater accuracy, by means of two
collimators, as in Art. 145,

213. In some cases the spirit level cannot be reversed upon
the axis, but is permanently attached to it or to the frame which
supports it. It is then reversed only when the instrument is
reversed, and it becomes necessary to know the level zero, or
that reading of the level which corresponds to a truly horizontal
position of the axis. Let this reading be denoted by &, and let
{ be the reading at any observation; then we have

b=1—14
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where ! is the mean of the readings of the two ends of the
bubble, the readings towards the circle end being always
reckoned as positive. Then to find {, we have recourse to the
observation of two stars, one near the zenith and the other near
the horizon, or of the same star at different times. ILet A’ and
A"’ be the circle readings, 2’ and 2’ the zenith distances of.the
high star for circle left and circle right, respectively; U/, I’ the
level readings ; then, 4, and 4, being the true azimuths, we have

A =A4"4+a4A 4+ ' —1)cotZ + ccosec 2
A, =A"— a4 — (I"—1) cot 2’ — ¢ cosec 2’

The difference between A, and 4, may be accurately computed
from the known place of the star, and a small error in its
assumed place will not sensibly affect this difference. If the star
is near the meridian (which will be advisable), the change in
azimuth will be sensibly proportional to the interval of time
between the two observations: so that if 77 and 7"/ are the
sidereal clock times, and 34 the change of azimuth in one
second, we shall have

A, —A = 3A(T"— T (209)

in which 7" — 7" is in seconds; and 34 may be found by the
differential formula

aA—dA __18"cos 8 cos g

—dT sin z

where 3 = the star’s declination, and the parallactic angle ¢ is
found by Art. 15 of Vol. I. The difference of the above equa-
tions will then give us the equation

—ml, 4 ne=p (210)
where, to abbreviate, we denote the known quantities as follows:

m = cot 2’ 4 cot 2"’ n = cosec 2’ 4 cosec 2" @11)
p=4"—A—(4,—A)—TVcot Z—1"cot 2"

In like manner, the low star gives a similar equation,
—m'l, 4 re=yp (212)

and from the two equations the unknown quantities [, and ¢ are
found by the usual method of elimination. If a greater number
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of stars have been observed, the equations may be combined by
the method of least squares. Where there is a collimator, it
may always be used as the low star of this method.

214. To determine the index correction a4, observe any
known star in either position of the instrument; then, having
computed its true azimuth 4 (Vol. I. Art. 14), we have

aA =4 — (A4 £ b cot z &= ¢ cosec 2) (213)

215. With a portable instrument, such as is described in Art
210, the use of a collimator is impracticable, since the telescope
is at the extremity of the axis, and, therefore, cannot be directed
towards the collimator in both positions. We must then employ
gtars, as in the preceding article; but, as in portable instruments
the inclination b is usually found directly by the striding level,
a single star observed in both positions of the instrument will
suffice. If we take the pole star when near the meridian, we
can suppose 2 to have the same value for both observations, and
we shall have the two equations

A=A+ aA 4 ¥ cot 2z 4 ¢ cosec 2
A A, = A"+ a4 — V' cot 2 — ¢ cosec z
whence

c=3[A"— A — (4, —A)]sinz— 3V + V)cosz (214)

and it will then be expedient to determine a4 at the same time
from either 4, or 4,.

216. If instead of a single vertical thread there are several
such threads, the horizontal transit of the star is observed over
each by the clock, as in ordinary transit observations, the reading
of the horizontal circle remaining constant. If the star is not
too far from the equator, the intervals of time between the
transits over the threads may be assumed to be proportional to
the distances of the threads, and then the mean of the times
will be the time of the star’s transit over the mean thread. The
collimation constant ¢, determined from stars as in the preceding
articles, will then be that of the mean thread.

If some of the threads have failed to be observed, let f,, f;, &e.
be the distances of the threads from the mean thread, positive
for threads on the same side of the mean as the vertical circle;
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and let f, be the mean of the distances of the threads observed,
and T the mean of the observed times. Then f, + ¢ is the dis-
tance of the mean of the observed threads from the collimation
axis; and the azimuth at the time 7} is found by the formula
(208), substituting f, + ¢ for c.

217. If, however, we wish to proceed rigorously, we can
reduce each thread to the mean thread by the complete formula
(188),
sin f

sinf] = —————
cos & cos n co8 i

+ 2 tantsin?’} I

where I is the interval of time in which the star describes the
distance f, and ¢ =t — m, v being the east hour angle of the
star, and m and n being determined by (78). But we can sim-
plify this formula for our present purpose as follows. Let 4,
Fig. 50, be the point in which the horizontal axis of the Fir. 50
instrument meets the sphere when produced through ~° p
the circle end (as in Fig. 49); Z the zenith ; P the pole; ‘
O the star when in the collimation axis of the telescope. o
Since the small inclination of the horizontal and verti-
cal axes will not sensibly affect the thread intervals, we
can here regard A4 as the pole of the vertical circle ZO,
and the triangle OPD may be regarded as right angled
at D. In this triangle we have, according to the de-
finitions of m, », and ¢ in Art. 128, the angle OPD = OPZ
~APZ = —1t—(90° — m) =—90° — {, and the side PD
= AP —90° =(90° —n) —90°=—n. We have also OP
=: 90° — &, and the parallactic angle POD = ¢. Hence

A

CO8 1 CO8E == — CO8 ¢
tan{ = tangsin é

apd our formula becomes

sin f

ginl = — ———
€08 3 co8 ¢

+ 2sindtangsin*} I
This applies for circle left. For circle right it is only necessary
to change the sign of the first term, so that the complete for-
mula is

sin f

sinl =
cos 3cos g

+ 2sind tangsin®} I (215)
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. pper] .. circle L. .
in which we take lower] sign for circle R.} a.nd.I will be the

correction algebraically additive to the observed time on a thread
to reduce it to the mean thread. The angle g is found by the
formula
8in 4 cos ¢
cos &8
where ¢ will have a negative value for a negative value of sin 4,
that is, for a star east of the meridian.
It is evident that, except for stars of considerable declination,
the last term of (215) will be inappreciable, and that we may
usually take

f
I= ———— 217
- cos dcosq @
which amounts to assuming that I is proportional to f, as in the
preceding article.

218. To find the equatorial values f of the thread intervals,
we observe the transit of a slow moving star near the meridian,
and from the observed intervals 7 we deduce

sin f = = sin I cos 8 cos ¢

219. Zenith distances.—Let Z, Fig. 51, be the zenith; Z’ and 4
the points in which the vertical and horizontal axes meet the
celestial sphere; BB’() the great circle of
which 4 is the pole, and, consequently, the
circle which represents the vertical circle of
the instrument. This circle is also that which
is described by the collimation axis of the
telescope. Let the star O be observed on a
horizontal thread O/, which is perpendicular
to the great circle B0’ and coincides with
the arc A0’ produced. The point B, in
which AZ’ produced meets the circle BB, represents the ex-
tremity of that diameter of the alidade circle which is in the
plane of the vertical axis of the instrument. The arc B’(, or
the angle B’A(Y which it measures, is then the zenith distance,
as given directly by the circle when the circle readings for B’
and (¥ are given. Let the reading of the circle, when the thread
is at B/, be denoted by £, and the reading on the star by ¢, and
put B0’ or B’A( = z,; then, for circle left,

p=0—C

Fig. 51.
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the graduations of the circle being supposed to increase from
right to left. Now, for different azimuths the relative position
of B and B’ is different; and they coincide only when the point
A is in the plane of the circle ZZ’. Their relative position at
any time is given by the level attached to the alidade circle ; for
let [, be the reading of the level when B and B’ coincide, and
l the reading in any other case; then, denoting BB’ by az,, we
have
az=1l,—1

where we take the left-hand end of the level as the positive end,
the observer facing the circle, and [ is half the algebraic sum of
the readings of the ends of the bubble.

Let us now denote the arc B0’ by 2’; then we have

. 2=z +az

and in the triangle AOZ we have the required true zenith dis-
tance ZO =z, the angle OAZ = 2’; and, in accordance with
the notation before employed, 40 = 90° 4+ 00 = 90° + ¢
AZ =90° — b Hence

€08 z = — sin ¢ 8in b 4 cos ¢ cos b cos 2/
Substituting cos 2z’ = cos? } 2’ — sin? }2/, we obtain

cos 2 = — gin ¢ sin b (cos*} 2 4 sin*$2)
+ 008 ¢ cos b (cos® § 2 — sin? § 2')
== ¢08 (¢ 4 b)cos* 42 — cos (¢ — b) sin* }
cos? —co8z = 28in § (2 + 2)sin $ (2 — 2)
= 2gin*} (¢ 4 b)cos?$ 2 — 2sin*# (¢ — b)sin*$ =

The second member involving only the squares of the small
quantities ¢ and b, the correction z — 2’ is very small, so that for
the factor sin }(z -+ 2’) we may take sin 2/= 2 sin 2’ cos }2'.
Hence, substituting the arcs for the sines of the quantities } (z — 2’),
}(e + b), #(c — b), we find

z— z=(“_42'_”)' sin 17 cot 4 2 —(c-;—b)' ginl"tan}Z=¢ (218)

and ¢ will denote the correction for collimation and the inclina-
tion of the horizontal axis. Substituting the value of 2’ above
given, we find as the value of the zenith distance given by the
observation circle left,

z..—.(.—c-l—l.—l-‘-l
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In this equation the constants ¢, and [, are unknown; but if we
now revolve the instrument 180° in azimuth, and observe the
zenith distance of the same point, we shall have

g=¢—4¢ az = —(,—1)

where ¢’ and I’ denote the new readings of circle and level ; and
hence, for circle right,

2=0 = —l,+ U+
4n which ¢’ is computed by the formula

.'_—_(c"'é b )'sin 17 cot }z—("_

Y sn 1rtan .2

¢’ and &’ being the collimation and the inclination of the hori-
zontal axis in this second observation. The mean of the two
‘values of z is

= —O+IC =D+ I+ (219)
Their difference gives the constant quantity
LHL=3C"+O+IU+D+ (¢ —0) (220)

If the observed point is moving, as in the case of a star, the value
of 2z obtained by (219) is the zenith distance at the mean time
between the two observations; and, in general, if a series of zenith
distances is taken, one half in each position of the circle, and if
¢ denotes the mean of all the readings of the circle in the first
position, £’ the mean of all the readings in the second position,
{and I’ the corresponding means of the readings of the circle
level, the value of z given by (219) will be the zenith distance at
the mean of all the observed times, provided always that the series
is not extended so far as to introduce second differences of the
change of zenith distance. The correction for second differences,
when necessary, may be found by Vol. I. Art. 151.

The corrections ¢ and ¢’ are, however, usually rendered insen-
gible in practice by observing the star only in the middle of the
field, or as near the middle vertical thread as possible, which is
effected by giving the instrument a slow motion in azimuth while
the star passes obliquely across the field, and thus keeping the
middle thread constantly upon the star until it is bisected by the
horizontal thread.
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220. The equation (220) gives the constant , 4 [, only when
the observed point is fixed. The cross thread of a collimating
telescope, or a distant terrestrial object, may be used as such a
fixed point; and, making the observations in the two positions of
the circle only in the middle of the field, we shall have ¢/ —e=0:
so that if we dencte this constant by Z we shall have

Z=3C++10+ D) @21)

‘With this constant thus determined, a single observation of a star,
in either position of the instrument, will suffice to determine its
zenith distance, since we shall then have

z2=2Z—(+ 1) forcircle L. :
=@ +1)—Z & « R } (222)

The constant Z expresses the zenith point of the instrument, since
in any position of the instrument it is equal to the corrected circle
reading when the observed object is in the zenith.

If we wish to deduce Z from the two observations of a star, at
the times 7'and 7", we must compute the difference between the
zenith distances for the interval 77 — T, which, when the interval
is small, may be dcne by the differential formula

az = (T'— T)%:(T’— T') cos  sin 4

in which 7” — T is supposed to be reduced to seconds of arc;
and then we shall have

Z=3E 4N+ + 1)~ taz

It should be remarked that when {’is numerically less than
{ we should increase it by 360°, both in finding z and Z.

When the two observations, in opposite positions of the axis,
are made very near to the meridian, it will be advisable to reduce
each to the meridian by applying the correction for circum-
meridian altitudes, Vol L. equation (289) or (290).

ExaMpPLE.—To determine the zenith point of an ERTEL uni-
versal instrument, the telescope was directed towards a distant
terrestrial object, and the horizontal thread was brought into
coincidence with a sharply defined point in the object, twice in
each position of the vertical circle. The readings of the circle
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and level were as below. The graduations of the level proceed
continuously from the right to the left end of the tube, so that
the values of / are simply the arithmetical means of the readings

of the two ends of the bubble. The value of one division = 2.0,
Circle readings. |Level readings. ]
Gircle L 180° 2'807.|1 40.2 146 | 274
) { 180 285 | 404 145 | 2745
| 359 56 20 | 88.2 128 | 25.5
Circle R. { 859 56 30 | 885 129 | 257
Hence, taking the means, we have
¢ =180° 2'82"5 = 27.48
£'=2859 56 26 . "= 25.60

¢,— 269 59 28 .76

I, =

+ 53

.04

Z=2710 021.79

1, = 26.52 = 53".04

A series of zenith distances of the sun’s lower limb near the
meridian was then taken, as follows:

Circle L.

Circle R.

Circle Level Circle reading cor- | Observed zenith
reading. reading. reoted for level. distance.
229° 50 50” |38.4 12.7| 229° 51’ 41”.1 | 40° 8 40".7
229 657 15 |38. 123| 229 68 5.3 {40 216 .5
230 2.5 [87. 11.5] 230 2 68 .56 |39 57 28 .3
230 515 (876 12. | 280 6 4 .6 |39 54 17 .2
280 7 O [37. 114 280 7 48 .8 (39 52 83 .0
309 5215 |334 7.9 809 52 56 3 |39 52 34 .6
309 654 10 |33. 74] 809 54 50 4 |39 54 28 .6
809 57 50 (836 8.0| 309 58 31 6 |39 58 9.8
310 240 (838 838[ 310 8322.1 /40 38 0.3
310 9 15 |84. 88| 810 957.8 |40 936.0

Here we have, at the first observation,
div.

¢ = 229° 50’ 50”
and hence the corrected circle reading is
¢+ 1=229°51' 41".1

1= 4 2556 = 51”1
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The correction e being neglected, as all the observations were
made near the middle vertical thread, we obtain the observed
zenith distance by subtracting this number from the above read-
ing Z of the zenith point, whence 2z = 40° 8’ 40'".7.

In like manner, the fifth observation gives /4 I/ = 809° 52’
§6/".8, from which Z is subtracted to obtain the observed zenith
distance. The results are given in the last column.

These observations have been employed in Vol. I Art. 171, as
circammeridian zenith distances for determining the latitude.

221. In the methods of observation above adopted, a know-
ledge of the deviations ¢ and ¢ of the horizontal and vertical axes
from their normal positions is not required: it is only necessary
that they should be small. Their values, however, can be readily
investigated. In the triangle AZZ’, Fig. 51, we have the angle
ZAZ' = BB’ = az,==l,— [, as given by the level of the vertical
circle ; and this triangle gives, with the notation of Art. 211,

gin Az — sin i 8in a’
'™ cosd
or, taking a for a’,
it8ina = l. —1
At the same time, we have, from the level b of the horizontal axis,
tcosa+'=">

Now, revolving the instrument 180°, the angle a becomes
a + 180°, and if the level reading of the vertical circle alidade is
now !/, and the inclination of the horizontal axis is 4/, we have

—igina={—1
—1icosa 4 i'=">'

Hence, combining these equations with the former ones, we find

tsina=3 —
evea— i) } e

which determine i and a; and for ¢ we have

T=30+b) (224)
‘We can, also, find ¢ and #/ from the inclinations of the horizontal
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axis alone. Let the alidade of the azimuth circle be set at any
assumed reading 4’, and then also at 4’ + 120° and A4’ + 240°,
and let b, &/, b", be the inclinations of the horizontal axis given
by the spirit level in the three positions. Then we have

tcosa + i’ =b
icos (a + 120°) "=V
icos (a 4+ 240°) + ¢'=b"

the sum of which, since cos (a + 120°) + cos (a + 240°) =—cosaq,
gives

=G+ Y+ (225)
This, subtracted from the 1st equation, gives
icosa = 2b+'_”' (226)

and the difference of the 2d and 3d equations gives

¥

tsina =
V3

@221

which determine ¢ and a. This method may be used for instra-
ments intended only for the measurement of horizontal angles.
In other instruments, both methods may be used, and the
accordance of the results will indicate the degree of perfection
in the workmanship of the vertical pivots of the instrument.

222. If there are several horizontal threads, the vertical transit
of the star over each may be observed, revolving the instrament
slowly in-azimuth, so as to make the transit occur in the middle
of the field. The level of the alidade should be read both
before and after the observation, and the mean taken as the
value of / at the mean of the times of observation. When the
star is not near the meridian, the zenith distance represented by
the mean of the threads may be assumed to correspond to the
mean of the observed clock times; but when near the meridian
a correction for second differences will be necessary.

In Vol. I. Art. 151, we have found that if T|, T,, T,, &c. are
the several clock times, and 7 their mean, the corrected time
corresponding to the mean of the zenith distances is

T,= T + /5 km, (228)
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in which, ¢ being the hour angle, 4 the azimuth, and ¢ the par.
allactic angle of the star,
k= cos Acosq
sint

sod m, is the mean of the quantities
26in’$ (T, —T) 26in’} (7, —T) &o.
8in 1” ’ sin 17 T

which can be taken from Table V.
For the moon, the correction will be

Ykm. — Ky
s 1 —Nrkm, = S
log B being found as in Art. 154.

If the transit is defective, that is, if only a portion of the
threads have been used, it will be necessary to apply to the circle
reading a correction which will be the difference between the
mean of the threads observed and the mean of all the threads.
Thus, f denoting the distance of any thread from the mean of
all, and # the number of threads observed, the correction of the

circle reading will be %Ef. The value of f for each thread will

be most readily found from complete vertical transits of stars
which are not 8o near to the meridian as to require a correction
for second differences, since we can then use the differential
formula

F=16IX% g—:-=15Icos¢sinA

in which I is the interval between the observed time on a thread
and the mean of all the times.

To compute f with regard to second differences, see Vol. L
Art. 150.

228. Correction of the observed azimuth and zenith distance of the
limb of the moon or a planet for defective Wllumination.—I shall here
consider only the case where the defective limb of a spherical
body has been observed. The formulse for the more general
case of a spheroidal planet may easily be deduced from those
given in Vol. I. (occultations of a planet); but they are rarely
if ever required. We can obtain the formule necessary for our
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present purpose from those given in Arts. 157 and 207 of the
present volume. It is evident that in computing the apparent
outline of the disc of a planet as illuminated by the sun, any
gystem of co-ordinates may be used, provided the places of the
sun and planet are expressed in the same system. If, then, we
here substitute the zenith for the pole, and, consequently, the
horizon for the equator, we have only to substitute zenith dis-
tance for. polar distance and azimuth for right ascension, or
rather the negative of the azimuth, since the azimuth is reckoned
from left to right, while right ascension is reckoned from right
to left. Putting, therefore,

= the sun’s zenith distance,
a = “ azimuth,
A = the planet’s azimuth,
= the planet’s apparent semidiameter,
R, R'=the heliocentric distances of the earth and planet,
respectively,

we have, by (124), for computing the horizontal perpendicular
from the centre of a planet upon the vertical thread in contact
with the defective limb, the formule

8in y = £ sind sin (a — 4)
B (229)
g'=38cosy

The value of sin y will be positive or negative according as the
2d or the 1st limb is defective. The value of s may be found
from its mean value given in Vol. L p. 678.

For the moon we can put R = R'.

Since we wish to deduce from the observed azimuth of the
defective limb that of the true limb, the correction of the circle
reading will evidently be

s—g" s versin y

M= —=—
sin 2 sin z

(230)

Again, for computing the vertical perpendicular from the centre
of a planet upon the horizontal thread in contact with the
defective limb, we deduce from (200), by changing the co-ordi-
nates, - :

sin y = -11% [sin 2 cos d — cos zsin d cos (a — 4)]  (231)
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or, by introducing an auxiliary,
tan £ = tan d cos (a — 4)

. __ R sin(z—E)cosd (231%)
fhr =w cos E

and the correction to reduce the observed zenith distance to
that of the true limb will be

0z = s versin y (282)

A negative value of sin y will indicate that the upper limb is
defective.

ExampLE 1.—The following observations of the azimuths of
Requlus and of the moon’s 1st limb were made at Greenwich
with the ¢« Alt-azimuth,” May 3, 1852.

Vertical | Clock time of Circle reading Level Clock
circle. transit. =4’ =1 oorr.

D1L. | Left 11 26= 12:.95 |140° 39’ 89".71 | — 19”.79 | 4 11°.46
J1L. | Right | 12 38 11.30 (328 45 10 .76 |— 20 .14| 11.51
Regulus.| Right | 12 81 55.37| 62 54 43 .04|—21 49| 11.55
Regulus.| Left 12 45 26.38 1246 84 47 .08|— 19 .28 11.57

The clock time is the mean of the transits over six vertical
threads. The clock correction is the reduction to sidereal time.
The circle readings are the means of four microscopes. The
level reading is the mean of the indications of six levels, per-
manently attached to the instrument, parallel to the horizontal
axis. The level zero, found by the method of Art. 213, was

I, = — 80".16

The collimation constant for the mean of the threads was, for

circle left,
c= 4 2".68

The observations being taken for the purpose of determining
the moon’s azimuth, we shall first find the index correction of
the circle from the known star Regulus. From the Nautical
Almanac, we take

Regulus, R. A. = 10 0= 29-.32
“ Decl. = 4 12° 41’ 16”.6
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The hour angles of the star at the two observations are, there

fore,
Circle R. t = 2* 81~ 87-.60
Circle L. t=2 45 8 .68

with which and the latitude ¢ = 51° 28’ 37".84 we find, by Vol.
L Art. 14, thestars’strue azimuthand approximate zenith distance,

Circle R. A4 = 52° 10 13".10 z=49° 22
Circle L. 4 =55 50 39 .25 z=>51 4

The zenith distances are apparent, i.e. affected by refraction.
The instrumental corrections for the star are then as follows:

|b=l——l,| = bcotz | = coosecs
Circle R. | 4+ 8”.67 | —7".45 | —8".58
CircleL. | +10 88 | +8 .79 | +8 .45

The corrected circle readings are, therefore (adding 180° to
the reading for Circle R.),

I Corrected 4’ |
Circle R. | 242° 54’ 32”.06 l
Circle L. | 246 384 59 .82

which, compared with the true azimuths A above found, give
the index correction

I ad

Circle R. | 169° 15’ 41”.04
Circle L. | 169 15 39 .93
Mean a4 =169 15 40 .48

In the next place, to reduce the observations of the moon
there were given the moon’s apparent zenith distances (affected
by parallax and refraction),

Circle L. )z =177°1Y
Circle R. Y3 =1738 17

whence we find the instrumental corrections to be as follows :
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I b=1—-1, *=dcotz :I:coosoozl .

Circle L. l + 10”37 | + 2".36 + 2".75

« R | 4+10.02| —3.01 | —2 .80

Applying these and the above found index correction, the true
azimuths of the limb, as observed, were

Circle L. At 11* 26~ 24:41 Sid. time, A = 809° 55’ 25”.80
“« R «“12 8 22.81 « « A=318 045 43

But the moon’s limb was slightly gibbous; and we must yet
apply the correction given by our formulee (229) and (230). As the
correction will not be sensibly different for the two observations,
we may compute it for the middle instant between them, which
corresponds to the mean solar time 8* 57 16*. For this time, wo

find
Sun’s o = 2% 44" 15.74

“« 3= 4 15°548
from which we deduce the sun’s azimuth and zenith distance
a = 136° 4’9 d=102° 8.1

and hence, taking 4 = 818° 58'.1 (the mean value), we find
log sin y = n8.5570

8ince sin y is negative, the first limb is defective. Then, since
s =16’ 86’.5, and the mean value of z = 75° 14/,
a4 =302 _ on gy
sin 2
which is to be added to the above values of 4 to obtain the
azimuths of the true limb.

Examprre 2.—The following observations of the zenith dis-
tances of the collimator and of the moon’s lower limb were
made at Greenwich with the ¢ Alt-azimuth,” Sept. 21, 1852.

Cirol:-ecnding Level=re‘ading 4
Collimator. Circle L. | 815° 47’ 57".563 74".63 815° 49’ 12".16
« R.|160 23 80 .3 82 46 160 24 52 .80
Z= 68 T 248
Vor. IL—22
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The vertical transit of the moon was observed on six horizontal
threads, as follows:

280t} (Ta — 1)

Thresd.|  Clock. 1,7 <o 1"

DLL. Circle L] I |19*88=11+5 |— 3= 434 27".22
I 89 47.0|—2 7.9 8 .93

11 41 16.0|—0 389 0 .88

v 42 425|+0 476 1 .24

v 4 55|12 106 9 .80

Vil 45 270l4+38 821 24 .58

T=19 41 5492 m, = 12 .01

Clock corr. = 4 7.90
8id. time =19 42 2.82

Circle reading ¢ = 841° 27’ 12".568
Level ¢« l= + 80 .90
¢ 1=2341 28 33 45

Z= 68 7 248

= 76 -88 29 .08

This zenith distance does not correspond precisely to the mean
time 7, on account of the moon’s proximity to the meridian. To
obtain the correction for second differences by our formula (228),
we have found above the differences between the several clock
times and 7, and also the mean (m,) of the corresponding values
of m. Then, to compute the coefficient %, we have the approxi-
mate azimuth of the moon at the time of observation,

Ad=485%8
apd the moon’s declination,
d=-—28°34'b

Houce, with ¢ = 51° 28'.6, by the formul=

sin A sin 4

sin ¢ = cos ¢ sint = sin 2
cos ¢

we find
log sin ¢ = 9.0257, log sin ¢t = 9.2194

and then
- log k = 0.7727
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The change of the moon’s right ascension in one minute of
mean time was 2°.40; and hence, by the table in Art. 154,

ar. co. log B = log (1 — 1) = 9.9823
We have, therefore, the correction
& (1 — Dt hmy = + 4.87

which, being added to the sidereal time above found, gives
19* 42~ 7°.19 as the sidereal time corresponding to the apparent
zenith distance 76° 88’ 29/7.03.

It should be observed that in the observation of the collimator
one of the horizontal threads is made to bisect the cross thread
of the collimator, and, therefore, in order to make the circle
readings correspond to the mean of the threads, they must be:
increased by the distance of the horizontal thread employed
from the mean. In the above observations the 4th thread was
employed, the distance of which from the mean of the six
threads was 1’/ (//.46. This quantity is included in the circle
readings above given, so that they represent the readings that
would have been obtained if the fictitious thread called the mean
thread had actually been observed in coincidence with the
threads of the collimator.

In conclusion, it is to be remarked that stars may be observed
both directly and by reflection in a mercury horizon, in which
cage the difference of the readings of the vertical circle (corrected
for any change in the alidade levels, &c.) will be twice the alti-
tude. The combination of the reflected observations in both
positions of the axis gives the nadir point of the instrument,
precisely as the zenith point is obtained from the direct obser-
vations. The method of conducting such observations will be
readily inferred from what has already been said under Meridian
Circle, Art. 200.

[For an example of the use of a portable instrument in de-
termining the longitude of a place by the moon’s azimuth, see
Vol. I. p. 880.]
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CHAPTER VIII

THE ZENITH TELESCOPE.

224. THE zenith telescope is a portable instrument specially
adapted for the measurement of small differences of zenith dis-
tance. It is essentially the invention of Capt. ANpREw TaLcorr,
of the U. 8. Corps of Engineers (in 1834) ; but, having been exclu-
gively adopted in the U.8. Coast Survey for the determination
of latitudes, it has there received several improvements, which
have given it a more general character than it possessed at first.
As now constructed, it can be used at all zenith distances, and
may be regarded as designed for the comparison of any two nearly
equal zenith distances in any azimuths. The method of finding
the latitude by this instrument, now known as Taleotl’s Method,
is one of the most valuable improvements in practical astronomy
of recent years, surpassing all previously known methods (not
excepting that of BesseL by prime vertical transits) both in sim-
plicity and in accuracy.

Plate XIII. represents one of the zenith telescopes of the
U.8. Coast Survey. The telescope is attached to one end of a
horizontal axis @, and is counterpoised by a weight O at the
other end, which is so connected with the telescope by the
eurved lever P, P, P as to tend not only to equalize the pressure
of the axis Q upon the two Vs, but to prevent the flexure of the
axis. The Vs of the horizontal axis, one of which is seen at N,
are connected with each other by the horizontal bar M, and
thereby to the vertical column C. This column revolves about
a vertical axis and carries a vernier and clamp e, by means of
which it may be set at any reading of the horizontal circle BB.
The vertical axis and horizontal circle are secured to a tripod,
the feet of which, 4, 4, 4, are levelling screws for adjusting the
verticality of the axis. The striding level S is applied to the
horizontal axis, as in the case of the transit instrument.

We now come to the distinctive features of the instrument,
the spirit level L and the micrometer E. The level L is at right
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angles to the horizontal axis, and, consequently, in the plane of
motion of the telescope, and is firmly connected with the bar H,
which revolves upon a centre secured to the telescope: so that
it may be placed at any angle with the optical axis of the tele-
scope. In order to set the level at any given angle approximately,
the bar H carries a vernier, which by the clamp I can be fixed
at any reading of the vertical circle K, and this circle is perma-
nently connected with the telescope. This circle, being graduated
from 0° at its middle point to 90° in each direction, will, when
properly adjusted, give the zenith distance of a star towards
which the telescope is directed when the bubble of the level is
in the middle of the tube; and it therefore serves as a finder by
setting the vernier upon the given zenith distance of a star and
then revolving the telescope until the bubble plays. When the
telescope is thus approximately set, it is clamped by the screw
G, which acts upon a circular collar around the horizontal axis,
and then a fine motion in zenith distance can be given to the
telescope by the tangent screw F. This fine motion is required
only in bringing the bubble of the level nearly to the middle of
the tube.

E is a filar micrometer with one or more movable threads
carried by a single micrometer screw with a graduated head
reading directly to hundredths of a revolution, and by estima-
tion to thousandths. In the instruments in use, one revolution
is usually less than 50"/, and hence each observation is read off,
by estimation, within less than 0/.05. There are usually added
several fixed vertical threads, so that the instrument can be used
as a transit instrument when required.

In the preliminary adjustment, when setting up the instru-
ment, the test of the verticality of the axis C'is that the reading
of the striding level S is not changed while the instrument makes
a complete revolution in azimuth. The perpendicularity of the
horizontal and vertical axes @ and C is proved when, after
having made C vertical, @ is horizontal ; and the latter is proved
by reversing the level S upon the axis.

The middle transit thread can be approximately adJusted by
causing it to coincide with a very distant terrestrial point in two
positions of the telescope for which the readings of the hori-
zontal circle differ exactly 180°. This, however, is but an
approximation ; for there will be a parallax in the apparent
position of any terrestrial point as observed in the two positions,




342 ZENITH TELESCOPE.

since the absolute position of the centre of the telescope is
changed by twice its constant distance from the vertical axis.
We can easily compute the amount of this parallax in a given
case and allow for it; for if d = the distance of the centre of the
telescope from the vertical axis, D = the distance of the object,
and p = the parallax, we have

4
P=Den1

but, as the horizontal circle is not designed for very accurate
measures, it will not usually be worth while to use this method
further than to make a first adjustment. A perfect adjustment
can be directly effected by the use of two collimating telescopes
(Transit Inst., Art. 145), for which we can temporarily use the
telescopes of two theodolites or other field instruments at hand.
‘When the instrument is used as a transit, the collimation con-
stant can be determined from a number of stars observed in the
two positions of the axis by the method of least squares, sup-
posing two different azimuths but the same collimation in the
two sets of equations of condition, as in the example, p. 202.
The verticality of the transit threads is proved by the methods
used for the transit instrument.
" In finding the latitude by meridian observations, the instru-
ment is frequently revolved in azimuth 180° for the alternate
observation of north and south stars, and, to save time in this
operation, two stops, b, b, are provided, which can be clamped
at any points of the limb of the horizontal circle, and, conse-
quently, at such points that the telescope shall be in the meri-
dian when the clamp e bears against either stop.

225. Talcolt's method of finding the latitude.~Two stars are
selected which culminate at nearly equal zenith distances, one
north and the other south of the zenith. The difference of their
zenith distances must be less than the breadth of the field of the
telescope, and it is better to have it less than half this breadth, to
avoid observations near the edge of the field. Their right ascen-
sions should be nearly equal, so that their transits may occur
within so short a period that the state of the instrument may be
gssumed to have remained unchanged; but a sufficient interval
should be allowed for making the necessary observation of the
level and micrometer and for reversing in azimuth. The stops
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having been previously set (by means of some known star) so as
to mark the meridian, the finding circle K is set to the mean
zenith distance of the two stars, and the telescope is pointed so
as to make the reading of the level L nearly zero. The tele-
Bcope can now be directed upon either star by revolving the
instrument about the vertical axis, and this axis is supposed to
be 8o nearly vertical that the reading of the level will not
be greatly changed, since for accurate determinations with a
spirit level it is always important to make the inclinations which
it is to measure as small as possible, and not to use the extreme
divisions. The chronometer times of the transits of the stars
have been previously computed from their right ascensions and
the chronometer correction. The instrument being set for the
star which culminates first, when the star comes into the field
an assistant calls the seconds of the chronometer, and the
observer bisects the star by the micrometer thread as nearly as
possible at the computed time of tramsit; or, failing in doing
this satisfactorily, he bisects it soon after, and records the actual
time of the observation. He then reads the level and micro-
meter, revolves the instrument 180°, and observes the second
star in the same manner.

Several bisections of the star might be made while it is passing
through the field, and each could be reduced to the meridian;
but in the Coast Survey a single deliberate meridian observa-
tion is regarded as preferable to several circummeridian obser-
vations.* :

‘We must not fail to remark that, since the excellence of this
method depends upon the invariability of the angle which the
telescope and level make with each other, the observer must not
touch the tangent screw I after having set for the proper zenith
distance, until the observation of the two stars is completed.
The same restriction does not apply to the tangent screw F,
which moves the telescope and level together; and, in case the
vertical axis is not very well adjusted, it may be necessary to

* The single observation is preferable on the score of simplicity in the subsequent
reductions, but it cannot be regarded as more acourate than the mean of several
properly taken observations. The best reason for preferring the single observation
is found in the present state of the star catalogues, for even the single observation
with the zenith telescope is subject to a less probable error than the place of the star
in most of the catalogues that have to be msed. It is, therefore, preferable to
simplify the individual observations and to multiply observations by taking different
pairs of stars.
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-use this screw, after turning to the second star, in order to bring
the bubble of the level near the middle of the scale.

Now let m be the micrometer reading (reduced to arc) for the
southern star. Let my be the micrometer reading for any point
of the field arbitrarily assumed as the micrometer zero; and let
£, be the apparent zenith distance represented by m, when the
level reading is zero. Let us also suppose that the micrometer
readings increase as the zenith distances decrease. Then, if the
level reading were zero, the apparent zenith distance of the star
would be

2, + (my — m)

Let ! be the equivalent in arc of the level reading, positive when
the reading of the north end of the level is the greater; let r be
the refraction. Then the true zenith distance of the southern
star is :
2=z+m—m+41l4r

The quantity 2z, + m, is constant so long as the relation of the
level and telescope is not changed. We shall, therefore, have
for the northern star

Z=z,4+m—m—1U+7
Hence we have
z2—Z=m—-mF$ U4l 4+r—7

But, if 8 and &’ are the declinations of the south and north stars,
respectively, and ¢ the latitude, we have

¢=¢, +Z
p=208—2

and, therefore,

9’=%(6'+6)+i(2-z,) } (233)
=30+ H+ i —m)+ 3+ D +3(r—7)

Thus, to the mean of the declinations we have to add three cor-

rections, which I shall consider separately.

226. The correction for refraction.—The observations being
usually restricted to zenith distances less than 25°, and the differ-
ence of zenith distance being necessarily less than the breadth
of the field of the telescope, the difference of the refractions ig
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°

80 5.aall that the variations depending on the state of the barom-
-eter and thermometer are not sensible, and we may employ the
equation

r—r’=(z—z’):z—r

in which, if 2 — 2’ is expressed in minutes, the differential
quotient % will denote the change of the mean refraction cor-
responding to a change of one minute of zenith distance. If
we take BEesseL’s formula for the refraction,

r=oatanz

in which @ may be regarded as constant for small variations of
z, we have

dr asin 1’

dz cos*z

by which we readily form the following table:

dr

: ds
0° { 0".0168
5 .0169
10 .0173
15 .0180
20 .0190
25 0205

The principal term in the value of z — 2’ is ‘m’ — m, and we
may in practice take (m’ — m being expressed in minutes)

He—") =4 —m I (284)

The correction for refraction then has the same sign as the cor-
rection for the micrometer.*

* If we wish to consider the actual state of the air as given by the barometer and
thermometer, we have only to multiply the values of :_: by B and y, whose loga-
ritums are given in Table IL.
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227. The correction for level—If we denote the readings of the
north and south ends of the bubble by » and s, the inclinations
observed at the observations of the south and north stars, re-
spectively, expressed in divisions of the level, or, as I shall call
them, the level readings, will be

L=

and, putting D = the value of a division of the level in seconds
of arc, we shall have

{=LD U!'=ILD
and the correction for the level will be

W +D=3@ + Do =(EEN=EEN)p )

Thus the correction for the level is found with its proper sign by
subtracting the sum of the south end readings from the sum of
the north end readings, and multiplying one-fourth the remainder
by the value of a division.

" 228. The correction for the micrometer.—If we denote the actual
micrometer readings for the south and north stars by M dnd M’,
expressed in revolutions of the screw, and put R = the value of
a revolution in seconds, we have
jow —m)=4 (M’ — MR (236)
‘We have supposed the readings to increase as the zenith dis-
tances decrease, or, which is the same thing, that the readings
increase from the upper part of the field towards the lower part.
This is desirable only on account of the symmetry it gives to the
reductions, the proper sign of the correction being determined, as
in the case of the level, by always subtracting south readings
from north readings. But it is well to reverse the instrument
occasionally, using the telescope sometimes on the right and
sometimes on the left of the vertical axis, in order to eliminate
any unknown peculiar error of the instrument, and in conformity
with the general principle of varying the circumstances under
which different determinations of the same quantity are made.
This reversal, of course, reverses the sign of the readings, and
therefore when the readings are the reverse of those above sup-
posed it will be sufficient to mark them all with the negative
sign, and then to proceed by the same formuls as before.
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229. Reduction to the meridian.—When from any cause the
observer fails to obtain the meridian observation, a single extra-
meridian observation is usually substituted. This observation
may be taken in either of two ways.

First. The instrument is left clamped in the meridian, and the
star is observed at a certain distance from the middle vertical
thread, the time being noted. The reduction to the meridian is
then the same as for the meridian circle (Art. 199), namely, 7
being the hour angle of the star in seconds of time,

§ (157)*sin 1" 8in 28

This is to be added to the observed zenith distance of a southern
star, or subtracted from that of a northern star, and in either case
one-half of it is to be added to the latitude. The correction to
the latitude is, therefore,

z = § (157)*sin 1" sin 28 = [6.1347] r*sin 22 (237)

when one of the stars of & pair is observed out of the meridian.
If both are so observed, two such corrections, separately com-
puted for each, must be added. If the star is south of the
equator, the essential sign of the correction is negative.

Secondly. We may follow the star off the meridian by revolving
the instrument in azimuth, keeping the star near the middle
vertical thread. The reduction is then the same as that of
circummeridian altitudes (Vol. I. Art. 170), namely,

(167)*sin 1" cos ¢ cos 8
2 sin z

which is always subtractive from the ohserved zenith distance,
and therefore the correction to the latitude in this case will be

(157)*sin 1” cos ¢ cos &

=4 -
4 sin 2

(238)
the upper sign for a northern and the lower for a southern star.

230. Selection of stars.—The fundamental stars whose declina.
tions are determined with the highest degree of precision are too
few to afford suitable pairs for this method, and hence we must
have recourse to the smaller stars. Those of the 6th or Tth
magnitude are the smallest that can be easily observed with a




348 ZENITH TELESCOPE.

portable instrument. But, as the declinations of these stars are
not very precisely determined, we are obliged to employ a large
number of pairs in order to eliminate their errors as far as possi-
ble by taking the mean of all the results. The British Associa-
tion Catalogue will generally furnish from fifteen to thirty pairs
for any given latitude on almost any night in the year, but, as
the declinations of the stars selected will often be found to rest
upon a single observation, or upon a single authority, these ought
to be rejected unless they can be found also in more recent
catalogues. In order to secure every available pair, the catalogue
should be consulted from the earliest right ascension which the
daylight at the time of the beginning of the series of observa-
tions permits, to the latest hour at which it is desirable to observe.
It is found expedient to prepare a table in which all the stars
which culminate within 25° of the zenith, both north and south,
are arranged in the order of their right ascensions. From this
table suitable pairs are selected to satisfy as nearly as possible the
following conditions: 1st, The difference of the zenith distances
in a pair should not be more than 10’; in order not to have to
observe either star near the edge of the field, and also in order
to lessen the effect of an error in the determination of the value
of the micrometer screw. 2d, The difference of the right ascen-
sions of a pair should not be less than one minute, so as to give
time to read the micrometer, and to revolve the instrument to
be prepared for the second star; and not greater than about
twenty minutes, to avoid changes in the state-of the instrument.
8d, The interval between pairs should afford time for reading
the micrometer and level, and for setting the instrument for the
next pair. 4th, The greater zenith distance should be as often
that of the northern as that of the southern star, as an error in
the value of the micrometer screw will thereby be rendered less
sensible. The effect of such an error would evidently be wholly
insensible in the case of a pair whose zenith distances were
exactly equal; and, in general, for any number of pairs the effect
of such an error upon the final result will be the more nearly
insensible the more nearly we approach to the condition

Zz2—-32=0 (239)
281. ExaMPLE.—To illustrate the preceding method, I extract

from the records of the U.S. Coast Survey, by the kind permis-
gion of the Superintendent, a portion of the observations taken
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at the Roslyn Station, Virginia, in July, 1852, and shall give them
very nearly in the form in which they are recorded and reduced
upon the survey. After selecting the most suitable pairs of stars
by the process above described, a list is made out for the use of
the observer in preparing for each observation, as follows:

Programme for Zenith Telescope.

U. 8.C.8. Roslyn Station, Va. Approx. lat. = 87° 14’
Star. Mag. AR. Dec.  |Zen. Dist. Setting.
BLAC.4843| 6 | 14v83=21°| 4 45° & | 7° 49/
« 4902| 6 |14 43 87| 29 14| 8 0 7° 5%
« 4902| 6 |14 43 87| 20 14| 8 0

«  4965| 6% | 14 57 b5 45 14| 8 0

22 2w Zn »Z
a0
[—]

« 4001| 6 |15 2 2| 26 52|10 22
« 5092 7 1520 21| 47 85|10 21 10 21
« 5002| 7 |15 20 21| 47 35|10 21

« 5102| 5 |15 86 88| 26 48 |10 28 10 24
&e. &e.

The following are some of the observations taken by Mr. DEan:

Star. Miocrometer. Level.
Date, Merid.
1852. pol N | Resding. |Dift.z.Dist.| N. [ 8. [N—s8. dist.
Rev. Rev.
July9|4843| N. | 29.590 82.4 | 85.0
4902| S. | 12.340 | + 17.250 [ 34.0 |36.8 | —39 |
« 9(4902| 8. | 12.340 84.0 | 853
4965| N. | 13.990 | 4 1.660 | 33.8 [87.0 | — 4.5
“« 914991 S. | 23.810 31.2 | 39.6
5092 N. | 25.525 | 4+ 1.715 | 39.2 |83.0 | — 2.1
“ 915092 N. | 25.525 39.2 | 33.0
5192 S. | 14.800 | 4 10.725 | 82.8 | 41.0 | — 2.0
« 19 (5911| N. | 14.8056 48.5 | 48.6 10-.9
5922 S. | 26.675 | — 11.870 | 48.0 [ 49.0 | — 1.1
« 20(6453| S. 8.225 44.4 [ 49.4 20.5
6530 N. 53860 | — 2.865 | 50.2 | 43.5 | 4+ 1.7
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The stars 5911 and 6453 were observed out of the meridian at
the hour angles 109 and 20.5, respectively, the instrument
remaining in the meridian.

The next step is to deduce the apparent declinations for the
dates of the observations from the catalogues, using for this pur
pose not only the B. A. C., but also any later catalogues in which
the stars can be found.

The value of a revolution of the micrometer was R = 41'".40,
and that of one division of the level was D = 1’7.65. The com-
putation of the latitude is then as follows:

Corrections.

Btar. $and¥ e+ Microm. | Level. | Refr. | Merid. Latltode
o _T_gg" |2 66001370 & 29v.21( 46 67.08|—17.61+0.10 87° 14 24778
jg—gg 28 1 43 oolaT 18 52 .75|4-0 84 .16|—1 .86/+-0 .01 25 .osl
oon| 5 52 22-T8137 13 50 .56|4-0 85 .50(—0 87|40 .01 25 .19l
bove o & 18 87187 10 44 .95+-3 42 .01 —0 .83 40 .06 26 .1
ooas| 25 522-4Tl7 18 81.92|—4 5.71|—0 .45|—0 .07|+0.02 25 .71
lgggg gg 2 a1 31187 15 28 .81|—0 59 .81|4-0 .70/ 0 .02|+-0.04 25 .22

Mean = 37 14 25 .36

232. Discussion of the results—In combining the results ob-
tained by this method, we should have regard to their respective
weights. The weight of any result from a pair is a function of
the probable error of the declinations of the stars and of the
probable error of observation.

The probable error of an observation of a single pair, which
may be denoted by ¢, is found by comparing all the observations
on the same pair with their mean, where a sufficient number of
observations have been taken. Assuming that the probable
error of observation is the same for every pair of stars, we can
find its mean value from all the pairs, as follows. If v, denotes
the residuals obtained by comparing the mean of the results by
the first pair with », individual results from that pair, v, the
residuals obtained in like manner from a second pair on which
there are n, observations, and so on, to m pairs, we have, accord-
ing to the theory of least squares,
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("1 —De=g¢g [”n”n]
(ng — 1) ee = ¢ [v,v,]

where [9,9,] &c. denote the sums of the squares of the values
of v, &c., and ¢ is the factor for reducing mean errors to pro-
bable errors. (See Appendix, Art. 15.) The sum of these equa-
tions gives

(n — m) ee = g*[wv]

where n denotes the whole number of individual results, or n

=n+n+4+..... + n,, and [vv] the sum of the squares of all
the residuals, or [vv] = [v0,] + [v2] + ... .. + [v.0.)- Hence
we have
- [vv] _
e_q\/n_m g = 0.6745 (240)

ExaMpLB.—The individual results of the whole series of ob-
servations at Roslyn in July, 1852, from which the above are
extracted, were as stated in the following table, in which only
the seconds of latitude are given.

To find the error of observation.

Np‘:.i: Lat. Means. v oo

1 | 24n78

2 | 25.05
25 .19 36 | .1296

3{ 21 47 | 2483 | 36 | 1206
26 .19 o1 | 0001

4 25 94 | 26.20 | .26 | .0676
26 47 27 | 0729
25 .52 89 | 1521

5] | 2608 | 25.01 | .17 | 0289
26 .14 28 | .0529
22 .95 22 | 0484

6{ 22 50 | 2278 | 23 | .0529
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To find the error of obssrvation.—Continued.

No..o

pair. Lat. Means. v vy

(| 267.26 338 | .1089
25 42 51 | 2601
25 96 03 | .0009
74| 26 .01 | 25798 | o8 | .0064
25 98 05 | 0025
|| 25 96 03 | 0009
| 25 47 20 | 0841
24 97 21 | 0441
24 95 28 | 0529
841 2530 | 2018 | 72 | o144
24 99 19 | 0361
|| 25 38 20 | .0400
| 25 .17 72 | 5184
25 .64 25 | 10625
9l| 2600 | 25.80 | 11 | w0121
26 45 56 | .8136
|| 26 17 28 | 0784
25 92 13 | o6
25 46 . 1089
1041 2570 | 2579 | 09 | .0081
26 .09 80 | .0900
25 .15 62 | 3844
24 24 29 | 0841
119 9443 | 228 | 10 | 0100
24 29 24 | 0676
26 .18 1.08 | 1.0609
12]| 2437 | 2515 | .98 | 9604
25 .10 05 | 0025
25 78 51 | 2601
25 78 56 | 3136
B3| 2412 | 2522 |10 | 12100
25 .23 01 | 0001
24 .86 02 | oo

24 65 29 | 0
47 9516 | 284 | 32 | 1024
24 80 04 | .oo16
25 .91 55 | 8025
25 .00 ‘86 | 1296
1691 9518 | 2588 | 18 | 0824
25 .35 01 | 0001
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T find the error of observation.—Conoluded.

N:;i:_f Lat. Moans. v "

25" 94 08 | .0064

26 74 72 | 5184

167| 2623 | 26702 | o7 | ‘oaq1
25 .18 84 | 7056

25 82 40 | .1600

26 0 59 | 3481

1790 2499 | 2542 | g | ‘ls4g
24 86 56 | 3136

26 91 20 | 0841

25 94 14 | 0196

180 2584 | 2608 | 95 | ‘0576
26 .16 08 | 0064

2 .97 26 | 0625

25 92 20 | 0400

19| 2560 | 2572 | 2 | ‘o144
25 .87 35 | 1225

26 .02 82 | .1024

25 .67 03 | 0009

204 2589 | 2570 | 99 | ose1
25 20 80 | 2500

26 .32 89 | 1521

21| 2549 | 25 .93 | 44 | 1936
25 .97 04 | 0016
n—"73 [vv] = 11.0169

m =19
n—m=>554

Hence, = 0.6745 | gp = 07.30

This small probable error is a proof both of the great supe-
riority of this method over all previously known methods of
finding the latitude, and of the skill of the observer. Possibly
an unusually favorable state of the atmosphere may have con-
spired to give this series an unusual degree of precision, as the
average experience of the observers of the Coast Survey gives
the value of ¢ somewhat greater. Not to assame too high s
degree of precision for the observations, the adopted value upon

the Survey is
e = 0".50
Vor. II.—23
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and even this value justifies us in asserting that the resuits by
this method compare favorably with those obtained by first class
fixed instruments of the observatory, where the measures depend
apon graduated circles.

But the precision of the results is impaired by 