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PREFACE.

—— e

THE present volume is the result of an attempt to supply
the want of a text-book adapted to the needs of students
who wish to begin the study of spherical and practical
astronomy, and who are prepared to do so by a sufficient
acquaintance with the several branches of mathematics,
and with the general principles of astronomy. It claims
to be no more than an introduction to the subject, and aims
to present its first principles in an elementary and practical
form for the use of beginners. Accordingly, many topics
which would properly find a place in a more extended
treatise are here but partially developed or perhaps omit-
ted entirely. For the same rea.sdn, no elaborate compu-
tations are attempted, the examples given being of such
simple kind as best serve to illustrate the use of the
working formule.

- The plan of the work embraces only those practical
methods which can be carried out by the use of port;able
instruments. The fact that it is primarily intended for
use in the class-room, and not for field use, will explain
the omission of many details connected with the making
of observations, which, while important, can only be learned
by the actual handling of instruments.

The Appendix contains an elementary exposition of the

it
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iv PREFACE.

method of least squares, with practical applications. This
is likewise to be regarded as only an introduction to the
subject, and includes no discussions not capable of being
given in a brief and easily intelligible form. In the body
of the work, as well as in the Appendix, only so much is
given either of principles or applications, as is thought to
be desirable in a course of elementary instruction, after
completing which, the student who desires to pursue the
subject farther will be prepared to take up such advanced
treatises as those of Chauvenet and Sawitsch.

Troy, N.Y., July, 1891
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CHAPTER 1.
DEFINITIONS. — SPHERICAL PROBLEMS.

1. Spherical Astronomy. — This department of Astronomy
arises from the application of Spherical Trigonometry to the
Celestial Sphere. It takes no account of the real distances
and magnitudes of the heavenly bodies, but only of their
relative directions. Whatever their actual positions, they
are all regarded as situated on the surface of a sphere of
indefinitely great radius, of which the earth is the center.

2. Practical Astronomy. — This branch of the subject
" treats of the theory and use of astronomical instruments,
and the practical solution of astronomical problems re-
quiring data derived from observation.

CircLES OF THE CELESTIAL SPHERE.

8. Axis and Poles. — The axis of the celestial sphere,
PP, Fig. 1, is the earth’s axis produced. Its extremities
are the poles of the sphere.

4. Equator. —The equator, CWD, is the great circle
whose plane is perpendicular to the axis.

5. Vertical Line. — The wertical line, ZON, is the line
indicated by the direction of the plumb-line at the given
place. It intersects the celestial sphere in the zenith and
nadir.

6. Horizon.— The horizon, AWB, is the great circle
whose plane is perpendicular to the vertical line. It has
the zenith and nadir for poles.
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7. Meridian. — The meridian, APZB, is the great circle
whose plane passes through the zenith and the poles. It
intersects the horizon in the north and south points, 4 and B.

8. Prime Vertical. — The prime vertical, ZWNE, is the
great circle passing through the zenith perpendicular to the
meridian. It intersects the horizon in the east and west
points.

BS

9. Ecliptic and Equinoxes. — The ecliptic, VF, is the great
circle which the sun appears to describe during the year.
The point V, where the sun crosses the equator from south
to north, is the wernal equinoxz. The point where it crosses
from north to south is the autumnal equinox.

The points of the ecliptic 90° distant from the equinoxes
are called solstices.

10. Obliquity. — The obliquity of the ecliptic is the angle
which its plane makes with that of the equator. It is about
23° 27



SPHERICAL CO-ORDINATES. 3

SPHERICAL CO-ORDINATES.

11. The position of a body on the celestial sphere is
determined by either of three systems of spherical co-ordi-
nates. ' )

In the first system the body’s position is referred to the
horizon, and the co-ordinates are called azimuth and altitude.

12. Vertical Cirocles. — Suppose a series of great circles
drawn through the zenith and nadir, and, of course, per-
pendicular to the horizon. They are called wertical circles.

13. Azimuth. — The azimuth of a body is the arc of the
horizon between the north point and the vertical circle pass-
ing through the body. Or, it is the angle at the zenith
measured by this are. If S, Fig. 1, is the position of a star,
its azimuth is AH = AZH, and will be denoted by Z.

In a similar way, azimuth may be measured from the
south point. The azimuth of the star § from the south
point is BH= BZH, and denoted by Z'. We evidently
have Z' = 180° — Z.

14. Altitude and Zenith Distance. — The altitude of a
body is its distance from the horizon measured on a ver-
tical circle. The altitude of the star S is HS, denoted
by h.

The zenith distance, ZS, is the complement of the alti-
tude. It is denoted by 2, and we have z = 90° — k.

15. In the second system the body’s position is referred
to the equator, and the co-ordinates are called right ascension
and declination.

16. Hour Circles. — Suppose a series of great circles
drawn through the poles; that is, perpendicular to the
equator. They are called hour circles.
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The hour circle passing through the equinoxes is called
the equinoctial colure, and that through the solstices, the
solstitial colure.

17. Hour Angle.— The hour angle of a body, S, is the
angle which its hour circle, PM, makes with the meridian;
or the arc, CM, of the equator, which measures that angle.
It is always measured westward from the meridian, and
denoted by P.

18. Right Ascension. — The right ascension of a body is
the distance on the equator from the vernal equinox, east-
ward, to the hour circle of the body. The right ascension
of 8 is VM, denoted by a, or sometimes by R. A.

19. Declination and Polar Distance. —The declination of
a body is its distance from the equator measured on an
hour circle. If north of the equator, the declination is
positive; if south, negative. The declination, MS, is
denoted by 8.

The polar distance, PS, is denoted by p, and we have
p=90°—3.

20. In the third system, the place of the body is referrcd
to the ecliptic, and the co-ordinates are called celestial long:-
tude and latitude.

21. Latitude Circles. — Suppose a series of great circles
drawn through the poles of the ecliptic: they are called
latitude circles.

22. Celestial Longitude. — The longitude of a body is the
distance, VR = L, on the ecliptic from the vernal equinox,
eastward, to the latitude circle through the body.

23. Celestial Latitude. — The latitude of a body is its
distance, BS =1, from the ecliptic, measured on a latitude
circle. '
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24. The Nautical Almanac. — In general, the co-ordinates
of the second system are those best adapted to use in the
practical problems which will be considered in this work.
Their values for any given date may be found from the
Nautical Almanac, which contains the right ascension and
declination of the sun, the moon, the major planets, and
several hundred of the principal fixed stars; those of the
moon being given for every hour, of the sun and planets
for every day, and of the fixed stars for every ten days.
As the values in the almanac are for given instants of time
at the first meridian, it is necessary to know the observer’s
longitude in order to be able to find from the data in the
almanac the values of the required co-ordinates for the time
and place of observation.

Other tables contained in the Nautical Almanac will be
referred to hereafter.

Co-ORDINATES OF THE OBSERVER.

25. The position of the observer on the earth’s surface is
determined by the longitude and latitude of the place.

26. Longitude. — The longitude of the place is the arc of
the equator intercepted between the meridian of the place
and the first meridian. It is denoted by A.

27. Latitude. — The latitude of the place is the declination
of the zenith, CZ = AP, and is denoted by ¢.
The colatitude is the complement of the latitude,
PZ=BC=y.
SPHERICAL PROBLEMS.

28. The Astronomical Triangle. —Many of the most
important problems of Spherical Astronomy can be reduced
to the solution of the spherical triangle PZS, Fig. 2, formed
by joining the pole, the zenith, and the place of a star by
arcs of great circles.
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The three sides of this triangle are !

PZ = 90° — ¢, the colatitude of the place.
PS8 = 90° — §, the polar distance of the star.
Z8 = 90° — h, the zenith distance of the star;

and the three angles are

P, the star’s hour angle.
Z, its azimuth from the north point.
8, which is called the parallactic angle.

20. Trigonometrical Formule. — The following well-
known formule of Spherical
Trigonometry, applied to the
triangle PZS, will furnish
most of the general equa-
tions required in the dis-
cussions which follow. De-
noting the angles of any
spherical triangle by 4, B,
C, and its sides by a, b, ¢,
Fre. 2. we have

sin @ sin B=sin b sin 4
sin b sin C'=sin ¢ sin B ()]
8in ¢ sin A =sin a sin C

cos a = cos b cos ¢ 4 sin b sin ¢ cos 4
cos b = cos ¢ cos a + sin ¢ sin a cos B 2)
cos ¢ = cos @ cos b+ sin @ sin b cos C

sin @ cos B =sin ¢ cos b — cos ¢ sin b cos 4
sin b cos C'=sin a cos ¢ — cos @ sin ¢ cos B 3)
8in ¢ cos A =sin b cos a — cos b sin a cos C
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sin’§A=Sin (s—1D) sin (s —¢)

sin b sin ¢
sin’}B=Sin (s '._c) s.in (s—a) @)
sincsin a
sin? } 0=sin (8—a) s%n (s—0)
sin a sin b
in which 8=} (a4+b+c).

30. Astronomical Formule. — If we apply formule (1),
(2), and (3) to the triangle PZS, making

A=.P, a=90°-—-h,
B=2, b=90°—3,
C=3S8, c=90°— ¢,
we shall obtain
cos h sin Z = cos § sin P (5)
cos & sin § =cos ¢ sin Z (6)
cos ¢ sin P =cos hsin § ©)

sin h =sin 3 sin ¢ - cos S cos p cos P (8)

sin §=sin ¢sinh +cospcoshcos Z  (9)

sin ¢ =sin A sin § -cos h cosdcos §  (10)

cos fi'cos Z=sin § cos ¢ —cos & 8in ¢ cos P (11)

cos § cos S =sin ¢pcosh—cos ¢ 8in hcos Z (12)

cos ¢ cos P=sin h cos 8 —cos hsin eos § (13)

By making the proper substitutions in these equations

we may find the formulie for a body in any position in the
heavens.

81. Problem. — Given the latitude of the place and the
declination of the body, to find its altitude and azimuth when
it is on the siz hour circle.

In this position the hour angle P =6 hours = 90°; hence
sin P=1, cos P= 0, and (8) becomes

sin h =sin § sin ¢ (14)
(5) becomes cos h sin Z =cos §;
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(11) becomes  cos h cos Z=sin & cos ¢ ;
whence by division, cot §

cos ¢ (%)

Equations (14) and (15) are the expressions required.
32. Problem. — Given the same data as before, to find

the hour angle and azimuth of a body in the horizon.
In this position, & = 0° sin A =0, cos . =1, and, by (8),

=-—-smssm¢=—-ta.n8t
cos P oos 5 cos ¢ an ¢ 16)
__8ind
and by (9), cos Z= cos ¢ @an

33. Problem. — Given the same data, to find the altitude
or zenith distance of a body on the meridian.

Let AZB, Fig. 3, be the

S Z meridian, Z the zenith, P the

pole, and C a point of the equa-

tor. We have CZ=¢, PZ=y,
8 Z8 =2, C8=3§, and PS=p.

In respect to the position of

a body on the meridian, there

may be three cases. It may be

(1) South of the zenith, as at S;. We shall then have

Z8,=2C—-C8, o z=¢-—38 18)
(2) Between the zenith and the pole, as at S;. Then
ZS’ = OS’ —_ CZ, or 2=0— ¢ (19)

(3) Below the pole, as at S;. Then
Z8;= ZP+ PS,, orz=y + p=180°— (¢ +8) (20)
From these values of z we find at once
1) A=90°— ($—8) =y +3 (21)
2) h=90°—(3—¢)=¢+p (22)
B) k=90°—-(+p)=9¢—p (23)
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84. Problem. — Given the latitude of the place, and the
" declination and zenith distance of a body, to find its hour
angle and azimuth.

Applying the first two of equations (4) to the tna.ngle
PZ8, Fig. 2, making a = z instead of 90° — &, as before, we

find
g gin [8 — (90° — &) ] sin [8 —(90° — ¢) ]
sin’§ P= [ cos 8 cos ¢ (24)
: 91 ,_ 8in[8—(90°—¢)]sin (s —2)
. :nh*z— cos ¢ sinz (25)
in whic
‘=z+(90°—8)2+(90°—¢) =90°+1}(z—4§—8).
Hence

8—2=90°+4(z—¢—8)—2=90"—-%(2+ ¢ +3),
—(0° =)= —s—B)+ =4+,
8—(90° —8)=4(z—0—8)+ 3=4(z— ¢ +3).

By the substitution of these values, (24) and (25) become

. _sing(z—¢+8)sin} (24 ¢ —39)
sin*} P= cos 8 cos ¢ (26)
oy g SinEGre—8)cost G+ +Y) .
sin'} Z= cos ¢ sinz S

the expressions required.

85. Problem.— Given the latitude of the place, and the
hour angle and declination of a body, to find its azimuth and

Suppose the azimuth to be reckoned from the south point.
‘We have Z =180° — Z', whence

sin Z =sin Z', cos Z = —cos Z/,
which values substituted in (5), (8), and (11), reduce them
to cos & sin Z' = cos § sin P (28)
sin h = sin § sin ¢ + cos & cos ¢ cos P (29)

coshcos Z' = —sindcos ¢+ cosdsinpcos P (30)

.
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Make sind=msin M
and cos8cos P=mcos M
then (29) and (30) become
sin h = m (sin ¢ sin M 4 cos ¢ cos M)

=mcos (¢ — M)
cos hcos Z' = m (sin ¢ cos M — cos ¢ sin M)
=msin (¢ — M)
Dividing (31) by (32) .
tan §
tan M = ——
cos P

Dividing (28) by (34),
tan Z' =088 __ sinP |
sin (¢ — M)’
but from (32),
cosd__cos M

m  cosP
hence tan Z' = s%%—%%
Dividing (34) by (33),
0L _ tan (4 — M),
whence tanh = ta.n_((z%f’_]WS

Equations (35), (36), and (37) solve the problem.

(81)

(32)

(33
(34)

(35)

(36)

@)

86. To show that we are at liberty to make the assump-
tions expressed in (31) and (32), we observe that if we have
any two real quantities, positive or negative, as # and g,

we may put z=msin M,

y=mcos M;
as we then have

2 + 3 = m? (sin’? M 4 cos? M) = m?,
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or m=Va+y?;

d also £=M=tan1!{
an y cosM ’
or M=tan-12

These values of m and M are alway$ real and possible,
whatever be the values or signs of z and y; hence there are
some real values of m and M which will satisfy (31) and
(32).

87. Problem. — Given the right ascension and declination
of a body, and the obliguity of the ecliptic, to find the celestial
longitude and latitude of
the body.

Let HPER, Fig. 4, be
that position of the meri-
dian which coincides with
the solstitial colure, and
which is therefore perpen-
dicular to both the equa-
tor, EQ, and the ecliptic,
. CV. The vernal equinox
V is then in the horizon,
PV is the equinoctial
colure, and the arcs CV, EV, and QV are quadrants. Let
K be the pole of the ecliptic; then in the triangle KPS,

KP = CE = v = obliquity of ecliptic;
PS =90°—8; KS=90°—1;
angle KPS =arc QM= QV+ VM =90°+a;
angle PKS =arc CL =CV— VL =90°— L.

Fie. 4.

88. In the first equations of (1), (2), and (3), making
A=90°4a, B=90°—L, a=90°—1, b=90°—8, c=o,
we obtain the following:
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cos lcos L =cos 8 cos a
sin /= 8in 8 cos w — cos 3 sin wsina
cos I 8in I = sin v sin 8 4 cos w cos 8 sin a

(38)
(39)
(40)

In order to put these equations in a form adapted to

logarithms, make
sin 8= m sin M
cos 8 sina =m cos M
which reduce (39) and (40) to

sin I =m (sin M cos w — cos M sin w)

=m sin (M — w)
cos Isin L =m (cos M cos v + sin M sin w)
=m CcOo8 (M —_— m)
Dividing (41) by (42),
tan M = ta.n 8
Sl a

Dividing (44) by (38),

m cos (M—w),
cos8 ~ cosa
49 m__ sina

but by (42), cosd cosM’
whenee tan I = M
cos M
Dividing (43) by (44),

tan L=

tan !
=t —
smL (M — o),

whence tan ! = sin L tan (M — w)

Equations (45), (46), and (47) solve the problem.

(41)
42)

43)

(44)

(45)

(46)

(47)




CHAPTER II.
CONVERSION OF TIME.— HOUR ANGLES.

CoNVERSION OF TIiME.

39. Sidereal and Solar Days.— A sidereal day is the
interval between two successive meridian passages of the
vernal equinox. An apparent solar day is the interval
between two successive meridian passages of the sun’s
center. A mean solar day is the average length of all the
apparent solar days in a tropical year.

40. Equation of Time.— The equation of time is a quan-
tity which, being added to the apparent solar time, gives
the mean solar time. Hence the mean time may be found
from the apparent by adding the equation of time, that is,
applying it ‘according to its sign; and the apparent time
may be found from the mean by applying the equation of
time with a contrary sign.

The value of the equation of time for any day may be
found from the solar ephemeris, or tables of the sun in the
Nautical Almanac.

41. Mean Solar and Sidereal Intervals.— The tropical
year contains, according to Bessel, 365.24222 mean solar
days. But since the sun makes an apparent revolution
from west to east in the ecliptic in a year, it loses one
diurnal revolution from east to west, in comparison with
the fixed stars; hence there are just one more sidereal than
solar days in a year; namely. 366.24222.
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We Luwe TuerL

Bho L2 gwa wow = HHEE2ET gl doss.

or 2 wupm ooy = 0TITE s day (e8]
s - >
aud 1 sf Gup = LU soicr day (&4

Wit may be jum zoTis 3orn
1 sviar dop =2 sic Grp — 3= M550 sid. time;
1 sid dur=1 svia~ drp — &= 5390 suiar time.

The exeess of 3 Waar SuiLT LUoTE & Sidereal dav is there-
fore 3= 50°.555 of giderenl wme o 8= L5909 mean solar
time,

Bince a sidereal dax, hoor. epn. is shorter than a solar
day, hour, etc., a given izterval wii contain more sidereal
than solar days or hours. ete. Henoe it f21lows from (1)
that any interval expressed in mean solar time may be
changed into its sidercal eguivalent by multiplying by
1.0027379; aud from (2) that any sidereal interval may

be changed into its mean solar equivalent by multiplying
by 0.9972696. :

If then we put

M =any mean solar interval,

8 =equivalent sidereal interval ;

8 =1.0027379 M = (1 4 0.0027379) M,
M=0.99726968 = (1 — 0.0027304) S.

Put ¢ =0.0027379, ¢' = 0.0027304,
and we have

then

S=M+cM; M=8—¢8. ®)

Tho values of eM and ¢'S may be taken from the annexed

tublos, which are reduced from a larger table in the American
Kphemeris,




TABLE A. 15

TaBLE A.

To find the sidereal equivalent of any interval of mean solar time.

S=M+4cM.
ag -] & a K = . a8 .,
§ .§ cM §E cM §‘a M & g| oM g g§| oM
8 8 8 8
1 1(0.164 || 31 | 5.003 | 1| 0.003 || 31 | 0.085
2 1 21 0.329 || 32 | 6.257 2| 0.005 || 82 | 0.088
3 2 310.493 || 383 | 5421 | 3 | 0.008 || 33 | 0.090
4 3 4| 0.657 || 84 | 5.5685 4| 0.011 (| 34 | 0.093
b 4 6| 0.821 (| 856 | 6.7650 5| 0.014 (| 35 | 0.096
6 b 6’| 0.986 || 36 | 5.914 | 6 [ 0.016 || 36 | 0.099
7 7| 1.160 || 37 | 6.078 710.019 || 87 | 0.101
8 1 8| 1.314 || 38 .242 81 0.022 (| 38 | 0.104
9 2 9| 1.478 || 39 407 | 9] 0.025 || 39 | 0.107
10 10 | 1.643 || 40 71 | 10 | 0.027 || 40 | 0.110
35 | 11 | 0.030 || 41 | 0.112

6.
6
6.
1.807 || 41 | 6 X
12 | 1.971 || 42 | 6.900 | 12 | 0.033 (| 42 | 0.115
7
7
7
7
7

13 13| 2.136 (| 43 | 7.064 | 13 | 0.036 || 43 | 0.118
14 14 | 2.300 || 44 | 7.22 .038 || 44 | 0.120
156 15 | 2.464 || 456 | 7.392 | 15 | O. 3

16 | 2.628 || 46

e e . e e o e e At Dl et al) o e e e -

ot
| 5]
[CSNVURVRVC) COTO N O b DO DO DD b b Pk ek ek ek © OOQQQB
=D W QU= © == b - [ -3
B8 BINEZ E83k g3%8g 28E:EE
—
—

17 17 | 2.798 || 47 21 | 17 047 || 47 | 0.129
18 18 | 2.957 || 48 | 7.885 | 18 049 | 48 | 0.131
19 19 | 8.121 || 49 | 8.049 | 19 062 | 49 | 0.134
20

21 21 | 3.450 || 51 | 8.378 | 21 0567 (| 61 | 0.140
22 22 | 8.614 || 62 | 8.542 | 22 060 || 62 | 0.142
23 699 | 23 | 3.778 || 63 | 8.707 | 23 063 || 563 | 0.1456
24 566 | 24 | 3.943 || 64 | 8.871 | 24 066 || 54 | 0.148

25 | 4.107 || 55 | 9.085 | 26

26 | 4.271 || 656 | 9.199 | 26 | 0.
27 | 4.4356 || 67 | 9.864 | 27 | 0.074 || 67 [ 0.156
28 | 4.600 (| 68 | 9.528 | 28 | 0.077 || 68 | C.159
29 | 4.764 (| 69 | 9.692 | 29 | 0.079 || 59 | 0.162
30 | 4.928 || 60 | 9.856 | 30 | 0.082 || GO | 0.164

0
0
0.
0
0
0
0. X
20 | 3.285 || 650 | 8.214 | 20 | 0.066 || 50 | 0.137
0
0
0
0.
0.
0.
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‘We have then
365.24222 solar days = 366.24222 sid. days,
or 1 solar day = 1.0027379 sid. day 1)
and 1 sid. day=0.9972696 solar day 2

which may be put in the form
1 solar day =1 sid. day + 3™ 56555 sid. time ;
1 sid. day =1 solar day — 3™ 55°.909 solar time.

The excess of a mean solar above a sidereal day is there-
fore 3™ 56555 of sidereal time, or 3™ 55°909 mean solar
time. '

Since a sidereal day, hour, etec., is shorter than a solar
day, hour, etc., a given interval will contain more sidereal
than solar days or hours, etc. Hence it follows from (1)
that any interval expressed in mean solar time may be
changed into its sidereal equivalent by multiplying by
1.0027379; and from (2) that any sidereal interval may
be changed into its mean solar equivalent by multlplymg
by 0.9972696.

If then we put
M = any mean solar interval,

8 =equivalent sidereal interval ;

then 8 =1.0027379 M = (1 4 0.0027379) M,
M=0.9972696 S = (1 — 0.0027304) 8.
Put ¢=0.0027379, ¢ =0.0027304,

and we have
S=M+cM; M=8-¢8. 3)
The values of cM and ¢'S may be taken from the annexed

tables, which are reduced from a larger table in the American
Ephemeris.
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TasLe A.

To find the sidereal equivalent of any interval of mean solar time.

S=M+cM

T i 85 ] o |5 i

g .§ M &5 cM &3 M Q g| oM § g| e
m s [ 8 8 8

1(0 98667 10.164 || 31 | 5,003 | 1 | 0.003 || 31 | 0.085
21019.713 | 2] 0.329 || 82 | 5.257 | 2 | 0.006 || 32 | 0.088
81029.669 | 8| 0.493 || 33 | 5.421 | 8| 0.008 || 33 | 0.090
41089.426 | 4| 0.6567 || 34 | 5,686 | 4 | 0.011 || 84 | 0.093
51049.282 | 5] 0.821 || 85 | 6.760 | 6 | 0.014 || 85 | 0.096
6]1069.139| 6| 0.986 || 36 | 5,914 | 6 | 0.016 || 86 | 0.099
711 8995 7| 1.150 || 87 | 6.078 | 7 | 0.019 {| 87 | 0.101
8)1118.852| 8| 1314 || 88| 6.242 | 8] 0.022 || 38 | 0.104
91128708 | 91478 |[ 89 | 6.407 | 9| 0.025 || 89 | 0.107
1011 38.665 | 10 | 1.643 || 40 | 6.671 | 10 | 0.027 || 40 | 0.110
11 | 1 48.421 | 11 | 1.807 || 41 | 6.735 | 11 | 0.030 | 41 | 0.112
12 | 1 68.278 | 12 | 1.971 || 42 | 6.900 | 12 | 0.033 || 42 | 0.115
13 |2 8.134 | 13| 2.136 || 43 | 7.064 | 13 | 0.036 || 43 | 0.118
14 | 2 17.991 | 14 | 2.300 || 44 | 7.228 | 14 | 0.038 || 44 | 0.120
15 [ 2 27.847 | 16 | 2.464 || 45 | 7.392 | 16 | 0.041 || 45 | 0.123
16 [ 2 37.704 | 16 | 2.628 || 46 | 7.557 | 16 | 0.044 || 46 | 0.126
17 | 2 47.560 | 17 | 2.793 || 47 | 7.721 | 17 | 0.047 || 47 | 0.129
18 | 2 67.417 | 18 | 2.957 || 48 | 7.885 | 18 | 0.049 {| 48 | 0.131
19 |8 7.278 | 19| 3.121 || 49 | 8.049 | 19 | 0.052 || 49 | 0.134
20 | 8 17.129 | 20 | 3.285 || 50 | 8.214 | 20 | 0.055 || 50 | 0.137
21 | 8 26.986 | 21 | 3.450 || 51 | 8.378 | 21 | 0.057 || 651 | 0.140
22 | 3 86.842 | 22 | 83.614 || 62 | 8.5642 | 22 | 0.060 || 62 | 0.142
23 | 8 46.699 | 28 | 3.778 || 63 | 8.707 | 23 | 0.063 || 563 | 0.145
24 | 8 56.5656 | 24 | 3.943 || 54 | 8.871 | 24 | 0.066 || 54 | 0.148
25 | 4.107 || 565 | 9.085 | 256 | 0.068 || 556 | 0.151
26 | 4.271 || 56 | 9.199 | 26 | 0.071 || 56 | 0.153
27 | 4.435 || 67 | 9.364 | 27 | 0.074 || 57 | 0.166
28 | 4.600 || 58 | 9.528 | 28 | 0.077 || 58 | C.159
29 | 4.764 || 59 | 9.692 | 29 | 0.079 || 69 | 0.162
30 | 4.928 || 60 | 9.856 | 30 | 0.082 || GO | 0.164
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TaBLE B.

To find the mean equivalent of any interval of sidereal time.

M=8-cS.
k-1 , &g . 58 , 53 . g .
& g c'S 23 c'S 2% c'S 2% c'sS ] § c'S
m s 8 [ 8 8
110 98301 1]0.164 |[ 81 |5.079 | 1| 0.003 || 31 | 0.085
21019.669 | 2]0.328 || 82 | 5.242 | 2 | 0.005 || 32 | 0.087
3102948 | 3| 0.491 || 83 | 5.408 | 3 | 0.008 || 33 | 0.090
41039318 ] 410.66b || 34 | 5.5670 | 4 | 0.011 || 34 | 0.093
51049.148| 5| 0.819 || 85 | 6.784 | 5 | 0.014 || 36 | 0.096
6 (0568977 60.983 (| 36 | 5.8908 | 6 | 0.016 || 36 | 0.098
711 8807 | 7| 1147 |87 (6.062| 7 (0.019 || 37 | 0.101
8/118.636 )| 8| 1311 |/ 38 |6.226 | 8 | 0.022 || 38 | 0.104
91128466 | 9| 1.474 || 39 | 6.389 | 9 [ 0.025 || 39 | 0.108
10 [ 1 38.296 | 10 | 1.638 || 40 | 6.663 | 10 | 0.027 || 40 | 0.109
[ 11 | 1 48.126 | 11 | 1.802 || 41 | 6.717 | 11 | 0.030 || 41 | 0.112
12 | 1 67.955 | 12 | 1.966 || 42 | 6.881 | 12 | 0.033 || 42 | 0.116
18|12 7.784 | 13 | 2.130 || 483 | 7.0456 | 13 | 0.035 || 43 | 0.117
14 | 2 17.614 | 14 | 2.2904 || 44 | 7.208 | 14 | 0.038 (| 44 | 0.120
16 | 2 27.443 | 15 | 2.467 || 45 | 7.372 | 16 | 0.041 || 45 | 0.123
16 | 2 37.273 | 16 | 2.621 || 46 | 7.536 | 16 | 0.044 || 46 | 0.126
17 | 2 47.102 | 17 | 2.7856 || 47 | 7.700 | 17 | 0.046 || 47 | 0.128
18 | 2 56.932 | 18 | 2.949 || 48 | 7.864 | 18 | 0.049 || 48 | 0.131
19 (8 6.762 | 19 | 3.113 || 49 | 8.027 | 19 | 0.052 || 49 | 0.134
20 | 8 16.691 | 20 | 8.277 || 50 | 8.191 | 20 | 0.066 || 650 | 0.137
21 | 8 26.421 | 21 | 3.440 || 51 | 8.356 | 21 | 0.067 || 61 | 0.139
22 | 8 36.260 | 22 | 3.604 || 52 | 8.5619 | 22 | 0.060 (| 62 | 0.142 |
23 | 3 46.080 | 23 | 3.768 || 563 | 8.683 | 23 | 0.063 || 63 | 0.145
24 | 8 55.909 | 24 | 3.932 || 54 | 8.847 | 24 | 0.066 || 64 | 0.147
25 | 4.096 || 55 | 9.010 | 256 | 0.068 || 66 | 0.160
26 | 4.2569 || 56 | 9.174 | 26 [ 0.071 || 56 | 0.163
27 | 4.423 || 67 | 9.338 | 27 | 0.074 || 67 | 0.166
28 | 4.687 || 68 | 9.602 | 28 | 0.076 || 68 | 0.158
20 | 4.761 || 69 | 9.666 | 29 | 0.079 || 69 | 0.161
380 | 4,915 || 60 | 9.830 | 30 ) 0.082 || 60 | 0.164
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42. Examples.—A few examples of the conversion of
mean solar and sidereal intervals are here given as a prac-
tical application of equations (3).

1. Given M= 9" 443866, to find 8.

For 9, 1=28-708
Table A.{ 4=, 7.228
38%", 0.106

cM= 1 36.042
M=9 44 38.660

S=M+cM=9"4614"702
2. Given 8 =9"46=14"702, to find M.

For 9, 1= 28".466
Table B.{ 46m, 7.536
1417, 0.040

8= 1 36.042
. S=9 46 14.702
M=8—c'8=9"44~ 3866
Given M= 8"50™ 0509, to find S.
Given M = 6"34™41°68, to find S.
Given M =13"*17"1073, to find S.
Given S= 8"51™32'.17, to find M.
‘Given S= 6"35™464.52, to find M.
Given 8 =13"19™21°.69, to find M.

P NS o ®

43. Mean and Sidereal Time at any Instant.—Let
m = mean time at given instant,
8 = sidereal time at given instant,
8' = sidereal time at preceding mean noon.
Then m = mean interval elapsed since mean noon,
and s — s’ =sidereal interval elapsed since mean noon.
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Hence m = mean equivalent of (8 —8') 4)
and 8 — 8' = sidereal equivalent of (m) (5)
If then the sidereal time at any instant is given, the

mean time at the same instant is found by (4), which gives
the rule:

From the given sidereal time subtract the sidereal time ai
preceding mean noon, and reduce the remainder to its mean
equivalent.

Conversely, if the mean time at any instant is given to
find the sidereal time, we have from (5),

8 = 8' 4 sidereal equivalent of (m) (6)
whence the rule:

To the sidereal time at preceding mean noon add the given
mean time reduced to its sidereal equivalent.

The “sidereal time at mean noon ” is given for every day
in the solar ephemeris.

ExAMPLES.

L G s =19845m 2905
Given {s'=13 01 56.52
s—s'= 6 43 05.53

This sidereal interval is to be reduced to its mean equivar
lent by Table B.

}toﬁndm.

We find, for 6%, 58°.977

8 —s' =643 0553 43=, 7.045
¢8= 1 06.04 5.53, .015
m=6 41 59 .49 ¢'S = 66.04

N m= 5260332
2. Given {s' —23 02 10.34
Table 4, M= 53 .56

8= 429 07.22

} to find s.
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Given s=14"10m2139, s'= 9:7™ 2489, to find m.
Given s=16"25"1379, s' =10"38" 562, to find m.
Given m = 6534724, s' =1014™2631, to find s.
Given m= T27™33'.97, s'= 5" 50™1708, to find s.
7. April 19, the sidereal and mean solar clocks were
compared, with the following result, viz. :
sid. clock, 72 47™22%.5; mean clock, 5t 55 000 ;
the sidereal clock was found by observation to be 2509
slow, and 8'=1251™54°.80. Find the error of the mean
solar clock. ‘ Ans. 551 fast.
8. August 20, the comparison showed
sid. clock, 10" 27™ 21*; mean solar clock, 00® 30™ 30°;
the mean time clock was 6°.46 fast, and s'= 9»56™ 51°.21.
Find the error of the sidereal clock. Ans. 1°.26 fast.
9. Find the mean time of meridian passage of ¢ Virginis,
June 15, having given
right ascension = 13" 28™ 46°.59; s' = 5" 34™ 30°.85.
Ans. m = Th52™ 5804,
10. Find the mean time of meridian passage of y Ursa
Majoris, June 19, having given
right ascension = 13"42™57°.86; s' = 5" 50=17°.08.
Ans. m =T 51™23.34.

11. Find the mean time of meridian passage of y Aquilce.
Nov. 9, having given
right ascension =19 40™54.38; s' = 15"14=10°.36.
Ans. m = 4 26™ (.32,
12. Find the mean time of meridian passage of 6 Aguilce,
Nov. 9, having given
right ascension = 20"05™29:.80; s' = 15*14™10.36.
Ans. m = 4% 50™ 3171,

S g W
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44. Time and Are. — From the fundamental relation

360° = 24", or 90° =64,
we have
15° =18, ° =A™
15 =1= 1" =4
15" =1, 1" = 0*.0666....

By means of this table arcs of the equator, such as hour
angles, right ascensions, or terrestrial longitudes, may be
changed from degrees, minutes, and seconds, into hours,
minutes, and seconds, or vice versa.

ExaMPLES.

1. Express 29°59'22".125 in hours, minutes, and seconds.
Since

15° =18 1° =4=, 29° = 15° 4+ 14° =12 56= 00",
15' =17, 1' =4 59' =45' +14' = 3 56.
15" =11, 1"=0%0666; 22"=15"4 7"= 1.467
0".125 =4(0.066) = 0.008
1% 59= 57475

2. Express 1" 59" 57°.475 in degrees, minutes, and seconds.
We find

1* =15° 00' 00"
9= =56+ 3 =14 45 00. -
57" =56+ 1" = 14 15.

0476 x 16 = 7. 125

29° 59' 22"".125
3. Express 118°11'38" in hours, minutes, and seconds.
4. Express Tt 52™46.533 in degrees, minutes, and seconds.
5. Express 27° 41'42" in hours, minutes, and seconds.
6. Express 1" 50™46".8 in degrees, minutes, and seconds.




HOUR ANGLES. 21

Hour ANGLES.

45. The Sun’s Hour Angle.— Since the apparent solar
day begins when the sun’s center is on the meridian, it
follows that the apparent time at a given instant is equal to
the sun’s hour angle. '

Hence, if the sun’s hour angle be given, to find the mean
solar time, we have, Art. 40,

mean time =sun’s hour angle + equation of time )
and if the mean time be given, to find the sun’s hour angle,
sun’s hour angle = mean time — equation of time  (8)

in which, of course, the sun’s hour angle must be expressed
in time.

46. Hour Angle of a 8tar.— Since the sidereal day
begins when the vernal equinox is on the meridian, . it
follows that the sidereal time at a given instant is equal to the
hour angle of the vernal equinoa.

If, then, the hour angle of a star be given, to find the
sidereal time, we have, Fig. 1, CV= CM+ MV; that is,

sidereal time = star’s hour angle + star’s R. A. 9

in which, if the sum of the hour angle and right ascension
should be greater than 24 hours, the excess will be the
sidereal time required.

Conversely, if the sidereal time at any instant be given,
to find the hour angle of a star, we have

star’s hour angle = sidereal time — star’s R. 4.  (10)

and if the sidereal time be less than the right ascension, it
must be increased by 24 hours, to render the subtraction
possible.

In applying (9) and (10), the hour angle, as well as right
ascension, must be expressed in time.
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47. Hour Angles found by Observation. — Since a star
is regarded as a fixed point, and the diurnal motions are
uniform, it follows that equal altitudes of a star correspond
- to equal kour angles. If, then, observations be made on a
star at equal altitudes east and west of the meridian, and if
t and ¢' be the observed times of equal altitude, we shall
have

'— ‘o 0
t—% _ star’s hour angle at either observation, (11)

5—"-2lt—' =observed time of meridian passage. (12)

The practical advantage of equation (11) is that whatever
may be the error of the clock, it is eliminated in taking the
difference of observed times. This, however, supposes the
arror to be constant between the observations.




CHAPTER IIIL
THE TRANSIT INSTRUMENT.

DESCRIPTION, ADJUSTMENT, AND USE OF THE TRANSIT
INSTRUMENT.

48. Description of the Transit Instrument. — The Transit
Instrument is an instrument designed to facilitate the ob-
servation of meridian passages of the heavenly bodies. It
consists essentially of a telescope supported on, and capable
of motion about, an axis perpendicular to itself, and which
can also be made perpendicular to the meridian plane. In
the portable transit, one form of which is represented in Fig.
b, the axis is supported by a framework of cast iron, which
rests on foot-plates secured to the pier cap. The pivots of
the axis rest in Y-supports, and for adjusting it accurately
in position, one of these supports admits of a small motion
in azimuth by means of a fine-motion screw with a microm-
eter head, while the other may, by similar means, be
moved a little in altitude.

The tube which carries the eye-piece, and which slides
in and out of the main telescope tube by a rack and pinion,
carries also a diaphragm containing the reticle, Fig. 6, which
consists of a system of parallel transit lines, and one or two
others at right angles to them : the diaphragm is capable of
being revolved so that the transit lines can be made, and
clamped, truly vertical.

" The lines may be either spider lines or fine platinum
wire, or, better still, may be ruled on glass; but of what-
ever kind, they are, for convenience, called wires. The
transit wires are uneven in number, one being placed in the
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middle and an equal number symmetrically arranged on
each side. The diaphragm is also movable to the right or
left by a screw, for the purpose of adjusting the vertical
wires in position.

The middle vertical wire constitutes a visible artificial
meridian, and the various appliances of the instrument fur-
nish the means for making it _ —
coincide approximately with A N
the true meridian. The other
vertical wires are added for
the purpose of multiplying ob-
servations, and thus securing
greater accuracy by using the
mean of several instead of a
single one. J p

In order that the . wires ~ g
may be visible at night, it is Fia. 6.
necessary to illuminate the field of view. For this purpose
the axis is made hollow, and a small reflector is placed diag-
onally within the telescope tube, so that the light of a lamp
entering at one end of the axis will be reflected down upon
the field of view.

The instrument is provided with one, and sometimes two,
finding circles with levels attached for setting it on a given
star. They may be set so as to read either altitudes or
zenith distances.

Instruments of three inches or more aperture are also
provided with apparatus by means of which the axis may
be easily and quickly lifted out of its supports, and reversed
end for end; a process often necessary in the practical use
of the instrument.

49. The Clock. — Although the Transit Instrument is the
most important instrument of Practical Astronomy, we can
measure nothing with it alone, but only observe the passage
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of bodies over the meridian. Its indispensable adjunct is a
time-keeper, since the object of the observation is always to
find the téme of meridian passage. Whether a clock, chro-
nometer, or common watch be used for this purpose, we
shall, for brevity, call it simply the “clock.” For obser-
vations on the fixed stars it will be convenient to have it
regulated to sidereal time, but for sun transits, either side-
real or mean solar time may be used.

The clock “error” or “correction ” is found by observing
the transit of a star whose right ascension is given. If ¢
denote the observed sidereal time of transit of a star whose
right ascension is a, the clock correction is a—2.

Having determined the correction of the sidereal clock,
the right ascension of a star or other body, if unknown,
will be found by simply observing the mdereal time of its
meridian passage.

50. Adjustments of the Transit Instrument.— In order
that the wires may be distinctly visible to different ob-
gervers, their distance from the eye-piece must be capable
of being slightly changed, and for this purpose the eye-piece
can be moved a little back and forth in its tube until the
wires appear distinct. The wires are then placed in the
principal focus of the objective by sliding the tube carrying
the wires and eye-piece in the main tube until the image of
a star appears distinct. The adjustment may be verified
by placing one of the horizontal wires on the star, and
noticing whether the star remains on the wire when the eye
is moved a little up and down, as it should, of course, if the
wire is at the focus.

To set the transit wires vertlca,l adjust the telescope on
some small distant ob]ect and bisect it with the middle
wire. It should remain on the wire as the telescope is
slightly elevated or depressed, and if it does not, the dia-
phragm must be revolved a little, until this test is satisfied.
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The right line, from the optical center of the objective
perpendicular to the axis of rotation of the telescope, is
called the collimation axis. The adjustment of the transit
consists in placing the middle vertical wire in the colli-
mation axis and the axis of rotation horizontal, and in the
plane of the prime vertical. Hence, the three principal
adjustments are those for collimation, level, and azimuth.

51. Collimation Adjustment. — To place the middle wire
in the collimation axis, adjust the telescope on the distant
point as before, then lift it from its bearings, and shift the
axis end for end. Now point to the distant object, and if
it is still bisected by the middle wire, the adjustment is
complete; if not, correct half the error by moving the dia-
phragm a little to the right or left, place the wire again on
the mark by the azimuth screw of the Y; repeat the test by
reversing the axis again, and so on, till it is satisfied.

52. Level Adjustment, — To make the axis horizontal,
apply the striding level to the pivots, note the readings of
both ends of the bubble, then reverse the level and read
again; the readings in the second position should be the
reverse of those in the first. If they are not, one end of
the axis must be raised or lowered by the adjusting screw
of the Y until the test is satisfied.

53. Azimuth Adjustment. — This adjustment consists of
three successive steps:

(1) Having a sidereal clock approximately correct, point
the transit telescope to a close circumpolar star at the
moment when its right ascension is indicated by the clock.
This is done by moving the framework of the instrument
80 as to make the middle wire bisect the star. The instru-
ment is now nearly in the meridian, but a closer approx-
imation can be made after finding the error of the clock.
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(2) As the instrument is nearly in the meridian, if it
be carefully levelled, the telescope by its rotation will de-
scribe a vertical circle which, near the zenith, will almost
coincide with the meridian; hence by observing the transit
of one or two stars near the zenith, the error of the clock
will be found with sufficient accuracy.

(3) Now turn down the telescope upon another star
about to pass the meridian near the pole. The star will
be not far from the middle wire, and moving very slowly.
By the micrometer screw for azimuth motion place the
middle wire on the star, and follow it till it reaches the
meridian, the clock time of meridian passage being ascer-
tained by applying the error of the clock to the right ascen-
sion of the star. If necessary, this last operation can be
repeated on another circumpolar star.

The direction of the meridian line having Leen deter-
mined, a distant meridian mark may be set up, and the
azimuth adjustment will afterwards consist in placing the
middle wire on the mark, or turning it off, by the azimuth
screw, the known distance of the mark from the meridian
line.

54. Collimator, — If the transit instrument is perma-
nently mounted on a pier, a collimator mounted on another
pier near the transit may be used instead of a distant mark.
A collimator is a telescope with cross-wires in its principal
focus, mounted horizontally either north or south of the
transit instrument, so that when the latter is turned into
a horizontal position, the observer may look through it into
the object-glass of the collimator. The rays of light from
the cross-wires emerge from the object-glass in parallel lines,
hence the wires appear as they would if viewed from an
infinite distance.

55. Value of a Revolution of the Azimuth Screw. —In
order to be able to move the instrument through a given
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amount in azimuth by the micrometer screw provided for
that purpose, the value of a revolution of this screw in
seconds must be determined. This may be done by com-
puting, by the formule of Art. 71, the azimuth deviation for
two positions which differ by a single revolution, or by a
known number of revolutions or parts of a revolution. The
difference of the results obtained for the two positions,
divided by the number of revolutions and multiplied by 15,
will be the value of one revolution in seconds of arc. The
head of the screw being divided into 100 equal parts, the
value of any fraction of a revolution is also known.

56. Equatorial Intervals. — The time required for a star
situated in the equator to pass the interval between two of
the vertical wires is called their equatorial interval.

Suppose we observe the transit of a star whose declina-
tion is §, note the exact time of its passing each of the
vertical wires, and find the intervals; these intervals will
be greater as 8 is greater. For moderate declinations,
two consecutive wires may be considered to intercept

.similar arcs of the diurnal circles; but for any two circles,

similar arcs are proportional to their radii, that is, to the
cosines of their declinations, and the diurnal velocities in
these two circles are evidently in the same ratio. But the
times required by two stars to pass the interval between
the wires are inversely as the velocities; hence if we let

I' = observed interval for star whose declination is.§,
I = corresponding equatorial interval ;

then I':T::1:co83,

or I=1TIcosd @

57. The Mean Wire. — It is generally more convenient
to find the equatorial interval of each wire from the mean
wire. The mean wire is an imaginary wire so situated that
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the time of transit over it is the mean of the times of
transit over all the vertical wires.

To find the equatorial interval of each wire from the
mean wire, observe the times of passage of a star over all
the wires and take their mean; subtract the time for each
wire from this mean and multiply the remainders by cos 8.

It will be best to use stars of considerable declination for
this purpose, since errors in the observed times will be
reduced in the ratio of 1 to cos 8. Of course, a large number
of observations is requisite in order to obtain the results
with much accuracy.

It should be observed that the equatorial intervals of
wires situated on opposite sides of the middle one have
contrary signs.

58. Use of the Equatorial Intervals.— A knowledge of
the equatorial intervals is necessary to enable us to reduce
incomplete observations; that is, those in which we have
failed for any reason to observe a transit over a part of the
wires. In such a case, to find the time of transit over the
mean wire, we take the mean of the observed times, and
apply to it as a correction the mean of the equatorial inter-
vals of the wires observed, multiplied by sec$, since from
equation (1) we find '

I'=TIsecd 2)

59. Personal Equation. —Owing to peculiar habits ac-
quired by every observer, it is found that even the most
skilful and experienced observers differ by an appreciable
and nearly constant quantity in their observation of the
times of passage of a star over the transit wires. This
difference is called their personal equation, and should be
known and applied whenever the observations of two or
more persons are combined together.

One way of finding the personal equation is as follows:
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Let one observer note the times of transit of a star over the
wires on one side of the middle one, and the other observer
over the wires on the other side, and let each set of observa-
tions be reduced to the mean wire by means of the equato-
rial intervals; the difference of the two results will be their
relative personal equation. An accurate determination, how-
ever, would require a large number of such observations.

60, Method of making Transit Observations.— A star is
said to culminate when it passes the meridian. The time of
culmination is observed by means of a transit instrument
and sidereal clock in the following manner:

The right ascension of the star indicates the sidereal time
of its culmination. Shortly before this time, the transit
being placed in adjustment, the telescope is set and clamped
at the zenith distance of the star on the meridian, previously
determined. A few seconds before the time of transit the
star will appear in the field of view, and will apparently
move slowly across the field ; and the object of the observer
is to note the exact time by the clock when it crosses each
vertical wire. As the passage of a wire will seldom occur
simultaneously with the beat of the clock, the interval
between them is to be estimated to the tenth of a second.

The observed time of passing each wire being thus noted,
the mean of the observations on all the wires is taken as
the observed time of culmination of the star. Examples of
the reduction of transit observations over five and eleven
wires respectively are given in Chapter V.

In observing transits of the sun, both the east and west
limbs are observed, and the observer notes the instant at
which the edge of the disc is tangent to each vertical wire.
The observations of each limb are then reduced separately
in the same way as those of a star, and the mean of the
results is the observed time of culmination of the sun’s
center.
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61. The Chronograph. —The method of observing tran-
sits explained above is called the “ eye and ear” method;
a more convenient, as well as more exact method of record-
ing transit observations is by means of the electro-chrono-
graph.

The object of the chronograph is to register transit or
other observations by electricity. It consists, Fig. 7, of
a cylinder which, by means of clock-work regulated by a
governor, is made to rotate on its axis uniformly once in a

F16. 7.— THE CHRONOGRAPH.
(By Warner & Swasey, Cleveland, O.)
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minute. A sheet of paper is wrapped around the cylinder,
and a pen is attached to a carriage, which, as the cylinder
rotates, is carried slowly along parallel to its axis. If the
pen is allowed to touch the paper, it will trace a spiral line,
which, when the paper is removed from the cylinder, will
appear as a series of parallel straight lines, about one-twelfth
of an inch apart.

An electric current is made to pass from a battery through
the clock, through an electro-magnet attached to the pen-
carriage, and through a key in the hand of the observer,
and it is so arranged that the circuit is made or broken for
an instant by the clock at every second. This causes the
electro-magnet to move the pen a little to one side, and
thus the lines marked by the pen are broken by a series of
equidistant notches representing seconds.

By pressing his key at the instant when a star crosses
each wire in the field of view, the observer causes the pen
to make a notch corresponding to each wire, and thus his
observation is permanently registered. By marking some
hour, minute, and second at its place on the paper, he can,
at any time afterwards, find the minute and second at which
the star crossed each wire, and the fraction of a second may
be accurately measured by a scale.

62. Reversal of the Axis. — A transit observation can be
made with the rotation axis of the instrument in either
position., If the collimation adjustment is not perfect, the
sign of the error is changed by reversing the axis; hence
when several stars are observed for the purpose of finding
the time, one half the observations should be made with
the axis in one position and the other half with the axis
reversed. This will eliminate the error of the collimation
adjustment, and any error arising from inequality of the
pivots.



34 THE TRANSIT INSTRUMENT.

CorRRECTION OF TRANSIT OBSERVATIONS.

63. Effect of Errors of Adjustment. — When the transit
instrument is perfectly adjusted, the middle wire is in the
collimation axis, and the axis of rotation is horizontal, and
in the plane of the prime vertical. Now, in practice, these
conditions are never exactly fulfilled, and when great
accuracy is desired, it becomes necessary to apply to the
times of observed transits, corrections required by the small
errors of adjustment. These corrections we now proceed to
determine.

Let BZD, Fig. 8, be the meridian, BAD the horizon, 4
the east point of the horizon, O the point where the rotation
axis produced intersects the
celestial sphere, and S the
position of a star when ob-
served on the middle wire.
The point O would coincide
with A, were it not for er-
rors in the level and azimuth
adjustments ; the result is
that the middle wire is
thrown a little to one side
of the meridian, and the col-
limation error produces a
similar effect. Let each of
these errors be considered positive when its effect is to throw
the middle wire east of the meridian, the instrument being
supposed to point south.

64. Investigation of the Corrections,— The hour angle
of the point S is the correction to be made in the observed
time of transit on account of the errors of adjustment.

Let t = ZPS = hour angle of point 8,

T = observed sidereal time of transit,

Fia. 8.
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a = sidereal time of meridian transit,
= star’s right ascension,
AT = clock error;
then will
a=T+AT+t » 3)
To find ¢ we may proceed as follows:

Comparing the points 4 and O, let their difference of
hour angle, azimuth, zenith distance, and polar distance be
denoted by e, a, b, and d respectively ; then will

e=ZP0 — ZPA = ZPO — 90°,
a=PZA — PZ0=90°— PZO0,
b=20—-ZA=2720-90°,
d = PO — PA = PO — 90°.
Let also
° ¢ =distance of middle wire from collimation axis.

Now we have in the triangle PZ0O, ZPO=90°+e,
PZ0=90°—a, Z0=90°+b, PO=90°+d, PZ=90°—¢; °
and in the triangle PSO,

SPO = 2P0 — ZPS8 = (90° +¢) —t =90° — (t —e),
S80=90°—c¢ and PS=90°-—-3.

85. The triangle PSO gives, by (2) of Chapter I.,
cos SO = cos PS8 cos PO + sin PS sin PO cos SPO,
or  sinc= —sindsind 4 cos 8 cos dsin (t —e) 4)
The triangle PZO gives, by (2) and (3) of Chapter I,
cos PO = cos PZ cos Z0 + sin PZsin ZO cos PZO,
sin PO cos ZPO = sin PZ cos ZO — cos PZsin ZO cos PZO;
or sind =sin¢sinb —cos pcosbsina (®)
cosdsine = cos ¢ sin b 4 sinp cos bsin a (6)
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66. Bessel's Formula.— As the instrument is supposed to
be in approximate adjustment, the arcs a, b, ¢, d, ¢, and ¢
are very small, and we may put for their sines the arcs
themselves, and for their cosines unity. Equations (4),
(5), and (6) thus reduce to

c=—dsin 8 4 (t — €) cosd )
d="0sin ¢ —a cos ¢ 8)
e="bcos ¢ +asin ¢ )
From (7) we find at once
t=e-+4dtan § 4 ¢ sec d 10)
which i8 Bessel’s formula for ¢.

67. Hansen's Formula.— Another formula for ¢ is ob-
tained as follows:

Multiplying (8) by sin ¢, and (9) by cos ¢, and adding,
gives
b=dsin ¢ 4 e cos ¢,

whence e=bsecp —dtang, .
which, substituted in (10), gives

t =bsec¢ +d (tand — tan ¢) + ¢ sec .(11)
which is Hansen’s formula.

68. Mayer's Formula. — Still another expression for ¢ is
found thus:

Substitute in (10) the values of d and e from (8) and (9),
and we have
t=>bcosdp+asin¢g 4 bsing tand — a cos ¢ tand 4 ¢ secd

__bcos ¢ cos 8+a sin ¢ cos §4-b sin ¢ sind—a cos $sin §4-¢
- cos 8

_8in(¢p—8)  ,cos(¢p—8) . 1
=0 088 +90 cosd +ccoss a2
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which is Mayer's formula. If we put
sin (¢ —8) __ cos(4>—8)=B 1 c,

coss cos & T
it takes the simple form

t=ad+bB+cC (13)

69. Best Position for Time Stars. —For a star in the
zenith, § = ¢, and (11) and (12) both reduce to

t= (b+c)secd.

Hence, for such a star, the azimuth error has no effect on
the observed time of transit, and ¢ depends on b and ¢ only.
Stars which pass the meridian near the zenith are therefore
the best to observe in order to determine the error of the
clock.

70. Constants to be Determined. — Before the hour angle,
t, can be computed by either of the formule (10), (11), or
(12), the co-efficients a, b, ¢, d, and e, must be determined
by observation. Equation (3) shows that ¢ is expressed in
time; hence the values found for a, b, ¢, d, and e, must also
be expressed in time. Equations (8) and (9) show that d
and e are known when a and b are given; hence it is only
necessary to find by observation a, the azimuth constant, b,
the level constant, and ¢, the collimation constant.

71. Azimuth Constant. — The value of a, the azimuth con-
stant, may be found as follows:

Let the transits be observed of two stars differing con-
siderably in declination, but which culminate nearly to-
gether. Let the observed times corrected for the errors of
level and collimation, and if necessary for the rate of the
clock, be denoted by 7' and 7. We then have b=0, ¢c=0,
and (12) becomes

sin (¢ — 8)
=0 —s
cos d
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which being substituted in (3) gives for one star,
sin (¢ —9) .
e

a=T4+AT+a 208 8

and for the other,
o= T’+AT+QM__8').

cos &'
‘ [ T Sin(¢—8')_sin(¢_8)
Then, o' —a=T T+a{ Ty —
_ cos ¢ sin (8 — ¥')
=T = Tt oo s
whence a_[(a'_a)_(T'— T)]COSSOOSS' ]

cos ¢ sin (8§ — &) ’
which may also be put in the form

po @ =0 = (T = T)

" cos ¢ (tan 8 — tan §') (14

If one of the observations be made on a circumpolar star
at its lower culmination, its declination must be considered
as measured over the pole; that is, it will be greater than
90°. We must then take for § the supplement of the star’s
declination, and for a its right ascension increased by 12
hours. Substituting in (14) for o/, o' 412" and for &,
180° — &', it becomes

_(@—)+12 (T = T) :
a= cos ¢ (tan 8 + tan §') (15)

If the same star be observed at both upper and lower cul-
mination, we shall have o' = a, and &' = §, and (15) becomes
12 —(T'—-T
= 1
@ 2 cos ¢ tan & (16)
The interval between the observations should be as small
as possible, in order that the clock’s rate may remain sen-
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sibly constant. Hence the right ascensions of the two stars
should differ as little as possible ; or if one is observed at its
lower culmination, they should differ by nearly 12 hours. -
Formula (16) will not give an accurate result unless the
rate of the clock, as well as the instrumental adjustments,
can be relied on for 12 hours.

‘We observe that the larger the factor tan § — tan §' in the
denominator of (14), the less will the errors of observation
affect the value of a. Hence in the use of this formula, the
best condition is that one star should be as near the pole,
and the other as far from it, as possible. In the use of
(15), however, the factor tand+ tand' will be the greater
the ‘nearer both stars are to the pole.

The application of either of the formule (14), (15), or

(16) will give the value of @ in seconds of time; multiplying
this by 15, the result will be the azimuth deviation in
seconds of arc.
" As the errors of adjustment are regarded positive when
they cause the middle wire to deviate from the meridian
east of south, a negative value of a will indicate that the
instrument deviates west of south, or east of north.

Exampre. By Formula (14).

T'=19"19"46'62 o' =19"19730".06 §&'= 2°52'53"
T=191246.97 «=191231.056 & =67 2728

T'-T= 659.65 a'—e= 6 59.01 tan$' =0.050

o —a = 6 59.01 tan § = 2.409
—0%.64 2.359
d—a—(T'—T)=—0.64 log 1.806180
¢ =42°43'52" a.c.cos 0.133983
tan § — tan &' = 2.359 colog 9.627272
a=—0.37 log 1.567435

west of south.



40 THE TRANSIT INSTRUMENT.

72. Level Constant. — To find b, we observe that if the
striding level is so adjusted that its axis is accurately
parallel to the rotation axis of the telescope, both will be
known to be horizontal when the two ends of the bubble
read alike; but if the readings are different, their half-
difference will denote the level error, b.

Let e=reading of east end of level,
w = reading of west end,
8 = value of one division of level scale in seconds of
are,
b = inclinatjon of rotation axis to horizon, positive if
east end is too low.

Then | b=s¥ 5 ¢ @)

As we cannot assume the adjustment of the level to be
perfect, however, it should be reversed end for end, and the
bubble read in both positions.

Let e’ and e be the east readings, and ' and w" the west
readings ; then will

whence by (17),

b=sw'+w":(e'+e");

or, expressed in time,
b= % [w' +w" —(e' +¢")] (18)

ExampLE. — The level reads in one position, e'=14.9,
'=21.5, and after reversing, e'' =20.1, w" =16.3; also
8§=4".74. Find the level constant in seconds of time.

Ans. b=0.22.
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738. Collimation Constant. — To find ¢, let the transit be
observed of a close circumpolar star at its upper culmina-
tion. Note the times of its passage over the first half of
the wires exclusive of the middle wire, then reverse the
rotation axis, and note the times of passage over the same
wires in reverse order. Find by means of the equatorial
intervals, the time of transit over the mean wire from each
set of observations, and denote the results by T'and 7"

The value of ¢ from (13) being substituted in (3), gives

a=T+AT+aAd+bB+cC (19)

After reversal of the axis the sign of ¢ will be changed,
and we shall have

a=T4+AT+ad+bB —cC.
The difference of these equations gives

T — T=200=_2%
cos &
or c=3(T"— T)cosd (20)

74. Constants Determined by Equations of Condition. —
The values of the constants a, b, and ¢, and that of the
clock error AT, may also be determined by observing the
transits of a number of stars whose places are well known,
which differ little in right ascension but considerably in
declination, and substituting the results for 7’ in equation
(19). From the known places we derive the values of a, 4,
B, and C for each star; hence, AT, a, b, and ¢ are the only
unknown quantities. Each observation thus furnishes an
equation of condition, four of which will be sufficient; but
for greater accuracy it will be better to increase the number
of observations, and combine the resulting equations by the
Method of Least Squares.



CHAPTER 1V.
THE SEXTANT.
DESCRIPTION, ADJUSTMENT, AND USE OF THE SEXTANT.

75. Description of the Sextant. —The sextant is an
instrument designed for measuring the angular distance
between two objects. The instrument, represented in Fig.
9, consists of the sector of a circle of about 15 inches
diameter, with a graduated limb, and a movable radius
carrying an index and vernier along the graduated arec, to
any point of which it can be fixed by a clamp and tangent-
screw. At the center of motion of this radius or arm, and

F1a. 9. — THE SBEXTANT.
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moving with it, a small plane mirror called the index-glass
is attached at right angles to the plane of the sector, and
another mirror called the horizon-glass is permanently fixed
to the instrument in such a position that the mirrors be-
come parallel when the index stands at zero.

The horizon-glass is only one-half silvered, and a small
telescope attached to the instrument has its axis directed
nearly to the line which separates the silvered and unsil-
vered parts, and is thus able to receive at the same time
reflected and direct rays. Thus, while the observer looks
directly at one of the objects, by moving the index-arm
with its mirror the image of the other object is brought
into the field of view by reflection from both mirrors. The
index now being clamped, the images of the two objects can
be made to coincide by the tangent-screw, and the angle
between them read off on the graduated arec.

As the two images should be of about equal brightness,
the telescope is capable of being moved parallel to itself,
nearer to or farther from the plane of the instrument, so as
to receive more reflected or more direct rays.

The sector embraces about one-sixth of a circle, — whence
the name sextant,— and the half-degree divisions on the
arc are numbered as degrees, the reason for which is
explained in the next article. Each so-called degree is
subdivided into six equal parts, and the instrument reads
by the vernier to 10".

In the focus of the telescope are two pagallel wires equi-
distant from the optical axis. By turning the tube con-
taining the eye-piece, the wires may be made parallel to
the plane of the instrument. Their object is to mark the
center of the field of view, and in all observations the
images should be kept between them.

Behind each of the mirrors several dark glasses of differ-
ent shades are hinged, any of which may be turned up to
moderate the light when the sun is observed.
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76. Double Reflection.— Let I and H, Fig. 10, be the
-two sextant-mirrors shown in section, 8§ and 8' the two
objects whose angular
distance is to be meas-
ured, and SIHT the
course of a ray of light
from S, which, falling
on the index-glass, is
reflected to the horizon-
glass, and again reflected
into the telescope at T.
Draw the lines CE and’
OH normal to the two
" mirrors ; the angle C be-
\ tween the two normals is
o 104 equal to the angle A4 be-
T tween the two mirrors.
The angles of incidence and reflection at each point being
equal, let those at the point I be denoted by m, and those
at H by n. The angle EIH is exterior to the triangle
CIH; hence we have

C=m-—n..
The angle SIH is exterior to the triangle T'IH; hence
T=2m—-2n=2C=2A.

As the images of the two objects coincide, the second
object, S', is seen directly in the line THS'; hence the angle
between the objbets is double the angle between the mir-
rors. For this reason half-degrees on the arc are called
degrees, and an arc of 60° is sufficient to measure an angle
of 120°,

77. Adjustment of the Sextant. — Both mirrors should be
perpendicular to the plane of the sextant, and the axis of
the telescope should be parallel to that plane. They are
supposed to be properly adjusted by the maker, and are not
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very liable to be thrown out of position, but the adjustment
should occasionally be tested by the observer.

(1) The perpendicularity of the index-glass is tested by
setting the index at about the middle of the arc, and notic-
ing whether the reflected arc seen in the mirror appears to
be a continuation of that seen directly. If the index-glass
is not in adjustment, the arc will appear broken at the
point where the direct and reflected parts come together.

(2) After proving the perpendicularity of the index-
glass, that of the horizon-glass may be tested as follows:

Having set the index near zero, if the telescope be directed
to a star or other distant object, two images will appear
in the field, one direct, and the other reflected from the
mirrors. Now, by moving the index-arm back and forth
the reflected image should pass directly over the other. If
it does not, but passes to one side of it, the horizon-glass is
out of position, and may be adjusted by means of a screw
at its back. The process should be repeated until the test
is satisfied.

(38) To test the collimation axis of the telescope, place
the sextant in the plane of two distant objects far apart,
the sun and moon, for instance, and bring the reflected
image of one in contact with the direct image of the other
on one of the wires, then turn the instrument so as to bring
the images on the other wire; if they are again in contact,
the axis is in adjustment, for in these two positions it is
equally inclined to the plane of the objects. If found out
of adjustment, it may be brought back by two screws which
hold in place the ring to which the telescope is attached.

When the telescope is in adjustment, if the images are
made to coincide in the middle of the field, they will not
coincide when brought on either of the wires. When the
coincidence is made on either wire, the reading will be
greater than when made midway between them; hence
angles measured with the telescope out of adjustment are
too great.
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78. Method of Using the Sextant. — The sextant may be
held in the hand, as it always is at sea, but on land it is
better to mount it on a tripod to secure greater steadiness
and consequent accuracy. The instrument must be held in
the plane of the two objects whose angular distance is to be
measured, the telescope being directed to the fainter one,
in order that the brighter one may suffer the loss of light
by double reflection. The two images should be made,
as nearly as may be, equally bright. The images being
brought nearly together, the index is clamped, and the
contact made perfect by the tangentscrew. The reading
of the vernier then gives the angular distance required.

MEASUREMENT OF ALTITUDES WITH THE SEXTANT.

79. Measuring the Sun’s Altitude at Sea. — The sextant
is principally used for measuring altitudes, particularly
those of the sun. At sea the sun’s altitude is measured by
bringing the lower limb of its image reflected from the
mirrors in contact with the visible horizon viewed directly
through the telescope, the sextant being held vertical.
Owing to the elevation of the observer above the sea-level,
this observed altitude requires to be corrected for the dip
of the horizon.

80. Artificial Horizon.— The natural horizon cannot be
used for observations on land; hence an artificial horizon is
used, consisting of a shallow vessel of mercury. To protect
it from the wind, it should be covered with a roof made of
two glass plates with surfaces exactly parallel, set at right
angles to each other in a frame. With this arrangement we
measure the angle between the sun or other body and its
reflected image in the mercury. Since the surface of the
mercury is horizontal, the image is as far below the horizon
as the body is above; hence when the artificial horizon is
used, the angle measured is the double altitude.
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81. Altitude of the Sun's Center.— When the sun’s alti-
tude is measured, the observation is made on either the
upper or the lower limb. The altitude of the center is then
found by subtracting or addmg the sun’s semi-diameter,
which is given for every day in the solar ephemeris.

In taking altitudes out of the meridian, it is better to take
several near together and use their mean. In case of the
sun, if we take an even number, alternately of the upper and
lower limb, the mean of the whole is the double altitude of
the center.

82. Observations on the Sun’s Limbs. — The sun’s image
reflected in the mercury, viewed with the inverting tele-
scope, is seen in its true position, being inverted twice, while
the image reflected from the mirrors is inverted but once.
Hence, to find the altitude of the sun’s upper limb, we bring
the lower limb of the latter image in contact with the upper
limb of the former; and the reverse for the altitude of the
sun’s lower limb.

‘When the altitude is increasing, if the upper limb is
observed, the images are approaching each other, and to find
the altitude and the corresponding time we may set the
images a little apart, with the index reading an even num-
ber of minutes, as 10', 20', 30, etc., and note the time of
exact contact. If the observation is on the lower limb, the
images tend to separate, and we may overlap them a little
and wait for contact. The process will be reversed when
the altitude is decreasing.

83. Meridian Altitudes. — The meridian altitude is the
highest altitude, and in measuring it, if the images are
approaching, we merely keep them from overlapping by
means of the tangent-screw, until they cease to approach
each other, and then take the reading; and similarly if the
images are separating.
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CORRECTION OF SEXTANT OBSERVATIONS.

84. The Index Correction.— All angles measured with
the sextant are to be corrected for index error.

‘When the two mirrors are parallel, the index should read
zero; and if it does not, the reading is the index error.

. The index correction is equal to the error, and of course
has a contrary sign..

To find the index correction, set the index near 0, and
direct the telescope to a distant object, as a star. Two
images will be seen, one directly and the other by reflection
from the mirrors. Make them coincide exactly by the
tangent-screw, and read the index; the reading is the index
correction.

The arc is graduated a few degrees to the right of 0. If
the index stands on the right of 0, all the sextant readings
are too small, hence the index correction is positive; but if
it stands on the left of 0, the readings are too large, and the
correction is negative.

85. The index correction can be more accurately found
from an observation on the sun. Having set the index near
0, direct the telescope to the sun, and bring the direct and
reflected images in contact, first with the index to the left
of 0, and then to the right. The readings in opposite direc-
tions will have contrary signs; call that on the left, —7,
and that on the right, 4++'; and let s=sun’s apparent
diameter, and = index correction.

When the centers of the images coincide, 7 =« ; but when
they are tangent externally,

r=x4s,
and —r=2—3,
half the sum of which gives

=" —1).
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Hence the index correction is one-half the numerical dif-
ference of the readings, plus or minus according as the read-
ing on the right of 0 is greater or less than that on the left.

If, for example, r = 33' 55", ' = 30' 40", we find

e==315"__ qig7m5,

86. The Correction for Refraction. — All altitudes meas-
ured with the sextant are to be corrected for refraction.

On account of the refraction of the atmosphere all bodies
appear higher than they rcally are; hence the true altitude
is less than the apparent altitude, which is that measured
by the sextant. The amount of the refraction depends on
the height of the body above the horizon, and, since changes
in the pressure and temperature of the air affect its density,
on the state of the barometer and thérmometer.

The refraction tables give the amount of the mean refrac-
tion for any altitude; or in other words, that which corre-
sponds to a barometric pressure of 30 inches, and temperature
of 50°F. They also give the factors by which to multiply
the mean in order to obtain the true refraction for the same
altitude when the readings of the barometer and thermome-
ter are different from these normal readings. See Table I.

The correction for refraction is always negative.

87. The Correction for Parallax. — Altitudes measured
with the sextant, of all bodies except the fixed stars, are to
be corrected for parallax.

The parallax of a body is the angle subtended by the
radius of the earth passing through the observer, as seen
from the body. As viewed from the earth’s surface a body
appears lower than it would if viewed from the center;
hence the effect of parallax is the reverse of that of refrac-
tion, and the correction for parallax is always positive.

Like refraction, the amount of parallax depends on the
altitude of the body, being zero at the zenith and a maxi-
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mum — called horizontal parallax —at the horizon. The
horizontal parallax of the sun, moon, or a planet, can be
found for any day from the Nautical Almanac, and it
remains to show how the parallax at any altitude may be
found when the horizontal parallax is known.

88. Parallax in Altitude.— Let A, Fig. 11, be the place of
the observer on the earth’s surface, H the position of the
body in the horizon, and B its position at any altitude k.

B

Fre. 11,

Let d denote the distance of the body from the center of
the earth, » the earth’s equatorial radius, P the horizontal
parallax, and p the parallax in altitude.

In the right-angled triangle AHC we have

sin P= 5 H
and in the triangle ABC,
__sinp _r_op
SIm(90° Ry d o

“whence sin p = sin P sin (90° 4 k) = sin P cos k.

For all bodies except the moon the parallax is very small,
and we may put the angle in place of its sine, whence we
have p=Pcosh;
that is, the parallax in altitude is equal to the horizontal
parallax multiplied by the cosine of the altitude.



CHAPTER V.
FINDING THE TIME BY OBSERVATION.
TiMe BY TRANSIT OBSERVATIONS.

89. Time of Meridian Passage. — By far the best method
of finding the time is by observing the time of meridian
passage of a celestial body with the transit instrument and
clock,

Since the hour angle of a body on the meridian is zero,
equations (9) and (7) of Chapter II. give

sidereal time of meridian passage = body’s R. A. 1)

mean time sun’s meridian passage = equation of time (2)

80. Civil and Astronomical Time. — The astronomical day
begins at noon, and the civil day at the preceding midnight;
hence the civil and astronomical dates differ by 12 hours.
If the mean time clock is set to indicate astronomical time,
the time of mean noon will be 00" 00™ 00*; but if civil time, .
it will be 12® 00™ 00~

If civil time be used, equation (2) will be changed into

mean time sun’s meridian passage = 12" + eq. of time (3)

91. The Clock Correction. — Finding the time by observa-
tion consists in finding the error or correction of the clock.

Let T=true time of meridian passage of a body,

T' = observed time of meridian passage,
2= clock correction ;

then, 2=T-T' 4)

If z is plus, the clock is slow ; if minus, the clock is fast.

The method of finding the value of 7T depends on the
kind of time used.
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(1) If sidereal time be used, we have from (1),
T = right ascension ®)
(2) If mean solar time be used, we have for a star, by
equation (4), Chapter IL,
T = mean equivalent of (R. A. — 8") ©)
and for the sun, by (2),
T = equation of time )
or, by (3), T'= 12" 4 equation of time ®
91a. The Clock Rate. — The rate is the change of error

of the clock. Suppose the error is found to be a, and after
an interval of n days it is again found to be b, then the

daily rate is 5=2  1f the clock is losing, the rate is posi-
tive; if gaining, it is negative.
ExAMPLES.
(1) Observations in sidereal time.

1. o« Lyree. The observations of the five
(1) 18232m13.4 wires are reduced thus: The
%)) 34.5 sum of the seconds is taken,
3) 33 01.3 omitting the hours and min-
4) 28 .0 utes, and divided by 5, or
(5) 49 .1 multiplied by 0.2. As the

— minutes have been omitted,

1263 this is liable to differ from the

- true mean by onefifth of a

25.26 minute, that is, 12 seconds; or

24. . by any multiple of 12 seconds.

T — 18 33= 1°.26 Hence the mean of the seconds

T —18 33 7.63=R.A. is to be corrected by such a
multiple of 12 as will make
it agree with the middle wire
within a fraction of a second. . The hours and minutes will
be the same as for the middle wire.

r = +6.37
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2. a Aquilce. 3. Pollux. 4. 8 Draconis.
R.A.=19"45=19°87, T7:38=20%.54, 19"12™30".66.
192 45= 00°.0 Th 37498 19210=38.7
17.0 38 8.7 11 22.0
37.9 32.5 12 16.2
59.0 56.1 13 10.5
46 15.9 39 15.0 53.8
T=19 45 37.96 7 38 32.42 19 12 16.24
T=19 45 19.87 7 38 20.54 19 12 30.66
z = —18.09 —11.88 + 14 .42

5. The Sun. — B. A. = 6*01™ 51*.98.

First limb. Second limb.
51 59 514.8 2™ 99
600 9.9 28.0
33.0 50.5
55.5 3 13.5
01 14.0 31.6
5)164.2 5)133.5
6 00 32 .84, 1st limb. 26 .70
6 02 50.70, 2d limb. 24.
6 01 41.77 =mean. 6 2 50.70

T=60
T=601 51.98=R.A.
z = +10.21

The same result may be found in another way as follows:
If from the sun’s right ascension we subtract for the first
limb, and add for the second the sidereal time required for
the semi-diameter to pass the meridian, we shall have the
computed times of transit of the two limbs. Thus:

L IIL.
Sun’s R. A, = 6*01™51°.98 68 01™ 51°.98
Passage semi-diam.= 1 8.97 1 897
T=6 00 43.01 6 03 00.95
7"=6 00 32.84 6 02 50.70
2= 41017 +10.25

The mean of these results is 10%.21 as before.
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(2) Observations in mean solar time.

. 6. ¢ Virginis, June 15. 7. 9 Ursa Major, June 19.
T 52= 349 T8 50™ 52°.8
51.35 ' 51 12.3
59.7 24 .9
53 8.0 37.9
24 .65 - 87.3
T=17 52 59.72 T=17 51 25.04
T =7 52 58.04 T =7 51 23.34
z = —1.68 x = —1.70
8. v Aquile, Nov. 9. 9. 6 Aquile, Nov. 9.
4h25= 8.5 4h 49™ 40°.2
12 .55 44 .25
17.0 48 4
25 .25 56.9
29 4 5 1.1
8 5.15
37.9 9.25
42 .25 13.3
50 .4 21 .85
54 .85 25.75
59 .2 30.1
T'=4 25 33.73 29.11
T =42 0.32 24.
'=4 50 5.11
= 26 .59
"’ * —4 50 31.71
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The values of T' are computed in examples 9, 10, 11, and
12, Art. 43.

The reduction of observations over eleven wires is sim-
plified by omitting the middle wire, taking the mean of the
seconds of the remaining ten, and correcting it by any mul-
tiple of 6 if necessary, in order to make it agree with the
seconds of the middle wire.

10. The Sun.— Equation of Time = — 15™ 56°.82,

I. Civil Times. IL.
111 42m 285 11k 44™ 40°.6
45 .2 57.7
43 6.8 45 19.0
28 .2 40 .1
45 .1 57 .1
11 43 6.76, 1st limbh. 11 45 18.90

11 45 18.90, 2d limb.

T'=11 44 12 .83 = mean.
7 =11 44 3.8

Tz = —9.6b

By formula (8):
122 00= 00°.00
Eq. time= —15 56.82

- T=11 4 3.18
11. The Sun.— Equation of Time = — 3~10°.28.

I Civil Times. II1.
11255160 112 57~ 27°.9
33.0 4.9
54 .6 568 6.5
56 16.0 28.0
33.3 45.1

|
i

‘We find
T'=11*57~00°.53
. T =11 56 49.72
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12. The Sun. — Equation of Time = 2"3"53
I.  Astronomical Times. II.

0°0m 42-8 022521

- 47.25 56.3

51.4 3 0.6

59.2 9.0

1 4.25 13.2

8.85 17.5

12.35 21.6

16 .85 25.9

25.6 3i.5

29.6 38.6

33.7 43.1
We find T' = 021289
T =02 3.3

z = —9.36

92. Standard Time. — Since November, 1883, standard
mean time has been in general use in the United States
instead of local mean time. The time of the meridian 5
hours or 75° west of Greenwich is called Eastern time, and
is the standard time for all places whose west longitudes
are between 4"30™ and 5" 30™; Central time, viz. that of
the meridian 6 hours or 90° west is the standard time for
places between 5"30™ and 6" 30™; Mountain time, that of
the meridian 7 hours or 105° west is the standard time
between 6"30™ and 72 30™; Pacific time, that of the meri-
dian 8 hours or 120° west is the standard time between
7230™ and 8"30™. Thus the standard and local mean time
at any place can never differ by more than half an hour.

If the clock whose correction is required is regulated to
standard time, the mean time computed from formule® (6),
(7), and (8) must also be reduced to standard time.
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The following is an observation in Eastern time, which is
5™ 17%.66 slower than local mean time: —

13. The Sun.— Equation of time = — 14™ 42456,

L IL

11:38= 4418 112 40= 553

48.7 59.3
53.15 4 3.7
39 1.2 12.1
5.75 16.3
9.7 20 4
13.95 25.0
18.4 , 28.9
27.15 27.3
31.25 41.6
35.25 46.0

11 39 9.96, 1stlimb. By formula, (8) :

11 41 20.55, 2d Limb. 12 00® 00°.00
T'=11 40 15.51=mean. Egq. of time =— 14 42.56
T=1139 59.78 Civil time =11 45 17.44
z=  —15.13 5 17.66

Standardtime=11 39 59.78

TiMe BY EQUuAL ALTITUDES.

93. Equal Altitudes of a Star. —If equal altitudes of a
star east and west of the meridian, and the corresponding
times, be observed by the sextant and sidereal clock, and if
t and ¢' denote the observed times, we shall have by equa-
tion (12), Chapter II.,

T'=i~(t+t’).
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‘We also have by (5),

T=stars R. A,,
and by (4),
e=T-1T"

As the altitudes themselves are not used, the corrections
for index error and refraction are not required.

94. Equal Altitudes of the Sun. —If the times corre-
sponding to equal altitudes of the sun be observed, their
half sum will not be the time of meridian passage, but will
require a correction on account of the sun’s change of
declination during the interval.

To find what effect the change of declination has on the
sun’s hour angle, take the general equation (8), Chapter I,
sin b = sin § sin ¢ 4 cos 8 cos ¢ cos P,
and differentiate it on the supposition that § and P are the

on]y variables ; we find

= sin ¢ cos 8d8—c088(=os¢sdeP—oos ¢ cos Psgin §d3,
whence

d3 (sin ¢ cos 8 — cos ¢ sin § cos P) = cos ¢ cos § sin PdP,

and

dP = d8 sing  sindcos P
<cos ¢sin P cosdsin P/

which reduces to
ar_ (M _ tan 8) 9)
sin P tan P
95. Equation of Equal Altitudes. — Let
t = half the interval between the observations, expressed
in hours;
A = sun’s hourly change of declination ;

e = correction to be added to the mean of the observed
times.



EQUATION OF EQUAL ALTITUDES. 59

The value of A may be taken from the solar ephemeris,
and will be plus if the declination is increasing, and minus
if decreasing. If we suppose it to be positive, the hour angle
west of the meridian will be greater than that east of the
meridian, and the required correction, e, will be negative.
For a similar reason, if A is negative, e will be positive.

The product ¢A is the sun’s change of declination during
half the interval, and e is the change it produces in the
hour angle. These quantities are very small, and have
sensibly the same relation as dé and dP, hence we may
substitute —-2 for 9L,

tA ds

By equation (11), Chapter II., we also have, with suffi-
cient accuracy, P=t.

Making these substitutions in equation (9), and dividing
by 15 to get the result in time, we have
e _tA ta.n¢_ta.n8> (0

16\ sint tant

-t _ t _
15sint_A’ and 15tant_B’

(10) becomes e= AA tan ¢ + BAtan § 11)

the equation of equal altitudes.
The logarithms of A and B are computed for different
values of the interval 2¢, and may be taken from Table II.
The half sum of the observed times corrected by the
equation of equal altitudes gives the observed time of the
sun's meridian passage. The frue time is given by equa-
tion (7) or (8), and the difference is the clock correction.

If we put
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ExAMPLE.
A. M. times. Double alt. P. M. times.
9t 21m Q7* 64° 00’ 2b 15m 04°
21 48 10 14 25
22 27 20 13 46
25 45 65 10 10 29
26 24 20 9 48
29 07 66 00 T 07
30 25 20 b5 47
31 09 30 5 05
31 49 40 4 26
32 29 50 3 43
10)272 30 . 10)89 40
9 27 15 14 8 58
9 27 15
125 00™ 00°.00 2t= 4 41 43
Eq.time= —11 51.35 2)23 36 13
T =11 48 8.65 4sum=11 48 6.5
T' =11 48 22.11 e= <4 15.61
Clock 13 .46 fast. T'=11 48 2211
Computation of e= AAtan ¢+ BAtans.
log A4, —9.4337 log B, 9.3457
A =—57".65log —1.7608 log A, —1.7608
logtan¢, 9.9656 8§=—5°9'50" tan — 8.9560
e =14°461og 41.1601 e"=115log + 0.0625
e'= 1.15
e =1561

TiME BY A SINGLE ALTITUDE.

96. Formula for the Hour Angle. — Equation (26), Chap-
ter I. may be written in the form

A EIE— (G =D ISiEF(E=9]
sing P= \/ cos 3 cos ¢ (12)

In this equation, the latitude of the place, (¢), is supposed
to be known, the zenith distance of the body, (2), is the
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complement of the measured altitude, and the declination,
(%), is to be taken from the Nautical Almanac, observing
that north declinations are to be marked 4, and south —.

The altitude may be measured with the sextant, and the
time of the observation must be noted by the clock.

We find from equation (12) the value of the hour angle
P, from which the time of the observation is computed by
means of equation (7) or (9), Chapter II. The difference
between this and the observed time is the clock error.

ExAMPLE.

Double altitudes of the sun’s upper limb and correspond-
ing observed mean times. Barometer, 30.0 in.; thermome-
ter, 40°.

Observed times. Double Altitudes.
21k48™ 01° 58° 30’
48 54 58 40
51 31 59 10
52 22 59 20
53 18 59 30
54 09 59 40
55 b4 60 00
56 50 60 10
57 45 60 20
58 38 60 30
10)532 322 10)592 230
21% 53™ 444,20 59°35' 00".0
E.long. = 13 29.75 —9 52 .5 =index cor.
21 40 14 45 2)59 25 7.5 [U.L.
= 24 — 21,33 = Wash. time. 29 42 33 .75=app.alt.of
1 44 .05=refraction
29 40 49 .70
7 .74=parallax
29 40 57 44

16 8 .16=semi-di.

29 24 49 .28=alt. center
90

60 35 10 .72=z.
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Computation by Equation (12) : —

b= 42°43'53" \ cos 9.866017
8=-12 18 45 ‘cos 9.989894
é—3= 55 02 38 19.855911
z= 60 35 11
z2—(¢—8= 53233
3do.= 2 46 17 sin 8.684406
24+ (¢—8)= 115 37 49
4do.= b7 48 5b 8in 9.927542
-18.611948
19.855911
1 2)18.756037
3+ P=—13°48'54".8 8in9.378019 - ..
242 :
P=—27°37'49".6 =— 1"50™ 313
Apparent time = 2209 28.70
Equation of time = —15 53.73
Mean time = 21 53 ‘34 97 -
Observed time = 21 53 44.20 :
Clock fast, 9.23

97. Best Position for Time Observations. — Equations (5)
and (8), Chapter I., are
' cos hsin Z=cosdsin P ' (13)
sinh = sin & sin ¢ + cos 8 cos ¢ cos P (14)
The differentiation of (14) with respect to & and P gives
cos hdh = — cos § cos ¢ sin PdP,
_ cos hdh
cos 8 cos ¢ sin P’
which, by (13), reduces to

dh
aP=- cos ¢ sin Z

whence dP =

15)
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As ¢ is constant, dP is a minimum when sin Z is a maxi-
mum =1, or Z=90°; that is, when the body is on the prime
vertical. In this position a small error in the measured
value of k will have the least effect on the hour angle P.
Altitudes measured for the purpose of ﬁnding the time
should therefore be taken when the body is in or near the
prime vertical.

98. Times of B.ising and Setting. — Equation (16), Chap-
ter L, for the hour angle of a body in the horizon, is

cos P=—tan ¢ tan §,

and shows that when the declination is south, the hour angle
is in the first quadrant, that is, less than siz hours; and
when north, the hour angle is in the second quadrant, that
is, greater than sixz hours.

Knowing the hour angle, the time of true rising or setting
will be found by equation (7) or (9), Chapter IIL

To find the time of apparent rising or setting, that is, the
time when a body appears in the horizon, we use equation
(12), making

z = 90° 4 refraction = 90° 34' 30",

since the body at this time is really 34}’ below the horizon.
If the time of apparent rising or setting of the sun’s upper
limb be required, it is necessary to make in equation (12),

2 = 90° 4 refraction + semi-diameter = 90° 50’ nearly.



CHAPTER VI
FINDING DIFFERENCES OF LONGITUDE.

99. The difference of longitude of two places on the earth’s
gurface is the arc of the celestial equator included between
their meridians. If the meridian of one of the places be
assumed as the first meridian, their difference of longitude
is called the longitude of the other place.

LoNGITUDE BY THE TELEGRAPH.

100. Exchange of Time 8ignals. — All astronomical meth-
ods of finding differences of longitude depend on the prin-
ciple that at any given instant, the difference of local time at
any two places i3 the same as their difference of longitude
expressed in time. ‘

The comparison of local times can be best accomplished
- by the transmission of telegraphic signals between the two
stations. Suppose a signal to be sent from the eastern
station, E, to the western, W.

Let e =time at E of sending the signal,
w = time at W of receiving the signal,
X = difference of longitude of E and W.

Then if we neglect the small interval of time between
the instant at which the signal is sent and that at which it
is received, we shall have

A=e—w ¢))

Let us denote by 7, the small interval occupied in the

transmission of the signal, then the time, w, of receiving
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the signal'is too late by 7, hence w must be replaced by
w — 7 in equation (1), giving A
A=e—(w—7)=e—w+r 2
The unknown term r may be eliminated by sending
another signal in the opposite direction.
Let w' = time at W of sending signal,
e' =time at E of receiving signal ;
then, neglecting time of transmission,
A=¢ —w' (6))
But the time, €', of receiving the signal is too late by r,
and e' must be replaced by e' — , giving

A=(e'—1) —w’=e'-7w'—f “4)
The half sum of (2) and (4) is ,
A=}(e—w+e —w) ®)

‘We have supposed a single telegraphic signal to be sent
in each direction, but in practice, in order to secure the
highest accuracy, a series of signals is sent in both direc-
tions each evening, and the operation is repeated on a
number of nights in succession.

101. Observations for Clock Corrections. —As it is as-
sumed that the local times of giving and receiving the
signals are accurately known, the exchange of signals
should be preceded and followed by a series of observa-
tions by each observer, for the determination of his clock
correction. These observations should be so arranged as
to make known the required corrections with the highest
attainable accuracy.

In the longitude work of the United States Coast and
Geodetic Survey the following arrangement is followed on
those nights on which time signals are exchanged: A
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set of ten star transits is observed, five of them with the
axis of the instrument in one position, and the other five
with the axis reversed. Of these five stars, four are cir-
cumzenith stars, two of which culminate north and two
south of the zenith, and one is a circumpolar star. Two
such sets of ten stars are observed on each night, and the
exchange of signals takes place between them.

102. Method of Sending Signals. — The signals sent may
be either arbitrary or automatic. In the first method, the
obgerver at E taps his signal-key a number of times at
short intervals, the time of each signal being recorded on
the chronographs at both stations; then the observer at W
gives a series of taps, the times being recorded on both
chronographs. The chronograph records thus furnish the
means of comparing the times of giving and receiving both
sets of signals.

In the other method, the observer at E places his clock
_ in the circuit and allows it to record its beats on the chron-
ographs at both stations; then the observer at W places
his clock in the circuit, and its beats are recorded on both
chronographs. The mean of the records of both chrono-
graphs, corrected for clock errors, then gives the difference
of longitude of the stations.

103. Effect of Personal Equation. —If the clock errors
are well determined and the exchange of signals is con-
ducted with sufficient care, the greatest error affecting the
result will be that due to personal equation. This may be
in great part eliminated by the observers’ changing their
places after half the series of observations is completed.
The difference of the mean results obtained before and after
changing places will be double the remaining effect of
personal equation, and the corrections may be applied, with
contrary signs, to the results obtained before and after
making the change.
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ExAMPLE.

The following results of a series of exchanges of signals
between San Francisco and a station near the Lick Observa-
tory, Mt. Hamilton, Cal., by observers of the United States
Coast and Geodetic Survey in the autumn of 1888, are given
by permission of the Superintendent of the Survey as an
illustration of this method.

Eastward ‘Westward Mean of East | Difference of
Date, 1888. Bignals. Bignals. and West Big. Longitude,
Oct. 23 3m090.009 3m09s.076 3m09e,088 3m(08s.944
30 180 148 164 09.020
31 138 - .128 133 08.989
Nov. 1 263 269 261 09.117
2 221 213 | 217 09.073
b 248 244 246 09.102
Observers change places. Mean =3 09.185
Nov. 23 3 08 .899 3 08 .894 ‘3 08 .896 09.040
24 885 864 874 09.018
26 9563 936 944 09.088
27 910 902 - 906 09.050
28 876 8567 .866 09.010

Mean =3 08 .898 3 09.041
3 09.185

2)0.287
Personal Eq. Cor. = 0.144

The numbers in the second column are the values of
e' —w' — 7 from the San Francisco signals sent eastward,
and those in the third column the values of e — w4+ from
the Mt. Hamilton signals. Those in the fourth column are
the values of }(e—w+ ¢’ —w') for each night of observa-
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tion. The values obtained before the observers change
places are found to be the largest, and the personal equation
correction is F 0.144, which being applied with the upper
sign to the results found before changing, and the lower
sign to those after, give the corrected results in the last
column, the mean of which gives finally,

A=3209°041.

v

LoNGITUDE BY TRANSPORTATION OF CHRONOMETERS.

104. The difference of local times of two places, 4 and
B, and therefore their difference of longitude, may be found
by adjusting a chronometer to the local time at 4, then
carrying it to B and comparing it with the local time at
that place. It is of course necessary to know and take into
account the rate of the chronometer during the interval of
its passage.

By a series of transit observations at intervals of several
days, let the daily rate, p, be determined, then find the
error, ¢, of the chronometer on local time at 4. Now trans-
port the chronometer to B, and determine the error, ¢, on
local time at B. Let ¢ be the time in days between the two
determinations, ¢ and ¢, then, when the error on B time is
¢/, that on A4 time will be e 4 fp, and the difference of these
errors is of course the difference of local times at A and B.
Hence we have

A=c+tlp—¢ 6)

This assumes that the rate is constant, and the same
while being carried as when at rest. In fact, this is not
true, and it is customary in practice to transport a number
of chronometers as checks upon each other, using the mean
of the results given by each separately.

This method of finding differences of longitude is not
much used except at sea.
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LoxcITUDE BY MooN CULMINATIONS.

105. This method depends on the moon’s rapid motion in
right ascension, which, on an average, is a little over two
minutes an hour. Hence if the moon and a certain star
should pass the meridian of the given place at the same
" moment, the times of their passing the meridian one hour
or 15° west of this would differ about two minutes, the
times of their passing the meridian two hours or 30° west
would differ about four minutes, and so on. If, then, at
any two places the interval between the culminations of the
moon and a given star be observed, the difference of those
intervals, divided by the moon’s hourly change of right
ascension, will give the difference of longitude of the two
places, expressed in hours.

If observations are made at only one place, the longitude
of that place may still be found by comparing the moon’s
right ascension at the time of its observed culmination, or
what is the same thing, the sidereal time at that instant,
with the sidereal time at the first meridian, found from the
tables of the moon in the Nautical Almanac.

106. Observations for Finding the Moon’s Right Ascen-
sion. —To find the moon’s right ascension at the time of
transit, the observer notes the sidereal times of meridian
passage of the moon’s bright limb, and that of a star whose
right ascension is known ; the interval will be their differ-
ence of right ascension, which being added to or subtracted
from that of the star will give that of the moon’s limb.
The right ascension of the center is then found by adding
to that of the first limb, or subtracting from that of the
second, the sidereal time required for the semi-diameter to
pass the meridian.

Now, let

a=R. A. of moon’s center at time of transit,



70 DIFFERENCES OF LONGITUDE.

that is,
a=local sidereal time at instant of transit;
and let

8 = Greenwich sidereal time at same instant; .
then :

A=8—a (7)

The accuracy of the determination of a will be increased
by observing several stars in connection with the moon, a
part of which culminate before, and a part after it. They
should be situated near the moon, because the errors of the
transit instrument and clock will then be practically the
same for all the observations, and will be eliminated in
finding the observed intervals.

107. Use of the Moon’s Hourly Ephemeris. — It remains
to show how to find the value of § in equation (7).

The Nautical Almanac gives the moon’s right ascension
and declination for every hour of Greenwich mean time
throughout the year. Let us then put

a;=R. A. next less than q, given in the ephemeris,
M = Greenwich mean time corresponding to «,

M, = Greenwich mean time corresponding to a,
then

a —a, = change of R. A. in the interval M — M,;
also let
A =increase of moon’s R. A. in one minute at the
time M,, expressed in seconds,
and  d=hourly increase of A.

Now the second difference (d) will be found to be sensibly
constant, hence the first difference (A) varies uniformly,
and its mean value for any interval is the value which it has
at the middle of that interval. Let the interval (M — M) be
expressed in seconds, then the mean value of A for this

-interval will be d

At} (M- M) oo
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This is the average increase of right ascension in one
minute during the interval, and being multiplied by the
number of minutes in the interval gives the total i 1ncrease,
a—~a,. That is, we have

TSR R L .

or putting M — M, =2,

x
(2 +7300)g5 ===
whence

(60:2') Q) = (5

r=

7200 A

= 60(aA— a1) (1— 7 2wOO . g), approximately.

Let G.OJ“T—ﬂ) =2 ®)
then

gz d_ o, a” 1
TETTT00 AT " T 7200 A UMY

since «' is an approximate value of z. If we let

z? d
— . =" (
7200 A ®
then =0 —2a',
that is, M=M4z —2z" (10)

This value of M is the Greenwich mean time at the
instant of observed moon transit, and S, the Greenwich
sidereal time at the same instant, will be found by equation
(6), Chapter II.
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ExAMPLE.

Moon’s 2d limb = 6" 22™ 53:.78

. tl : .
Observed sid. time transit p Geminorum =6 14 56 .40

Difference R. A. = 7 57.38
Star’s R. A. =6 16 5.00
R. A. moon’s 2d limb =6 24 2.38
Semi-diameter interval = 1 13 .42
R. A. moon’s center=a=6 22 48.96
My=17", . .. ... =6 22 12.25
A = 2°.6486, a—a;=36.71
d = 0°.0005.
" 60 log 1.778151
a—a=3671 log 1.564784
A = 2°.6486 colog 9.576984
' = 83161 log 2.919919
2
log 2" =2log o' = 5.83984
d = 0.0005 log 4.69897
7200 colog 6.14267
A =2.6486 colog 9.57698
2" = 00018 log 2.25846
By equation (10), M=17"13= 5159
Sid. time Greenwich mean noon =18 00 52.22
(Table 4.) cM= 2 49.84

S=11 17 33.65
a= 6 22 48.96

A= 4 b4 44.69



CHAPTER VIL
FINDING THE LATITUDE OF THE PLACE.

108. The latitude of a place, (¢), considered astronomi-
cally, is the arc of the meridian ZC, Fig. 3, included between
the zenith of the place and the equator. The co-latitude,
(¢), is the arc ZP between the zenith and the pole. Now,
since ZA, ZB, and PC are quadrants, we have AP = CZ,
and BC = PZ; that is, the altitude of the pole above the
horizon is equal to the latitude, and the altitude of the
equator is equal to the colatitude.

The following are some of the principal methods of deter-
mining the latitude of a place.

LATITUDE BY A CIRCUMPOLAR STAR.

109. Let S; and S;, Fig. 3, be the points of culmination,
and let h= A4S, h'=AS, the greatest and least altitudes.
We have

p = PS;= PS; = star’s pelar distance ;
also, AP = AS;, — PS;= AS; + PS,

or ¢=h—p and ¢="h'+p;
one-half the'sum of which is
$=1(h+H) )

that is, the latitude is one-half the sum of the greatest and
least altitudes.
The measured altitudes must be corrected for refraction.

LATITUDE BY A MERIDIAN ALTITUDE OR ZENITH DISTANCE.

110. Formuls for the Latitude. — From Art. 33 we may
derive the formule for the latitude in terms of the merid-
ian altitude or zenith distance, and the declination or polar
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distance ; the former being found by observation, and the
latter from the tables.

(1) If the body culminates south of the zenith, we have,
from (18) and (21), Chapter L,

b=8+2 . 2)

y=h—38 6))
(2) If between the zenith and pole, from (19) and (22),

$=8—2 @

¢=h—p ®
(3) If below the pole, from (20) and (23),

y=2—p (6)

¢=h+p ™

The measured altitude, or zenith distance, is always to be
corrected for refraction, and, unless the body observed be a
fixed star, for parallax and semi-diameter.

ExaMPLE.

Meridian altitude of the sun’s upper limb measured with
the sextant. Ba,rometer reading, 29.9 inches; thermome-

ter, 55°
Observed double altitude = 77°01'10"
Index correction = —945
2)76 51 25
Apparent altitude upper limb = 38 25 42 .50
Refraction = 112 .60
38 24 29 .90
Parallax = 6 .96
38 24 36 .86
Semi-diameter = 16 5 .77
Altitude center = gg 8 31 .09

z= b1 51 28 .91
8=—-9 737.27

By equation (2), ¢= 42°43'51".64
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LATITUDE BY THE ZENITH INSTRUMENT. — TALCOTT’S
METHOD.

111. This method of finding the latitude is the invention
of Capt. ANDREW TALcOTT, late of the United States Corps
of Engineers. Its superiority over all other methods is due
to the fact that it substitutes the measurement of a small
distance in the field of view by the micrometer for that of
a large arc by means of a graduated circle.

112. Description and Use of the Zenith Instrument. —
Suppose two stars to culminate, one south and the other
north of the zenith. By equations (2) and (4) we have for
the two stars, respectively, :

¢=28+2 ¢=8—2';
and taking their half sum,

$=3C@+8 +3(—7) ®)
The first term may be found from the star tables, but the
last term must be measured. The zenith instrument, repre-
sented in Fig. 12, is designed especially for this purpose.
Like the transif instrument, it is used only in the meridian.
The telescope is capable of motion about either a horizontal
or a vertical axis, and the observation is made on the two
stars in succession by revolving it 180° about the vertical
axis, its inclination remaining unchanged. In order that
the two stars may appear successively in the field of view,
they must be situated at nearly equal distances from the
zenith. To avoid making observations near the edge of the
field the difference of zenith distance should not exceed 15'
or 20",

The telescope having been adjusted in the meridian, two
stops are clamped to the horizontal circle in such position
that the instrument may be turned 180° about the vertical
axis, but will be brought to a stand in the plane of the



Fie. 12.— THE ZENITH INSTRUMENT.
(By Fauth & Co., Washington, D.C.)
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meridian when the clamp of the horizontal circle bears
against either stop.

The level attached to the finding circle of the telescope
is much more delicate than those of the transit instrument,
in order to measure the slightest change in the position of
the vertical axis. This is an essential feature of the instru-
ment, and one on which the accuracy of this method largely
depends.

The measurement of the difference of zenith distance
(z—2'), is made by a micrometer; a movable horizontal
wire, represented by the dotted line in Fig. 13, being
carried up and down
parallel to itself by
means of a fine motion

screw. The number /

of entire revolutions
of the screw is read f
from a scale in the field {
of view, the smallest
divisions of the scale k
denoting single revolu-
tions. The value of \
one revolution in sec-
onds of arc being deter-
mined, a motion of the
wire caused by any Fie. 18.
number of revolutions
of the screw will be known in seconds. The head of the
screw is divided into 100 equal parts, and one-tenth of each
part may be easily estimated, so that a motion of the wire
corresponding to one-thousandth of a revolution can be
measured. In this way readings may be taken as small as
0."05. :

Five vertical wires are placed in the middle of the field
of view, the middle wire being adjusted in the meridian,
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The instrument may thus be used for transit observations
to determine the clock correction.

A list of suitable pairs of stars should be prepared before-
hand, with the zenith distance and clock time of culmina-
tion of each star. There should be an interval of at least
two or three minutes between the culmination of the two
stars of a pair, in order to give time to read the micrometer
and level, and to turn the instrument 180° for the other
star. The interval between two pairs should be somewhat
longer, as the telescope has also to be set at a new zenith
distance.

The instrument being levelled and the stops so placed as
to fix the position of the telescope in the meridian when
turned either north or south, the telescope is set to the
mean of the zenith distances of the two stars, turned in the
direction of the star which culminates first, and clamped
against the stop. Soon after the star enters the field, the
observer bisects it with the micrometer wire, and keeps it
bisected until the instant of culmination, then reads the
micrometer and level, and turns the instrument against the
other stop; and the second star is observed in the same
manner.

118. Formula for the Latitude. — Suppose m to be the
micrometer reading on the south star, m' that on the north
star, and R the value of one revolution of the screw in
seconds ; then the measured value of z — 2’ in seconds will
be R(m —m') or R(m'—m), according as the micrometer
reads from the zenith or towards the zenith.

Let n and 8 denote the readings of the north and south
ends of the level at the time of observation of the south
star, n' and s' at that of the north star, and d the value of
one division of the level scale in seconds, then

1] {
dnz_s and 4% =32

2
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will be the corresponding inclinations of the level to the
horizon. Since any change of level which increases the ap-
parent zenith distance of one star diminishes that of the
~other, the observed difference of zenith distance must be
corrected by the sum of these inclinations, that is,

g(n—s+n'—s').

A correction is also required for the difference of refrac-
tion due to the slight difference of zenith distance of the
two stars. Let » be the refraction for the south, and 7'
that for the north star; as they diminish the apparent
zenith distance of both stars, their difference, » — ', will be
the correction to be added. Hence the corrected difference
of zenith distance is

i—d =RE(m—m)+3[ntn' = (s +e)]+r—7,
and equation (8) becomes
$=3@+8) +5 (m—m)+[n+n' = (s+5))
+ie-r) ©)

If the observation on either star was made after its me-
ridian passage, another correction must be added for the
“reduction to the meridian.” See Art. 123.

ExAMPLE.

The following observations were made on two stars num-
bered 6426 and 6452 of the British Association Catalogue.

No. Microm. readings. Level readings.
N S
6426 S 19.065 33.0 34.8
6452 N 17.365 345 332
m—m'=1700 67.5 68.0
67.5

n+n’—(s+s’)=——63
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For the instrument used, R =43".64, d=1", and the
micrometer read towards the zenith, hence we have by (9),
8 =52°48'47".43

21.82 (m — m') =— 0'37"".09 =32 40 9 .03
Hrn+n'—(+s)]=— 013 2)85 28 55 .46
(r—r)=- _00 42 44 27 .13

- 3m23 . . . . -—37.23

¢ = 42° 43' 50".50

LATITUDE BY THE PRIME VERTICAL INSTRUMENT. —
BEesser’s METHOD.

114. Formula for the Latitude. — When a body is on the
prime vertical, its azimuth Z = 90°, hence cos Z = 0, and we
have by (9) and (11) of Chapter I,

sin h = 508 (10)
sin ¢
and
cos P = 203 (11)
tan ¢
whence
tan §
t: =
an ¢ cos P (12)

From (12) we may find the latitude ¢, when we know §,
the declination of the body, and P, its hour angle on the
prime vertical. The latter must be found by observation.

115. Observation of Prime Vertical Transit. — A star
whose declination is north and less than the latitude of the
place will cross the meridian between the zenith and
equator, and will cross the prime vertical at equal altitudes
east and west of the meridian. If the transit instrument
be adjusted with its axis north and south, so that the teles-
cope revolves in the plane of the prime vertical, and if the
passage of the star over the wires be observed at both
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positions, the sidereal interval between the observations is
double the star’s hour angle on the prime vertical (Art.
47).

Hence, the value of P in equation (12) is half the ob-
served sidereal interval converted into. are.

116. Adjustment in the Prime Vertical. —The transit
instrument may be approximately adjusted in the prime
vertical by placing it on a star at the instant of passing the
prime vertical as nearly as the time can be ascertained.
For this purpose, P may be computed from (11), using an
approximate value of ¢, and from P and the star’s right
ascension the required time can be found. The star’s
altitude at the same moment is given by equation (10).

If the instrument is accurately adjusted in the prime
vertical, the mean of the observed sidereal times corrected
for the error of the clock will be equal to the star’s right
ascension. If the two are not equal, their difference will
measure the azimuth error of the instrument. Any such
error, in either direction, makes the resulting latitude too

great.

117. Practical Details. —The telescope should be re-
versed on its supports between the observation of the east
and west transits, in order to eliminate the error of colli-
mation. The level error should be well determined, and
applied to the result.

The observations on each wire must be reduced to the
middle wire by means of the equatorial intervals, or the
latitude determined separately from the observations on
each wire, and the mean of the results taken.

118. This method of finding the latitude was devised by
the celebrated Prussian astronomer, Besser, and in the
accuracy of its results is second only to Tarcort’s method.
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ExampLE.
a Lyrce on the Prime Vertical.

. . west transit= 20t 32m 414,34
Observed sidereal time east transit — 16 32 49 46

Sidereal interval, 2)3 59 51.88
Hour angle = 1259™ 5594
= 29° 58' 59".10

8 =238°39'55".1 tan 9.903176

P=29 58 59 .1 cos 9.937605

b =42°43'52".6 tan 9.965571

LATITUDE BY A SINGLE ALTITUDE AND THE CORRE-
SPONDING TIME.

119. Formula for the Latitude. — Equation (8) of Chapter

L., namely,
sin h = sin § sin ¢ + cos 8 cos ¢ cos P (13)

may be solved for ¢ as follows:
Assume m and M such that we have

sind=msin M (14)
cos 8 cos P=mcos M (15)
tand
h tan M = 16)
whence an o3 P (16)

The substitution of (14) and (15) reduces (13) to -
sin b = m cos (¢ — M),
sinh _ sinhsin M
= sind ’
_1Sinh sin M

S an
In order to apply this formula in practice, the hour angle

(P) and altitude (k) of a body whose place is known must

be found by observation.

whence cos (¢ —M)=

and ¢ =M + co

120. The Observations. — The altitude may be measured
with the sextant, and the hour angle may be found by
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noting the time at which the altitude was measured, and
substituting it in (8) or (10) of Chapter II. The clock error
must be accurately known, however, as any error in the
observed time will affect the value of P.

But the hour angle may be found independently of the
clock error, as explained in Art. 47, by observing the
times of equal altitude east and west of the meridian. Half
the difference of sidereal times of equal altitudes of a star,
or half the difference of apparent times of those of the sun,
is the hour angle expressed in time, the clock error being
eliminated in taking the interval. The clock rate must be
known, however, as it affects the observed interval.

If the hour angle is found by this method, the value of §
to be used in (16) and (17) should be the mean of the
declinations for the two observed times.

ExXAMPLE.

Double altitudes of the sun’s upper limb, and correspond-
ing mean times. Bar. 30.6 in.; Ther. 35°.5.

Double altitudes. Observed times.
’ gg° gg' 23t 22m 06
23 05
56 58 3
26 02
57 00
57 02 271 02
5)284 42 28 03
56° 56 24".0 5)126 18
Ind.cor.= —127.5 23 25 15 .60 = obs’d time.
2)56 54 56 .5 + 33 .32 = clock cor.
28 27 28 .25 23 25 48.92 = mean time.
Ref. = 152.79 14 56.60 = eq. of time.
28 25 35 46 23 40 45 .52 =app. time.
Par.=  7.87 24
28 25 43 .33 — 0" 19™ 14*.48
Semid. = 16 13 .50 0" 19%14°.48 or

_— — o 1 ". =h l
h=28 9 29 .83 4° 48' 37".2 our angle,
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P=— 4°48'37"2 cos 9.998467
8=—18 56 59 .7 tan —9.535739 a. c. sin — 0.488460

=—19 0044  tan —9.537272 sin — 9.512931

h=28°9'29"8  sin 9.673859

é — M =61°44' 36" cos  9.675250
¢ =42°43' 52"

121. Best Position for Latitude Observations. —To find
the condition in which a small error in the measurement of
the altitude will have the least effect on the result, differ-
entiate equation (8) of Chapter I., with respect to & and ¢;
we find )

cos hdh = (sin 8 cos ¢ — cos d cos Psin ¢)de¢.

This reduces, by (11) of Chapter I, to
cos hdh = cos h cos Zdde,

whence de =

cos Z

Hence d¢ is a minimum when cos Z is a maximum =1,
or Z=0° or 180° that is, the body is on the meridian.

It follows that altitudes measured for the purpose of
finding the latitude should be taken when the body is on or
near the meridian.

LATITUDE BY CIRCUM-MERIDIAN ALTITUDES.

122. This method consists in measuring several altitudes
of a body just before and just after its meridian passage,
applying to each a correction called the “reduction to the
meridian,” and taking their mean as the meridian altitude,
from which the latitude may be found by one of the for-
mulee of Art. 110.

123. Reduction to the Meridian. —The reduction to the
meridian is the difference between any observed altitude or
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zenith distance, and the meridian altitude or zenith dis-
tance.

Let 8, Fig. 14, be the place of a body when its altitude
or zenith distance is measured, 87 an arc of its diurnal

Z

Fie. 14.

circle, and SR an arc parallel to the horizon; then by

Art. 33,
meridian zenith distance Z7' = ¢ — 8.

Let 2= Z8 = ZR = observed zenith distance;
and 2= 2Z8 — ZT = TR =reduction to meridian;
then we have

z=2+¢—3,

and cos z = cos & cos (¢ — 8) — sin z sin (¢ — J).

But the observations being made near the meridian, say
within 10 minutes of the time of meridian passage,  is very
small, and we may put

cosz=1, sing=esinl";
also we may replace cos z by sin &, then
sin h = cos(¢ — 8) — #sin (¢ — 3) sin1” (18)
If now we substitute in equation (8), Chapter L.,
cos P=1—2sin’} P,
we have .
sink = sin § sin ¢ + cos 8 cos ¢ — 2 cos § cos ¢ sin®} P,

or sink = cos (¢ — 8) — 2 cos & cos ¢ sin® § P 19)
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Equating the second members of (18) and (19), we find
z8in (¢ — 8)sin1" =2cos dcos ¢ sin’} P,
2sin’§ P cosdcos¢
sin1”  sin(¢—38)
7. . CO8 8COS P
or z=k . Sin(¢—9) (20)

in which # is expressed in seconds. This is the correction
to be applied to the observed altitudes.

2sin’4 P
sin1"

whence =

The values of k=

(21)

are computed for values of P to every second, and may be
taken from Table III.

Since equation (20) involves the latitude, ¢, it must be
approximately known before this method can be used.

124. Correction for Rate of Clock. —If the clock has a
sensible rate during the observations, it must be taken into
account.

Let r = daily rate, positive when losing; then if P is the
hour angle indicated by the clock, and P' the true hour
angle, we have

P24~ 864000 1
P24 —r 86400°—r | _

86400
2 1 2
Let <I—r> [ — =nNn.
P 1—_T"
86400

In (21) we should use sin4 P instead of sm«}P but as
P is always small,

gin} P : sin} P= P': P, nearly,
and sin®} P' =sin®} P(-;;)2 =nsin*} P.

The factor k in equation (20) now becomes nk, and the
value of logn is given in Table III.
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ExAMPLE.

87

Circum-meridian altitudes of the sun’s upper limb and
Bar. 29.5 in.; Ther. 52°.3.

corresponding mean times.
Double alt. Mean times.

68°27' 00"
28 00
29 00
30 00
30 40
29 00
28 00
27 00
25 00

24 00

10) 277 40

23" 35= 26*

36
37
39

REITBEE

68°27'46".

—-137

2)68 26 8 .
.25 = observed altitude.

34 13 4
123

34 11 40 .
.37 = parallax.

34 11 47 .

7

16 9

33 55 38

90 00 00

56 421.

129

56 2 51 .

—-1319 2

42 43 49 37=¢. [By equation (2).]

.5 =index correction.

5

37
50
24
38
38
32
05
37
45

App. times.
23k 51= 33°

24

.88 = refraction.

37

74

52
53
56
59

4
6
8
9

10

.00 = semi-diameter.

.74 = altitude center.

.00

29 ==

26 = zenith distance.

4
57
31
45
45
39
12
4
52

H. ang. k
8=27° 140.18
7 16 103.67
6 03 71.86 -
4 29 39.46
015 0.12
4 45 44.30
6 39 86.82
8 12 132.01
9 4 185.99
10 52 231.81
10)1036.22
103.62

97 = z = meridian zenith distance.

.60 =34.
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Computation of z, equation (20).

k= 103.62
§=—13°19' 26
¢= 42 4350 .0

¢—8= 56 252 .6

x = 89".293

log
cos
cos

a. ¢. sin

log

2.015452
9.988160
9.866023

0.081181
1.950817




CHAPTER VIIL
FINDING THE AZIMUTH OF A GIVEN LINE.

125. The Meridian Line. — The intersection of the plane
of the meridian at any place with that of the horizon is
called the meridian line. The direction of the meridian
line is determined by finding the azimuth of a distant
terrestrial point, that is, the angle which a vertical plane
through the point and the observer’s eye makes with the
plane of the meridian.

126. Azimuth determined by Observation. — The general
method of determining azimuth by the observation of a
heavenly body is to measure the difference of azimuth of
the body and a fixed mark at a given instant, then compute
the azimuth of the body at that instant; the azimuth of the
mark will then be known. The difference of azimuth is
measured directly by pointing the instrument to the mark
and the star in succession, and reading the horizontal circle
for each. A number of repetitions of the observation
should be made to secure greater accuracy.

127. The accurate determination of azimuth requires
the use of a theodolite with large circles which are read by
microscopes. An approximate result may be found, how-
ever, with a smaller theodolite, an altitude and azimuth
instrument, or the engineer’s transit.

The terrestrial mark should be so far distant that it may
be distinctly observed by the telescope when focused on a
star. A convenient mark for night observations is formed
by the light of a lantern shining through a narrow vertical
slit in a screen placed in front of it.
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AziMuTH BY OBSERVING A CIRCUMPOLAR STAR AT ITS
GREATEST ELONGATION.

128. Azimuth, Altitude, and Hour Angle at Elongation.—
A star is said to be at its greatest elongation when its ver-
tical circle, ZS, Fig. 1, is tangent to its diurnal circle, that
is, perpendicular to its hour circle PS. Hence in this
position the parallactic angle §=90°% cosS=0, and
sin 8 =1; whence we find by (6), (10), and (13) of Chap-
ter L, )

. cosd - ‘
sin Z= oy 1)
. . _sin¢
sinh = sin @
_sinhcosd_tan¢
cog P= cos¢  tand ®

The latitude of the station being known, equations (1)
and (3) make known the star’s azimuth and hour angle at
its greatest elongation. From the latter, the sidereal time
of elongation is found by equation (9) of Chapter II., and
may be converted into mean time at the same instant.
(Art. 43.)

129. Method of Observing.— The observation consists in
measuring the difference of azimuth of the star at elonga-
tion and the fixed mark. Before the time of greatest
elongation as found above, let the instrument be set up
and carefully adjusted; then bisect the mark with the
vertical wire, and read the horizontal circle. Now direct
the telescope to the star, bisect it with the wire and follow
it by means of the tangent-screw, keeping it bisected till it
ceases to change its azimuth; then read the circle. The
observation on the mark should now be repeated, and the
mean of the readings on the mark compared with that on
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the star; their difference is the difference of azimuth
required. Knowing the azimuth of the star and the differ-
ence of azimuth of the star and mark, we know the azimuth
of the mark, which fixes the direction of the meridian line.

130. Suitable Circumpolar Stars. — Polaris (o Urse
Minoris) being of the second magnitude and close to the
pole, is a convenient star to observe for azimuth. The stars
dand A of the same constellation, and 51 Cephei, are also
sometimes used; but as they are of smaller magnitudes,
they can only be observed with the larger instruments.
The Nautical Almanac gives the places of these four stars
for every day of the year.

ExAMPLE.

Polaris at greatest eastern elongation. Star east of mark.

¢ = 42°43' 53" tan 9.965573 cos 9.866017

8 =88 4313 tan 1.650935 cos 8.348957

P=288 49 03 cos 8.314638 sin Z, 8.482940
=— 5t 5516 Z =1°44'32"

o= 2519 16 »
19*24™ =sidereal time of greatest elongation.
Reading on star at elongation = 14°24'52"

Mean reading on mark = 61325
Difference of azimuth = 8 11 27
Azimuth of star (east of north) = 1 44 32

Azimuth of mark (west of north)=6°26’55"

¢ AzzMmuTH BY OBSERVING A BoDY AT A GIVEN INSTANT.

131. The observation on the body consists in taking a
geries of azimuth readings and the corresponding times.
The mean of the readings compared with the reading on
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the mark gives their difference of azimuth, and the mean of
the observed times corrected for clock error is the instant
at which the body’s azimuth is required. Its hour angle at
this instant may be found by equation (8) or (10) of Chap-
ter II.; then, its declination and the latitude of the place
being known, we have, equations (35), (36) and (37),
Chapter I,

__ tand
t;a'nl‘[-'cosP @
y _ cos Mtan P
"~ sin (¢ — M) ®)
tanh = cosZ' 6
tan (¢ — 30) ©)

131 a. Observations on the Sun.—1In the case of the sun,
if an equal number of observations be made on the east and
west limbs, respectively, the mean of the readings thus
taken will be the reading for the center. The axis of the
instrument should be reversed between the observations on
the two limbs.

If, however, observations be made on one limb only, the
azimuth of the center, Z', must be corrected by the differ-
ence of azimuth of the limb and the center.

VA Let AZ be the vertical circle tangent to the
limb at A4, and draw the radius C4, then

CZ = z = zenith distance of center.
Let also
CA = s = sun’s apparent semi-diameter.

AZ(C = A = difference of azimuth of center
and limb.

In the spherical triangle ZAC, right-angled at 4, we have

8in 8 =sin z8in A = cos k sinA,
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whence sinA =sginssech;
or, practically, A=ssech ()
ExAMPLE.

Observations on the sun’s east limb with the engineer’s
transit. Sun west of mark.

Observed sidereal times. Readings.

16t 1= 12+.9 75° 00’

1 55.2 10

2 420 20

3 24.2 30

4 938 - 40

4 51.8 50

6 22.0 76 10

7 9.0 20

7 53.0 30 .

8 38.7 0
10)48 18.6 10)758 10
16" 4=49.86 75° 49' 00"

Clock fast 23.22

16® 4™ 26°.64 = sidereal time of observation.
13 4 54.29=sun’s R. A.

2k 59 32.35 = sun’s hour angle

=P= 44°53'05" cos 9.850367 tan 9.998240
© 8=—6 54 49 tan — 9.083709

M=-9 42 41 tan — 9.233342 €89.993731

= 42 43 53
‘p—M= 52°26'34" tan0.114122 a. c. 8in 0.100867
= b51°04'40" c089.798143 tan 0.092838
h= 25 47 04 tan 9.684021 sec0.045546
s= 16'04" = 964" log 2.984077

A= 17'51"=1071" log 3.029623
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Mean reading on E. limb = 75°49' 00"
Mean reading on mark =29 37 45
Difference of azimuth =46 11 15
Azimuth E. limb=2"—A =50 46 49
Azimuth of mark (W. of 8.) = 4°35'34"

AzimurH BY OBSERVING A BopY AT A GIVEN ALTITUDE.

132, If the altitudes be taken, instead of the times, cor-
responding to a series of azimuth readings on the body, we
have, equation (27), Chapter I.,

. _.[sin}(z+¢—38)cosi(z+ ¢ +39) '
sing Z_\/ cos ¢psinz ®)

in yhich 2 is found from the observed altitudes, and Z is
the azimuth of the body from the north point.

AzimurH BY OBSERVING A BopY AT EQUAL ALTITUDES.

133. Equal Altitudes of a Star.— Since a star is a fixed
point, and since the diurnal motion is uniform, equal alti-
tudes of any star correspond to equal azimuths. Hence if
a star be observed at equal altitudes east and west of the
meridian, and if r and 7' denote the observed azimuth read-
ings at equal altitudes, we shall have

r-l2- " _ azimuth reading for the meridian.

The azimuth of the fixed mark will therefore be the dif-
ference between the reading on the mark and the mean of
the two readings on the star.

It is here assumed that the readings of the horizontal
circle are continuous between the observations.

~
S
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134. Equal Altitudes of the S8un. —If the sun be observed
at equal altitudes, the mean of the two readings will require
a correction on account of its change of declination during
the interval.

Take equations (5) and (9) of Chapter I., and replace Z
by its value 180° — Z’; they become

cos k sin Z' = cos 8 sin P ’ 9
8in § = 8in ¢ sin A — cos ¢ cos k cos Z' (10)

To find what effect the sun’s change of declination pro-
duces in its azimuth, differentiate (10) in respect to § and
Z' as variables; we find, by (9),

az' _ cosd — 1
‘@ cos ¢coshsinZ' cos ¢sin P

(11)

The times of the two observations having been noted, let

A = }sun’s change of declination in the interval, and

2 = correction required by mean of readings.

1
Then we may put % for % in equation (11), whence

A

= a_ 1
cos ¢sin P (12)

The value of A may be found from the hourly change of
declination given in the Nautical Almanac, and the hour
angle P is half the interval of apparent time between the
observations, converted into arc. (Art. 44.)

The sign of the correction 2 is determined by the con-
sideration that if the sun’s declination is increasing, the
mean of the readings at equal altitude will lie west of the
meridian, but if decreasing, east of the meridian.



CHAPTER IX.

FIGURE AND DIMENSIONS OF THE EARTH.

ForMUuLZE FOR THE SPHEROID.

185. The investigation of the formulse which determine
the figure and dimensions of the earth belongs rather to
Geodesy than to Astronomy, but their importance in con-
nection with some of the applications of astronomy warrants

- a brief discussion of the subject in this place.

g

A

1)'
Fia. 15.

136. Notation. — The earth
being regarded as an oblate
spheroid, let PEP, Fig. 15, be
a section through its axis PP
and the point 4, the place of
the observer. Let P be the
north pole, P’ the south pole,
and E a point on the equator.
Draw the tangent AG and the '
normal 40 at the point 4, then
0A produced will meet the ob-

server’s zenith, and the radius C'4 produced will meet the
celestial sphere in the geocentric zenith.

Let CFE = a = equatorial radius,
CP=b= pola.r ra.dius,
CA = p =radius at given place,
AFB = ¢ = latitude at given place,
ACB = ¢' = geocentric latitude, -
AG@ =t = tangent ending at minor axis,
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AO = N=normal ending at minor axis, '

AF = n =normal ending at major axis,

FB=. =subnormal on major axis.

97

Let CB =z, AB=y, the rectangular co-ordinates of the

given place, the origin being at the earth’s center.

In the problems which follow, the latitude, ¢, will be

assumed to be known.

187. Fundamental Relations. —The right-angled triangles
AGO, ADO, and AD@ are similar to the triangle ABF,

and to each other.

The right triangle ABC gives
: . v
=2
sin ¢ F
cos¢'= z
P
y
tan ¢' = 5

The similar triangles ABF, ADQ, give

. x
sin =£=—
¢ n

The similar triangles ABF, ADO, give

cos ¢ =2=
n

b s

The similar triangles ABF, AGO, give

=Y_
tan ¢ =3

«]2

1)
&)

G))

C)

(5)

®)
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138.” Geocentric Latitude. —The general formula for the
subnormal of the ellipse is
s=(1—é)z,
e being the eccentricity. Hence by (3),

tan¢’=%=%(1"‘e’)’
or, by (6),
tan¢'=(1 —¢*) tan ¢ )

The angle CAO= AFB— ACB=¢ — ¢/, and is called
the angle of the vertical, or the reduction of latitude.

139. Co-ordinates of the Given Place. — The equation of
the meridian ellipse PEP' is

r=Y@-w ®)
or since =a'(1—¢é) €)
y=(1—¢)(a"—2") (10)

But comparing (3) and (7) we have
y=2(1—e)tan¢ (11)

Squaring (11), and equating with (10), we find
a? — 2 =a*(1 — ¢®) tan? .

2 2 2
P o — a®cos® ¢
e & )t d  cor' s’ § — P @
and o= a cos ¢ (12)
V1—ésin® ¢
and by (11),
yoal=)sing (13)
g oy
If we make

esin ¢ = sin x (14)



TANGENT AND NORMAL. 99

(12) and (13) may be written in the form.
x=asec xcos ¢ (15)
y=a(1l—é)secxsing (16)

which are adapted to logarithmic computation.

140. Tangent and Normil. — Equation (5) gives

whence we have by (12),
an

Normal ending at minor axis = N= —a—,—
V1—¢sin’ ¢
Equation (6) gives

Tangent ending at minor axis =¢= Ncot ¢ (18)

From equation (5) we find
n_8_ 4
¥i= 1 — ¢’ hence
Normal ending at major axis=n=N(1—¢€*) (19)
141. Badius of the Earth at the Given Place. —From
Fig. 15, by (15) and (16),
pP=2'+y* = a’sec’ x [cos® p + (1 — €*)*sin’ ¢ ],
hence p =asecy[1+ (¢! — 2¢®) sin® ¢]*
=asecx[1— ¢ (2 — ¢ sin? ¢]} (20)

142. Radius of Curvature of the Meridian. — Let
R,, = radius of curvature of the meridian at any point 4.
The expression for the radius of curvature of the ellipse
is

2 b2 by
vt ()
Bo =" b
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and by (8) and (9) we have
%:y’=a’—a:’, g_:x'= (A—e)z, ab=a(1-e};

g o (@—et

whence
at(1l— e’)*
But from (12),
ol — ot = gt — X 08’ _al—a¥

—é&sin’¢ 1—e?sin’g’

hence
1 _aea-at _ aa-e 1)
a’(l —)t (Q—esintg)t  (1—esin'e)t
and from (17),
R_=1;,"' N (22)

148. Radius of Curvature of a Prime Vertical Section. —
Since the earth is regarded as an ellipsoid of revolution, the
direction of gravity, that is the vertical line, intersects the
earth’s axis; and for consecutive points of the prime vertical
section it intersects it in the same point, which point is
therefore the center of curvature of this section; hence its
radius of curvature is the normal ending at the minor axis,
that is, equation (17),

. a

V1—é'sin’¢ @3)

144. RBadius of a Parallel of Latitude. — Let R, = radius
of the parallel of the given point 4, then, Fig. 15,

R,=AD =g,
hence by (12),
a cos ¢
Re=—r—rvnrmvor
T VI—ésin'g @4

and from (17),
R,= Ncos ¢ (25)
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145. Length of a Degree of the Meridian. — Let D, be
the length of 1° of the meridian at the given place, then,

by (21),

180 180 (1 — & sin? ¢)l

or developing the denominator,
D,= 1%‘Oa(l—e’) (14§ ¢€*sin® p+Lfe*sin* p4-etc.) (26)

If we neglect the fourth and higher powers of e, we have
approximately,

2
D= a(l—&) (1 +4'sin'4),
or, if we put _
h=15o0(1 =€) } (27
k=3}eh
we have D,=h+ksin*¢ (28)

At the equator, D, = h; and at the pole, D,,=h + k.

146. If in (26) we substitute the values
sin*¢ =} (1 —cos2¢),
sin*¢p =} (3 —4cos2¢ 4 cos 4 ), ete,,
it takes the form

D, == 1"87) (A4 Bcos2¢ + Ccosd ¢ +ete.) (29)

in which
A=1—-1e'—Fe'; B=—4e'—fre'; O =}et

147. Length of a Degree of a Parallel of Latitude. — Let
D, be the length of one degree of the parallel of latitude &
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Then, by (24),
_mR, =« acos ¢
180 180 (1 — é*sin? ¢) ]

80 T2 cos p(1 + }e*sin?  + §etsint ¢ +ete.)  (30)

=

1
By Trigonometry,
cos ¢ sin’ ¢ = } (cos ¢ — cos 3 ¢),
cos ¢ sin* ¢ = {4 (2cos ¢ — 3cos 3 ¢ +cos 5 ¢), ete.,
the substitution of which reduces (30) to the form

D,—l—’;;%(A'cos¢+B'cos3¢+0'c035¢+ete) (31)
in which
A'=1 4} +fe'; B =—}e — 3get; O'=rhget
148. Ellipticity of the Earth. — Let

c=enipticity=“;b=1—§,=1 —vi=g

then (1—c)*=1—¢* hence e€=2c—c.
If we neglect ¢!, which is very small, we have, by (27),
c=}e= %% (32)

ELEMENTS OF THE SPHEROID AS DETERMINED BY
MEASUREMENT.

149. We have next to show how the values of the con-
stants o and e, which enter into the preceding formule,
may be found from the actual measurement of arcs of the
meridian.

150. Triangulation. — The following is the method of
determining the exact length of an arc of the meridian: A
base line BL, Fig. 16, is selected on a level plain, several
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miles in extent, and its length carefully measured by the
most refined and accurate methods. A number of stations,
A, B, C, etc., are also chosen as the vertices of a series of
triangles extending in a north and

south direction, these stations being N

so situated that in any one triangle
the vertex of either angle can be
seen from the other two. All the
angles of each triangle are then care-
fully measured, and also the inclina-
tion of its sides to the true meridian.
The angles being cleared from spher-
ical excess, the sides of all the tri-
angles are computed, beginning with
ABL, of which the side BL was
measured. Near the other extremity F{&
of the chain of triangles, a ¢verifi-
cation base” is also measured, and
unless there is a close agreement
between its computed and meas- HS
ured length, the whole process is Fia. 16,
repeated. ’

The length of each side multiplied by the cosine of its
inclination to the meridian, gives its projection on the
meridian, and the sum of the projections of 4B, BC, CD,
..... , GH, gives the length of the meridian line NS.

151. Length of a Degree by Measurement. —The lati-
tudes of the extreme stations having been found by obser
vation, let

¢ = their half sum,

d = their difference,
! =length of measured line NS,
D,, = length of 1° of the meridian.
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Then d:1°={:D,,

whence D,= I

d

Let the values of ¢ and D, be substituted in equation
(28). Two such measurements on different ares will fur-
nish two equations, from which the values of & and & can
be found. It will be better, however, to increase the num-
ber of equations, and solve them by the method of Least
Squares.

The values of & and % being thus obtained, e and a
become known from equations (27), b from (9), and ¢ from
(32).

152. Bessel’s Elements. — The elements of the terrestrial
meridian generally adopted, until within a few years, are
those deduced by Besser, and published by him in 1841.
They were obtained by a discussion by the method of Least
Squares, of the results of measurements of meridian arcs
made previous to that time, and are as follows:

a = 20,923,597 feet,
b = 20,853,654 feet,

¢ = 0.00667437,
1
¢ =290.15

153. Clarke’s Elements. —In 1866, Col. A. R. CLARKE,
of the British Ordnance Survey, published the results of
the discussion of measurements embracing a longer arc of
the meridian, and involving more precise methods than
those which formed Besser’s data. They are generally
considered more accurate than Brsser’s elements, and were
adopted in 1880 by the United States Coast and Geodetic
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Survey as the basis of its geodetical computations. They

are as follows:
a = 20,926,062 feet,

b =20,855,121 feet,

, €= 0.006768,
1

= 79498
From these values we have by equations (29) and (31), for
any la.titude, b,

D, = 364609.87 — 1857.14 cos 2 ¢ 4 3.94 cos 49 ;
D, = 365538.48 cos ¢ — 310.17 cos 3¢ +039cos5¢,

which are expressed in feet.

154. In 1880, CLARKE published a new discussion of the
subject, giving as a result the following elements of the
terrestrial spheroid :

a = 20,926,202 feet,
b = 20,854,395 feet,
C = —!'—'
293.465
These values give, in feet,
D, = 364609.12 — 1866.72 cos 2¢ + 3.98 cos 4¢ ;
D, = 365542.52 cos ¢ — 311.80 cos 3¢ + 0.40 cos 5¢.
CLARkE’S Geodesy, p. 322.

‘We shall conclude this chapter with two or three prob-
lems of the higher geodesy, the solution of which involves
the application of some of the foregoing formulz.

Tae PoLycoNic PrRoJECTION.

156. The method of representing a portion of the earth’s
surface on a plane which is called the Polyconic projection
supposes each parallel of latitude to be developed on a cone
having the parallel for its base, and its vertex at the point
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where a tangent to the meridian at its intersection with the
parallel cuts the earth’s axis produced. By this method,
the degrees of the parallel preserve their true length, and
the distortion of area is less than in a.ny other mode of
projection.

Another important advantage of this system over others
is that by a simple and convenient mode of construction a
map is produced on which the meridians and parallels of
latitude intersect at right angles.

156. Angle at Vertex. — Suppose 4B, Fig. 17, to be an
arc of the parallel to be developed, P4 and PB the meri-
dians through its extremi-
ties, ¥ the vertex of the cone
tangent at 4B. We have
by (25), for the radius of
the parallel,

R,= Ncos ¢ (33)
and by (18), for.the radius
of the developed parallel, or
side of the tangent cone,

t=Ncot ¢ (34)

Let a = angle at the center
of the parallel subtended by
the arc AB; and 6= angle
at the vertex of the cone
subtended by the same are.
Since the number of degrees,
or of seconds, in arcs of the
same length are inversely as
their radii, we shall have

Q=£2=sin¢,
a t

Fre. 17. whence 6= asin ¢ (35)
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157. Co-ordinates of Curvature. — Drawing the lines 4D
perpendicular, and BD parallel, to AV, these will be the co-
ordinates which determine the point B referred to 4 as the
origin. Denoting them by « and y, we have

x=tsin 6,
y=t—tcosf@=tversf;
which may be put in the form
z=2tsin}6cos 0 ’ (36)
y=2tsin’}0=xtan}6 37

For surfaces of small extent we may consider the arc AB
to coincide with its chord, and since the angle between a
tangent and chord is half the angle at the center subtended
by the same arc, we have, the length of 4B being D,

z=alD,cos}0 (38)
y=aD,sin}f=cxtanid (39)

158. Construction. — The graphical construction consists
in laying down by means of their co-ordinates the points of
intersection of the parallel with each of the meridians of
the map, the origin being the point of intersection of the
parallel with the middle meridian. Drawing a right line
perpendicular to the middle meridian at this point, and
laying off the abscissas of the points of intersection on this
line, and the ordinates perpendicular to it, a continuous
curve drawn through the points thus determined will
represent the developed parallel. ‘

The distances between the parallels being laid off on the
middle meridian, the same method of construction can be
applied to each parallel in succession, and lines joining the
corresponding points of the successive parallels will be the
meridians of the map.

The values of the co-ordinates of curvature, « and y, may
be taken from Projection Tables. The Report of the Super-
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intendent of the United States Coast and Geodetic Survey for
1884, Appendiz 6, contains a table computed on the basis
of the CrLARkE spheroid of 1866, giving the values of the
co-ordinates in meters for each parallel of latitude, ard for
differences of longitude up to 30° on each side of the middle
meridian.

SpaERICAL ExCESs 0F TRIANGLES ON THE EARTH’S
SURFACE.

159. It is shown in geometry that the sum of the angles
of a spherical triangle is greater than two right angles, and
that the excess of this sum over two right angles is to eight
right angles as the area of the triangle is to the whole sur-
face of the sphere.

Let r = radius of the sphere,
T = area of triangle,
e=spherical excess;

T T
then 4-%; = ——, whence e= et

or if € is expressed in seconds,
. T
sinl"==.
¢ 7~
In finding the area of a triangle on the earth’s surface,

we may regard it as a plane triangle; and if b and ¢ are two
of its sides, and A the included angle, we have

T =} besin 4,
besin A
and ‘= sl (40)

As 7 is not constant for the spheroid, we may take it as
the mean of the radii of curvature of the meridian and
prime vertical sections through the center of the triangle.

That is, LBt )
r= ™ .
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We have by (21),
R.=a(1—&)(1—e'sin*¢)}
=a(l—e)(1+3esin*¢) =a(1+§esin’p —¢),
neglecting the fourth and higher powers of e. Similarly,
by (23), .
N=a(1—e'sin’¢) ¥ =a (1 +}e'sin’ ¢);
hence
r=3(Ra+N)=a(1l—1}e+e'sin’ep)
=a[l—}e+3e (1 —cos2¢4)]=a(1l—3}e*cos24).
Hence for the spheroidal triangle we have, by (40),

_ besin 4 _ .
‘=2 A= oo zgyamit - moun4 “h
in which
: (42)

=2 (1 —3}€*cos2¢)?sinl"
Taking as the values of @ and e those of the CLARKE sphe-
roid of 1866, and adopting the meter as the unit of length,
the values of logm have been computed for different val-
ues of ¢, as in the annexed table.

¢ logm ¢ logm
36° 1.40491 46° 1.40390
37 81 47 80
38 (g1 48 69
39 61 49 59
40 51 50 49
41 41 51 39
42 81 52 29
43 20 53 19
4 10 54 09
45 1.40400 55 1.40299
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GEODETIC DETERMINATION OF LATITUDES, LONGITUDES,
AND AZzZIMUTHS.

160. Let P, Fig. 18, be the pole of the earth, M and M’
two points on its surface, and suppose the latitude and
longitude of M are known, and that there are measured the
length of the line MM" and the angle
made by MM' with the meridian PM.
The problem is to find the latitude and
longitude of M', and the angle made
by MM with the meridian PM'. The
following solution of the problem is
essentially the same as the simplest
of several methods given by PuissanTt
n in his Traité de Géodésie, Tome 1.

R

Fie. 18, 161. Notation. — Let ¢ denote the
latitude of M, ¢' that of M'; P the
longitude of M, P' that of M'; Z the azimuth or bearing
of MM' from the meridian at M, and Z' that at M'. The
quantities ¢, P, and Z are given, and ¢', P', Z' are required.
The azimuths Z and Z' must be measured in the same
direction from the meridian; suppose them reckoned from
the south towards the east, then we have from the figure,
Z=180°— M, and Z'=180° + M".

Let PN be the polar axis, MN the normal at the point
M, and R the pole of a sphere whose radius is MV, denoted
by N. If we denote by K the measured length of the arc
MM, and by u the same arc expressed in seconds, then con-
sidering MM as a small arc of a great circle of the sphere
whose radius is N, we have

. K
sinu =,

w_ K _E(1—ésinig)t 13
orby (17), W= =T L sn1” (43)
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162. Latitude on the Sphere. —In the spherical triangle
RMM,
RM=90°—¢, RM'=90°— ¢, M=180°— Z;
hence
cos RM' = sin ¢' = s8in ¢ cos u — cos ¢ sin % cos Z.
Let the difference of latitude ¢'— ¢ ==, = being ex-
pressed in seconds, then
sin ¢' = sin (¢ + #) = sin ¢ cos # 4 cos ¢ sin 2,
whence
8in ¢ cos £ 4-cos ¢ sin 2=sin ¢ cos u—cos ¢ sin u cos Z.
and sinz= —sinwu cos Z + tan ¢ (cos u — cos x) (44)
Since # and u are small arcs expressed in seconds, we
may put sinz=xsin1", sinuw =wusin1"; and since
cosz=(1— sin’a':)i =1— §sin*z — }sin*z, ete.,
we may also put
cosz=1—3}2*sin?1", cosu =1 —}u?sin?1";
then cosu — cos = — % (u* —2*) sin*1",
and by (44),
a''=—u"cos Z—4 (u" —2'")sin1"tan ¢ (45)
‘We have for the first approximation,

2" = — ' cos Z,
which substituted in the last term of (45), gives
a'=—u'"cos Z—3%u"sin1" (1 — cos? Z) tan ¢,

and ¢'=¢—ucosZ—}ulsinl"sin’ Ztang  (46) -

163. Latitude on the Spheroid. — This value of ¢'is the
latitude of M' on the sphere, and is not the same as the
latitude of M' considered as a point of' the spheroid. To
find the correction for the latitude, we observe that as in
different circles, arcs of the same number of degrees are
proportional to their radii, the number of degrees, or of
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seconds, in equal arcs will be tnversely as their radii. The
radius of the sphere is
N %
(1 —e'sin*¢)}
and that of the spheroid at the point M is, by (21),
R= a(l—¢é) =N' 1—?’
(1 — é*sin? 4,)! 1 — e*sin’¢
Let z= difference of latitude, (¢' — ¢), on the spheroid,
thenz:2=N: R. Hence
z=z%’-’-‘f=m[l + (&* + ¢€* + etc.) cos? ¢ ],
or, 2z'=4a" (14 € cos’¢), very nearly.
Hence we have, by (46),
¢'=¢— (14€*cos® ¢) (u" cos Z+ 4 u'™sin 1"8in*Z tan ¢) (47)

164. Longitude.— To find P', we observe that in the
triangle RMM', the angle MRM' is the difference of longi-
tude P' — P, hence we have

sin (P'— P): sin M =sin u : cos ¢/,

or, since P' — P and u are very small, and M =180° — Z,
(P'—P)"cos ¢' =u'"sin Z,

whence ’

w''sin Z
P'=P+ cos¢' (48)

165. Azimuth. — To find Z', we have in the same triangle,
by Napier’s Analogies,
1N — 1_ pycost(¢—¢'
tan} (M + M') = cot } (P P)_ﬂ_lsin* oy
or, cot}(M+ M) =tan[90°—}(M+ M')]

=tan}(P'—P)2%’ii(%"_'—%.
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But 90° — (M +M") and }(P' — P) are very small an-
gles, hence we may put for their tangents the angles them-
selves; we also have M+ M' = Z' — Z, and since ¢ — ¢’
is very small, we may put cos§(¢ — ¢')=1. Substituting
in the last equation, and multiplying by 2, we obtain

180°+Z—Z =(P —P)sin}(¢+¢)  (49)
or by (48), "ein Z
— 1en° _u'sinZ . '
Z=180°+Z === e sin} (¢ + ¢') (50)
. 1 3
166. The logarithms of the factors o and 14-¢€*cos? ¢,

which enter equations (43) and (47), are computed for a
series of values of ¢ and arranged in a table. Such a table,
extending from 20° to 50° of latitude, may be found in the
collection of Tables and Formule forming No. 12 of the
Professional Papers of the Corps of Engineers, U. 8. A.
From the same work the following example is taken.

Data.
K = 53644 yards, P = 84°42'22"19,
¢ = 45°39'13".89, Z =159 20 13 .62.

1. To find ¢' by (47):
log K 4.7295212 log 4 sin 1" 4.38454

1 2log sin Z 9.09522

logu" 3.1996888 21og u" 6.39936

log (1 + ¢*cos’ ) 0.0014140 0.00141
log cos Z—9.9711240 log tan ¢ 0.00991

1st term = — 1486".71—3.1722268  2d term=0".77 9.89044
2d term =4 0 .77
¢ —p= 0°24'45".94
=45 3913 .89
! = 16°03'59".83
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2. To find P by (48): 3. To find Z by (49):

logsin Z 9.5476117  }(¢-+¢') =45°51' 36".86.
logu" 31996888  logsin }( + ¢') 9.8559089

logcos ¢'(ar. comp.) 0.1587526 log (P' — P) 2.9060531
P — P=2805"48 2.9060531 578".05  2.7619620
= 0°13'25".48 =9'38".05
P=384 42 22 19 339°20 13 .62=180°+2Z
P =84°55' 47".67 339°10' 36".57 = Z'

Equations (47), (48), and (50), though only approxi-
mately true, are yet sufficiently exact when the distance
between the points M and M'is a small arc, for instance,
less than twenty miles. For greater distances the solution
should be carried to a higher degree of approximation, and
formulee deduced embracing terms which for shorter dis-
tances may be neglected. Such a solution, also taken from
PuissanT, will be found in the Report of the Superintendent
of the United States Coast Survey for 1884, page 323.




APPENDIX.

THE METHOD OF LEAST SQUARES.

167. The Method of Least Squares is a method of elimi-
nating as far as possible the errors of observation. It has
for its main object to determine the most probable result
from a large number of observations or measurements each
of which is subject to error. The processes by which this
is effected are deduced by the application of the well-known
principles of the theory of Probability, and hence a knowl-
edge of the elementary principles of that theory is pre-sup-
posed of the student.

168. Errors of Observation.—The errors here referred to
are the small accidental errors which necessarily affect all
human observations, owing to the imperfection of the
senses and of the instruments employed, as well as to any
unfavorable conditions under which they are used. Such
are as likely to be errors in excess as errors in defect, and
hence in the long run tend to counteract each other. In
this respect they differ from constant errors, which affect
all the measurements in the same way, and therefore have
no tendency to destroy each other. ‘

Constant errors arise from some peculiarity of the ob-
server or of the instrument, or some abnormal condition
under which the observations are made, which leads to an
error always in the same direction, and hence their effect is
cumulative. For instance, in the measurement of a line, if
the standard of length employed should be slightly in error,
the influence of this error on the result will not be reduced
by any number of repetitions with the same standard. The

116
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effect of the error can only be destroyed or diminished by
using different standards. Though they may all be slightly
in error, they will be as likely to be too long as too short,
and the errors will therefore tend to destroy each other.
In this way, by changing observers and instruments, and
varying, as far as may be, the methods of observation, the
constant errors are changed to accidental ones, and then
their effect will be rendered a minimum by the application
of the method of least squares. The observations to b2
- discussed should be freed from all constant errors, othet
wise the results arrived at will not be the most probable.

ProBABILITY OF ERRORS OF OBSERVATION.

169. Observations are of two kinds : First, direct, as wher
the quantity to be determined is measured direetly ; and sec-
ondly, indirect, as when the magnitude directly measured is a
function of one or more quantities whose values are required.

Let us denote by z a quantity whose value is to be deter-
mined either directly or indirectly by observation. Suppose
there to be a series of m measurements, giving the results
n, n', n', ete., and affected with the errors z, x, =", etc., then

we have
x=z—n, 2'=2—n/, 2'=2—12", ete. (€))

Now, experience teaches us something in regard to the
law of distribution of errors. We know, for instance, that
in observations made with care by practised observers a
small error is more likely to occur than a large one, and
that very large ones are not liable to be committed, hence
the probability diminishes as the error increases; also that
errors in excess and errors in defect are equally probable.
Thus the probability of an error is a function of the error
itself. If we denote by f(x) the probability that the error
does not exceed x, the probability that it is comprised be-
tween 2 and x + dx will be
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@+ dn)— @) =22 s,

+ which becomes for the particular errors 2, y, etc.,

Thus %ﬁl is a function which expresses the law of

probability of errors, and it may be taken to represent the
probability of the error . Denoting it, for brevity, by
¢(x), then ¢(x)dx is the probability that the error is cora-
prised between z and x 4 dz.

170. Form of the Probability Function. — The probability
that the error of an observation is between any two limits,
as a and b, is the sum of all the elements of the form ¢(z)dz
between those limits, that is,

1]
[$@a=.
But it is necessarily between — oo and + oo, hence we have
+30
S s@an=1 @

since unity is the measure of certainty.

Denote by P the probability that in the observations from

" which a certain set of values of the unknown quantities

were found, the errors z, #/, 2", etc., were committed, then

since the probability of the occurrence of any number of

independent events is the product of their separate proba-
bilities, we have

P=4(2) - $(<) - $(2") -ete,
log P=1log ¢(x) + log p(a") + log p(«'") + ete.  (3)

Any other set of values of the unknown quantities will
give a different system of errors, and the most probable val-

and
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ues are those whose errors are such as will render P, and
therefore log P, a maximum. But in order to find when
¢(z) is a maximumn we must know the form of the func-
tion. This can best be found by considering a special case,
and, as the function is entirely general, the result thus
obtained will be applicable to all cases.

In the case of a single quantity observed directly, we may
assume as self-evident that if a series of measurements be
made under similar circumstances, giving results which, so
far as we know, are equally good, the arithmetical mean of
the observed results is the most probable value of the
quantity. We shall therefore have

="t n'4 n''4 ete. @)
m
whence n+n'4 0" 4 ete. =mz =2+ 2z +2 + ete.
and 0= (z—n)+(z—n') 4+ (z—n'"") + ete,,
or, by (1), 0=a+ '+ 2"+ ete. (5)

Now putting the first derivative of log P, equation (3),
equal to 0, as the condition for a maximum, we have

_dlogg(z) dz_ dlogg(a') da'
0 o o + T % + ete.

But since, from (1), de = dz, dz'= dz, etc., the last equa-
tion reduces to

_dloge(z) , dlog(a') | dlogg(a")
0= T + 2 + o + ete.

If we put d_ltgd%ﬁ =y(x),

we have 0=y(x) +y(«") + y(=") + ete.,
which may be written in the form,

0=xﬂ})-+x’f(zi:)+w";&:)+etc. (6)

-



DETERMINATION OF THE CONSTANT ec. 119

The comparison of (5) and (6) shows that
@=M=ﬂ——):;l = k, a consta.nt;

@
that is, loge() _p,
whence dlog ¢ (x) = kxda,
and integrating, log ¢ () = k=" + loge,
or () = cebka’,

Since the probability diminishes as the error increases, &
must be negative. Putting 4k = — h? we get

(@) = o~ )

as the form of the function expressing the law of proba-
bility of errors.

171. Determination of the Constant c. — The substitution
of the value just found for ¢ () in (2) gives

c j: e hat g =1 (6]

@

or putting Az =¢, whence dx = %‘,

c ("t _
;:.[.. etdt=1 )

To find the value of this definite integral, put

q =f e~#dt,
()

then we also have q= j oot dv,
0

and : 4 q’=j; j; =+ dt do,
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Let v =tu, whence dv=tdu, since ¢ is regarded as con-
stant in integrating with respect to ». Then we have

@ a0
¢={ [ ereraua
0 0
C -] 80
- f du [ et ggz,
0 0

But f P e 1
i A [ 20+ ), 2A+w)’

10" du
h == o 7
ence . ¢ 2 ire=2
d = " =!—;o
’an q j;e-"dt 2
In the same way we shall find
[
hence f“e*"dt:x/;.

Substituting this in equation (9), we find

c h
Z\/;=1’ or c=7;

w
and the probability function, equation (7), becomes
h
)= — eM'z* 10
$(2) v (10)

172. The Measure of Precision. — The constant 2 may be
regarded as a measure of the quality of the observations.
It is the same for any two series in which the probability
of committing a given error is the same, but different if the
probabilities are different, being greatest for the series in
which the probability of a given error is least.
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In one series, the probability that the error of an obser-
vation lies between — § and 48 is

+8
S d@am,
or, by (10),
| L 1 a8
— e dr=-— eW2d(hx);
AN Ve A3
and in another series the probability that an error lies
between — &' and + &' is
A f Fewwazm L [H ewma(nis).
Vad-E Va/hs
These two expressions are equal when h3=h's". For
example, if h'=2h, the expressions become equal when
8'=48; that is, any error has the same probability in the
first system as half that error in the second, or the accuracy
of the second system is twice as great as that of the first.
The quantity % is therefore called the measure of precision
of the observations.

173. Minimum Squares. — If a series of m observations
be made in order to determine the values of one or more
unknown quantities, those values are most probable for
which the errors committed in the observations have the
greatest probability. But the probability of the system of
errors «, «', ", etc., being the product of their separate
probabilities, is, by (10),

P= -h; e~ (zr+z"+z"+etc.) 11)
V"

where 2 is the precision of the series. For the most
probable system of errors, P is a maximum, which requires
that 2?4 2" 4 "2 4 etc. shall be a minimum; hence the
most probable values of the unknown quantities are those
for which the sum of the squares of the errors is the least



122 APPENDIX.

possible. The method of determining values of the unknown
quantities which shall satisfy this condition is for this reason
called the “method of least squares.”

If the observations from which the unknown quantities
are to be determined are of unequal precision, the expres-
sion for the probability of the system of errors will be of
the form

P= h_h'_h_"_ e (WS +RIZ A"  deto.)
V= '
and when P is a maximum, A*%* 4+ h'%z" 4 ete. is a minimum;
that is, If each error is multiplied by its precision, the sum
of the squares of the products will be the least possible.

THE PrOBABILITY CURVE.

174. If we represent the probability function, ¢(x), by
y, we have, equation (10),

y= \_’/‘:e—w (12)

from which, assuming different values for x, the correspond-
ing values of y can be found, and a series of points thus

Y|

X MP 0 PM =
Fie. 19,
determined, the co-ordinates of which will satisfy equation
(12). The line joining these points is called the probability
curve. Its form is represented in Fig. 19. '
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175. Discussion of the Equation of the Probability Curve.
— Since equation (12) involves y to the first power, and z
to the second, positive and negative values of  numerically
equal give equal values for y, hence the curve is symmetri-
cal with respect to the axis of y.

If =0, we have

yob
Vr
which is the maximum ordinate, and which varies directly

as h. As z increases numerically, y decreases, and when
2= to00,y=0.

The first derivative is
dy_ _ 2Kz, -war
dz \/-u' ,
from which we see that when :c=0,g—i=0, that is, the
tangent at the vertex is parallel to the axis of = If
=t 0w, y=0, and Z—Z=O, hence the axis of z is an
asymptote. -
The second derivative is

- f/"_e-hw(zh’m' 1),

which is zero when 2A%* —1=0; hence

= ii

hV2
are the abscissa of the points of inflexion.

As the probability of the error x is represented by the
ordinate y, the form of the probability curve is seen to
agree with the principles already laid down respecting the
law of error ; showing that the smaller the error the greater
its probability, that very large errors have very small
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probabilities, and that positive and negative errors of equal
magnitude are equally probable.

176. Area of the Probability Curve. —It has already been
shown that the probability that an error falls between # and
z4dzis

._h_e-m'dx.
-

But we have, equation (8),

= b (ewm '
L° ydx=\/’_rf4 My =1 (13)

which is the probability that the error is between —eo and
+w. By the definition of probability, it also represents
the whole number of errors, that is, the number of observa-
tions in the series. But obviously (13) is the expression
for the whole area included between the probability curve
and the axis of z; hence this area represents the number of
errors in the series, both being taken as unity.

Similarly, % f W2t gy
o e

is the probability that the error lies between a and b, that
is, it is the number of errors to be expected between those
limits if the whole number be taken as unity. It is also,
evidently, the expression for the area included between the
probability curve, the axis of 2, and two ordinates drawn at
the points  =a and #=10. Hence the area of the proba-
bility curve between two limits represents the number of
errors in the series to be expected between those limits.
Thus the area on the right of 04, the maximum ordi-
nate, represents the number of positive errors, and that on
the left of OA4 the number of negative errors, in the series.
The area PMNQ represents the number of positive errors
between OP and OM, and the area A0PQ the number
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between 0 and OP. If OP'=OP, the area P'PQQ' repre-
sents the number of errors numerically less than OP.

177. Computation of the Probability Integral. — If we
replace kz by ¢ in the probability integral, we have

e

This integral taken between the limits 0 and ¢ is the
number of positive errors less than ¢. If we consider both
positive and negative errors, the number will be twice as
great; denoting it by S, we shall have

= % j: ‘evdt (14)

which is the number of errors numerically less than ¢, the
whole number of errors being unity. It likewise follows
from the last article that S denotes the area of the prob-
ability curve between the limits — ¢ and +¢.

The value of the definite integral in (14) may be found
with sufficient approximation if ¢ is small, by developing
e ¥ by Maclaurin’s Theorem, multiplying by d¢ and inte-
grating a few of the first terms. We thus find

g
S-—-fdt(l # 4t e 3+etc)

\/- 3 1. 2'5'1 Z. 3"7"’“")’
which converges rapidly when ¢ is small.

By successive application of the formula for integration
by parts, a series may be obtained for computing this inte-
gral for large values of ¢ The numerical values of S corre-
sponding to successive values of ¢ = hx, are given in the
following table: :
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Values of the Probability Integral.

hz s hx 8 hx 8

0.0 0.00000 10 0.84270 2.0 0.995632
0.1 11246 11 .88021 2.1 99702
0.2 22270 12 91081 2.2 99814
0.3 32863 13 .93401 23 99886
0.4 42839 14 96229 2.4 99931
0.6 .62060 16 96611 2.6 99959
0.6 60386 16 97636 2.6 99976
0.7 87780 17 08379 2.7 99987
08 74210 18 98909 8.0 0.99998
0.9 0.79691 19 0.99279 © 1.00000

We take from the table for the following values of
t = he, the corresponding values of .8, and their differences,
viz.

" t= 00 8 =0.000

t=+05 ~  S=0520 520
t=+1.0 S =0.843 -323
t=1+15 S =0.966 123
t=1+20 S = 0.995 029
t=1 24 S = 0.999 004
t= oo S =1.000 001

Since the total number of errors is taken as unity, the
number of errors in any particular case is found by
multiplying the tabular number by the actual number of
observations. Thus, in a series of 1000 observations, we
may expect )

520 errors between 0 and + 0.5
323 « “ 05 « 1.0
123 « “ 1.0 « 15
29 « « 15 « 20
4 « « 20 « 24
1 {3 “« 2_4 « 0
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We see that the number of errors comprised between
equal intervals decreases very rapidly as ¢ increases, that
is, a8 the errors become greater.

PrECISION OF OBSERVATIONS.

178. The Probable Error. — In theoretical discussions the
constant & is used, as we have seen, as a measure of pre-
cision of the observations, but for practical purposes it is
found more convenient to employ the probable error.

Suppose all the errors of a large series of observations to
be arranged in a line in the order of magnitude without
- regard to their signs, then the error which occupies the
middle place in the series is called the probable error, and -
denoted by . The number of errors less than r being equal
to the number greater than », the probable error may be
defined as such a quantity that there is the same probability
of the true error being greater, and of its being less, than
this.

The probable error is represented geometrically in Fig. 19
by the abscissa OP, of that point on the probability curve
whose ordinate, PQ, bisects the area of that part of the
curve on the right of the axis of y; which is equivalent to say-
ing that the number of positive errors less than the proba-
ble error is equal to the number greater. Since in a large
number of observations there is the same number of negative
as of positive errors, and they are distributed according to
the same law, it is unnecessary to consider that part of the
curve on the left of OY, and the abscissa OP will represent
the probable error of all the observations of the series.

179. Relation of » and 4. — It follows from the definition
that the probability that any error of the series is numeri-
cally less than 7, that is, included between —r and + 7, is .
Hence we have for the probable error, equation (14), S =0.5;
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and the corresponding value of hz found by interpolation
from the table, is

hr = 0.47694,
whence r= 0‘4’;69_ (15)

Thus the probable error varies inversely as &, and serves
equally well to measure the precision of the observations.

179a. The probability that the error of an observation is
less than the probable error, 7, is, by (14),

S_ 2 0.47094 -t’dt_OB
=2 era=os,

and the probability that it is less than nr is found by taking
the same integral between the limits 0 and 0.47694n. Thus,
-the probability that it is less than 47 is

=2 (" poq= .
s_ﬁjo' et dt = 0.264 ;

hence in a series of 1000 observations we should expect to
find 264 errors less than one-half the probable error, and 500
less than the probable error. If we continue the ealcula-
tion, we shall find that there will probably be 823 errors
less than 27, 957 less than 37, 993 less than 47, and 999 less
than 5». In series consisting of large numbers of observa-
tions it is found that these results of theory agree very
nearly with those of experience.

180. Determination of the Value of 2. — If there be made
"a series of m equally good observations, affected with the
errors «, #', «', ete., we have, by (11), for the probability of
this system of errors,

P = —_ e M (z*+z"*+2"2+eto.),

Ja 15
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For the sake of brevity let us put
o' 4+ 2" + o' 4 ete. =[],
then P="¢wa (16)

2
The most probable value of % for this series is that value
which renders P a maximum. Putting the first derivative
of P with respect to & equal to 0, we have
m—1
B e Wi (m — 2R 7] =0;

Ll
s

whence m—2k[2"]=0, R

=_m_,
. 2=
and h= \‘ZT";’TI . . an

181. The Mean Error. — Another criterion which may be
employed to test the accuracy of observations is the mean
error.

The mean error is the error whose square is the mean of
the squares of all the errors. Denoting it by ¢, we have

. [#7]
e=Z (18)
. 1 1
h’ = — -_——
and (17) gives 2@ T é Y
1 0.7071
and €= —= 19
hV2 h (19
Since, by (15), r= 0'4Z69,
r_ 04769
=2 = 0.
we have <= 07071 6745,

and r=0.6745¢ (20)
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Equation (19) shows that the mean error is represented
by the abscissa OM, Fig. 19, of the point of inflexion of the
probability curve. See Art. 175.

182. Precision of the Arithmetical Mean.— The expres-
sion for the probability of a system of m observations of
equal precision is,

P=1" o,
V"
and for the most probable system, P is a maximum, and
hence [#*] is a minimum. But [«*] is rendered a minimam
by assuming the arithmetical mean, denoted by z, of m
equally good observations, to be the most probable value;
hence P is the probability of this mean if z, !, 2", etc., are
the errors of observation compared with 2, The probability
of any other value, as z, 4 §, will be

Pl= " g mi@am = P g-m(an-afaisemen).
V= VvV~

Since by (5), [2] = 0, and by (18), [2*] = mé’, we have

P = Le—mm(ow),

Va

and P= Le‘"‘"’*’,
AL

whence P! = Pe—m?®,

If m =1, P' = Pe ¥ hence k being the measure of pre-
cision of a single observation, that of the mean of m such
observations is h Vm. It follows from this that the precision
of the mean of several observations increases as the square root
of their number.

Let ¢ be the mean error, and 7, the probable error, of the
arithmetical mean, then in (15) and (19) putting Avm for
h, we shall find
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0=— (¢3))
m
and o= \/L”; (22)

183. Determination of Mean and Probable Errors. — The
mean and probable errors of a quantity determined directly
by observation can be found from the observations them-
selves. Let z, denote the arithmetical mean of m observa-
tions, n, n', n', ete., of some quantity whose true value is z;
and let v, o', v", etc., denote the residual errors, that is,
v=2—n, V=2—n' v'=2—n", etc. The residuals v,
v, v", ete., will differ from the true errors z, 2', 2", etec.,
unless z, is the true value of z. Suppose » to differ from 2
by +3, then we shall have

2=v+x8 and 2?*=v"+ 245 4 &,
[#*]=[v*] £ 2[v]8 + m& =[v*]+ m&® (23)

since we have, as in (5), [v]=0. The value of & being
unknown, that of md® cannot be accurately determined: as
the best approximation, we may assume 8 equal to the mean
error, ¢, equation (21); we shall then have

mé® = me' = €,
whence (23) gives, by (18),
meé =[a']=[v"]+¢, and &= ;n[ﬂi’

Also, by (20),
r=0.6745 \].;nfﬁill - (25)

These are the mean and probable errors of any one of the
m observations.

whence
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These values being substituted in (21) and (22), give

,v2
ro= 0.6745 IWWLET) @n

which are the mean and probable errors of the arithmetical
mean of m observations.

and

184. To facilitate the application of (25) and (27), we
may put

0.6745 0.6745
=k and —25740 _ .
Vm—1 Vm(m—1) ’
we shall then have '

r =k V[#] (28)
© n=kKV[] (29)

The values of k¥ and %' may be taken from the subjoined
table :

E Eofm| 2 | ¥ |m| ¥

oo oee 11 | 0.21329 | 0.06431 || 21 | 0.15082 | 0.03201
0.67449 | 0.47694 || 12 | 20387 | .06871 || 22 | .14719 | .08188
3| 47694 | 27636 || 13 | .19471| .06400 || 23 | .14380 | .02998
4| 38042 .10471 | 14| .18707 | .05000 || 24 | .14064 | .02871
5| 33724 | .15082 || 16 | .18026 | .04654 || 256 | .13768 | .02754
6| 30164 | .12314 || 16| .17415| .04354 || 26 | .13490 | .02646
7| 27536 | .10408 || 17| .16862 | .04000 || 27 | .13228 | .02546
8

9

0

m
1
2

25403 | .00013 || 18 | 163569 | .03856 || 28 | .12081 | .02463
23847 | 07949 || 19| .15808 | .03647 || 29 | .12747 | .02367

10 | 0.22483 | 0.07110 || 20 | 0.15474 | 0.03460 || 30 | 0.12525 | 0.02287

184a. The preceding formule have been deduced on the
hypothesis of a large number of observations, and the greater
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the number, the more nearly will the residuals obtained
approximate to the values of the true errors. In the exam-
ples which follow, the formul® are applied to a limited
number of observed values simply to illustrate the method,
but it must be understood that in order to obtain results of
much accuracy the number of observations would have to
be greatly increased.

EXAMPLES.

1. An angle was measured thirteen times, giving results
as in the first column below. Find its most probable value.

n v ?

62° 42! 20".6 0.4 0.16

18 .5 1.7 2.89

20 .7 0.5 0.25

22 .8 2.6 6.76

19 .8 0.4 0.16

20 4 0.2 0.04

20 .5 0.3 0.09

19 4 . 0.8 0.64

19°.5 0.7 0.49

18 .7 1.5 2.25

19 .0 1.2 1.4

21 .2 1.0 1.00

21 .5 13 1.69

13)262 .6 [+*]=17.86
20 .2

The mean of the thirteen measures is 62° 42' 20".2. The
residuals (v) in the second column are the amounts by
which the several numbers in the first column differ from
this mean. -‘The sum of the squares of the residuals is
17.86, the square root of which is 4.226. Since m =13, we
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. get from the table, & =0.19471, ¥'=0.05400; hence (28)
and (29) give
r =0.195 x 4.226 =0.82;

7o=0.054 X 4.226 = 0.23.

Hence the most probable value of the angle as deter-
mined from these measurements is 62° 42' 20".2 + 0".23.

In a similar way may be found the most probable values
of the quantities determined by the following observations :

2. Clock Correction. 8. Latitude of Place. 4. Meridian Passage.

15°.69 17° 45' 8".7 72 37™ 1678
15.72 6.7 16 .94
15.63 6.7 17.11
15.90 7.3 16 .94
15 .64 8.6 16 .91
15 .82 9 4 16 .74
15.67 6.1 16.75
15 .68 7.3 17.02
15.74 8.6 17.14
15 .86 6.2 16 .99
15.85 9.0 16 .87
74

Ans. 15°.75+0%02 17°45'7".6+0".22 Tk 37™16.93+0.03

In example 4, the given data are the times of passage of
a star over the mean wire of a transit instrument. They
were derived from the observed times of passage over
eleven wires, by means of the equatorial intervals. (Arts.
56, 57, 58.)

‘WEIGHT OF OBSERVATIONS.

185. The relative accuracy of two or more observations
may be expressed by means of their weights. If observa-
tions are made under precisely similar circumstances, we
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may suppose them to have the same weight; hence the
weight depends on the measure of precision, or on the
probable error. Since only the relative weights are required,
the unit of weight is entirely arbitrary. Let ussuppose our
observations to be compared with a fictitious observation of
the weight unity, and let p denote the weight of an actual
observation, then the value of p denotes the number of
observations of the weight unity which must be combined
in order that their arithmetical mean may have the same
accuracy as one of the actual observations.
Let 7, denote the probable error of the fictitious observa-
tion, and 7' that of an actual observation of the weight p',
. then according to equation (22),

' =-TL whence rf= p'r
V'

If 7" be the probable error of another observation, of the
weight p', we have in the same way,

rd=p"r'"
"
hence p'rt=p"", or 5_' T ;

which shows that the weights of two observations are inversely
as the squares of their probable errors; hence, by equation
(15), they are directly as the squares of their measures of
precision.

186. The Weighted Mean. — To find the mean of a num-
ber, m, of observations when their weights are taken into
account, suppose n, n', 2, etc., to be the observed results,
and p, p', p", ete., their respective weights, then, by the defi-
nition of weight, the quantity » may be considered the mean
of p observations of the weight unity; »' the mean of p'
observations of the weight unity, etc. Since pn is the sum
of the p observations whose mean is n, and so of the others,
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the given series of observations of unequal weights is
resolved into another series of the weight unity, whose sum
is pn+ p'n'+ p''n' +ete., and their number p + p'4 p' 4-ete.;
hence, denoting their mean by z, we have

p,n +plnl+plln"+ etc. - [m (30)
p+p'+p"+ ete. (»]

which is the expression for the weighted mean.

%=

187. Probable Error of the Weighted Mean. — It remains
to determine the precision of the weighted mean,

It follows from the definition of weight, that the weight
of the mean of m observations of the weight unity will be
m; hence the weight of z, is [p], and its mean and proba-
ble errors are, by (21) and (22),

=V V]

in which e and r are the mean and probable errors of an
observation whose weight is 1. As there are p residuals
expressed by v = 2, — n, p' residuals v'= 2z, — n/, ete., we shall
have by (24) and (25),

= . = '],
h,,ﬁﬂ-’}, r=0.67454 /f_},
=1 ’ pv
Whence €= (J:T)]m (31)
= 0.67 [pv |
7o = 0.6745+ ’ ( 1 [7] (32)

which are the mean and probable errors of the weighted
mean.
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Equation (32) may be written in the form

=1y /L2711 33
To=

0 ] (33)
the value of & being found in the table on page 132.

ExAmMPLES.

1. An angle was measured 40 times, and the results
separated into groups as follows: The mean of the first
five is taken as a single measurement with the weight 5,
the mean of the next eight is taken with the weight 8, and
so on, as in the second column below. Find the most
probable angle.

n n v v v

78° 37! 50".0 250".0 1.0 1.00 5.00
48 3 ° 386 4 0.7 0.49 3.92

342 3 0.1 0.01 0.07
196 .8 0.2 0.04 0.16
295 .8 0.3 0.09 0.54
489 .0 0.1 0.01 0.10

1960 .3 9.79

£E88%&
o oo o

[y
BlSomanon's

Considering the seconds only, we find by (30),

= [pn] _1960"3 _ 4quy,
*= Tr] 40 °
The residuals in column (v) are the amounts by which the
seconds of column (n) differ from 2z, The sum of the prod-
ucts pv? is 9.79, and since m = 6, (33) gives

7= 0.301 %i’ = 0.3016 X 0.49 = 0.149.

The most probable value of the angle measured is therefore
78° 37' 49"+ 0".15.



138 ' APPENDIX.

2. Angle Measurement. 3. Latitude of Place.
P n P .n
3 33° 56' 13"".4 10 38° 49' 41".8
4 12 b 7 41 .5
6 8.3 8 41 .3
7 10 .0 6 41 9
7 41 8
Ans. 33° 56' 10".5 + 0".74. 38° 49’ 41'.6 £+ 0".08,

188. Determination of Weights. — When the observations
are known to have different degrees of precision, and there
is no way of finding their probable errors, the relative
weights are to be assigned according to the best judgment
of the computer. If the mean or probable errors can be
computed, the weights will be determined by the principle
of Art. 185, that they are inversely as the squares of the
probable errors, or of the mean errors.

Ezxample. — The value of a level-scale division was deter-
mined by three sets of observations giving the results below.
Find the weights of the three results, also their weighted
mean and its precision.

Most probable value. Mean error. Weight.
4".72 0".0671 222.0
4 .88 0 .0858 135.8

4 .65 0 .0801 155.8

The weights being inverseiy as the squares of the mean
errors, are computed by the formula
1
P—g
We can now find the weighted mean and its probable
error by (30) and (33).
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P n o v v il
2220 472 104784 002  0.0004 2.0888
1358  4.88 66270 014  0.0196 2.6617
1558  4.65 72447 009  0.0081 1.2620

513.6 2435.01 4.0125
Hence we have %, =4".741; r,=0".04.

ProracAaTION OF ERRORS.

189. Algebraic Sum of Several Observed Quantities. —Let
z and z; be two independent observed quantities whose
mean errors are ¢ and e, and their probable errors 7, and
re; and let Z=2, + 2, Itis required to find E, the mean
error, and R, the probable error, of Z.

‘We assume that 2, and 2, have been determined by a large
number, m, of observations, the true errors of which are, —
for z,, @, ', etc.; and for z, =z, @'y etc.; then the errors
of Z are x, + @, o', + 2, etc. We have by (18),

me’=[z*], me'=[z],
and mE? = (v, + 2,)* + (') £ 2'5)? + eto.
=[2"] £ 2[z2;] +[%"].

In a large number of observations, there will be as many
positive as negative products x,2, hence [z,2,]=0, and

mE =[2"]+[2'] = m(e’ +¢),

whence E=Ve¢' +¢ (34)
and by (20), R=Vri+rd (35)
Suppose next we have
Z= % :t 29 + 23

‘We may consider z,+2; as a smgle quantity, and (34)
and (35) will give
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E=Vg +e+¢, R=Vri+ri+ 75
and so on for any number of observed quantities. In
general, if we have
Z =2zt 2zt 2 t ete.,

we have for the mean and probable errors of Z,

E=Ve'+ &'+ & + ete. (36)
R=+Vr®+ rd+ 1+ ete. (619)

Since, Art. 185, the weights are inversely as the squares
of the probable errors, we may put

1 1 1
.P=-I—z-2, p1=r—l’, p =7‘;§, etc.;

and we shall have, by (37), for the weight of the algebraic
sum,

1
P—7'1’+7's’+7's’+et°o (38)
1
or P=1—1_1 (39)
=+ —+—+ ete.
D P Ps

In the case of only two observed values, (39) reduces to

= PPs 40
D+ DPs (40)

180. Sum of Multiples of Observed Quantities. — Suppose
Z = az, in which a is a given constant. Since every obser-
vation of z with the error x gives Z with the error az, the
mean error of Z will be E=ae and its probable error
R=ar. Ingeneral, if we have

Z = ayz, £ ag, + ags t ete.,




INDIRECT OBSERVATIONS. 141

then by (36) and (37),

E =+Vaq® + ajle? + ete. 41)
R - '\/al"rl’ + ag’r” + etc. (42)
ExAMPLES.

1. Two angles, AOC and BOC, are measured, giving the
results, )
AO0C ="T70° 39" 24".6 +0".48,

BOC=23 08 05 .3+0 .26.

Find their difference, viz., the angle AOB.
We find by (37),
R =+/(0.48)" 4 (0.26)* = 0.546,

hence we have
AOB=47° 31'19".3 + 0".55.

2. A line is measured in three parts, with the following
results in feet :

428 £0.15, 66.2+0.22,  27.3%0.27.
Find the probable length of the whole line.
Ans. 126.3 + 0.38 ft.

INDIRECT OBSERVATIONS.

191. Recapitulation. — From what precedes we learn that
when a quantity is determined directly by a series of obser-
vations all of which are presumed to be of equal weight, its
most probable value is found by taking the mean of the
observed results; but if the observations are not of equal
weight, the most probable value is found, as indicated by
(30), by multiplying the result of each observation by its
weight, and dividing the sum of the products by the sum of
the weights.
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192. Equations of Condition. —In the case next to be
considered, the unknown quantity is not itself observed
directly, but the quantity found by direct observation is a
known function of one or more quantities whose values are
required. Each observation then establishes an equation
between the observed and the unknown quantities, —called
an equation of condition,—and a number of observations
equal to that of the unknowns will suffice to determine
their values. But the greater the number of observations,
the better results will be obtained, on account of the un-
avoidable errors with which they are affected; hence the
number of equations will generally greatly exceed that of
the unknown quantities, and they cannot be solved in the
ordinary way. Moreover, as the observations are imper-
fect, the resulting equations are not strictly true, and no set
of values of the unknowns can be found which will satisfy
all the equations. Hence the problem is, to combine the
equations of condition in such a way as to give the most
probable values of the unknown quantities, that is, such
values a8 will best represent all the observations.

193. Combining Equations of Condition.— Let us suppose
the quantity directly observed to be a linear function of the
unknowns «, ¥, 2, etc.; the equations of condition are then
of the form

ax + by + ¢z + ete.+1=0.
But we have just seen that the most probable values of
, ¥, 2, etc., when substituted in the equations of condition
will not reduce them exactly to zero, but will leave small
residual errors which we may call v, v/, ¢", etc.;—our
equations of condition will then become

ax +by +cz +ete.4+1l =v

a'z +b'y +c'z +ete.+1U' =9

a''z 4+ by 4 c'"z + ete. 4 "' = 2"
ete. ete.

43)
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Now according to Art. 173, the most probable values of
x, Y, #, etc., are those which substituted in (43) will render
v 4024 v'"® 4 ete. a minimum. To find the condition for
the most probable value of z, denote the sum of all the
terms independent of z in the first members by g, ¢, ¢",
etc., then equations (43) become

ax +q =9

a'z +¢q =9

a"w + qll = .v"

ete. ete.

Squaring both members and adding the results, we have

(az+q)2+ (alw+ql)’+ (allw_'_q")!_'_etc.
=4 v 4 2v'% 4 ete.

This is the function to be made a minimum, hence its first
derivative must be put equal to zero, which gives

a(a.a: + q) + a!(avx_'_ qr) + a!{(arlx + qu) + ete.= 0 (44)

In like manner we may find similar conditions for the
most probable values of the other unknown quantities.

" From these we deduce the following rule for combining

equations of condition: Multiply each equation of condition
by the coefficient of = in that equation, and place the sum of
the products equal to zero; and the same for each of the
other unknown quantities.

194. Normal Equations. — The results obtained by apply-
ing this rule to the equations of condition are called normal
equations. Their number is just equal to that of the
unknown quantities, and hence they can be solved by the
ordinary methods of elimination. The resulting values of
@, Y, %, ete., satisfy the condition that the sum of the squares
of the residual errors is a minimum, and are therefore the
most probable values.
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195. Observations of Unequal Weight. — If the observa-
tions from which the equations of condition are derived are
not of equal weight, each equation must be multiplied by
the square root of the weight of the observation which fur- -
nished it, before applying the rule. The equations are thus
reduced to the same unit of weight.

ExAMPLES.

1. Given the following equations of condition, to find the
most probable values of «, ¥, and z.
2422—29=0,
y— 2422=0,
z—3z+11=0,
¥v+22—-03=0.
From these we find the three normal equations by apply-
ing the rule in Art. 193. They are
22 —2—1.8=0,
2y+42+1.9=0,
—24y+182—119=0.

Solving these by elimination, we find
=130, y=—1.35 z=08L

2. Given the following equations of condition, to find
the most probable values of z, y, and z.
r—y+22—3=0,
342y —52—5=0,
4z+4+y+42z—21=0,
—z4+3y+32—14=0.
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The normal equations are
2Tz +6y —88 =0,
6z+15y+2—T0=0,
y+542—107 =0,
the solution of which gives
=247, y=3.561, z=1.916.

3. The sidereal times of meridian passage of six stars
were observed for the purpose of finding the azimuth error
of the instrument and the clock correction, by the method
of Art. 74. The observed times are given in the first
column below.

4

T a T—a 8 15
19°00™12°.96 18595642 16°.54 13°41'24"  0.033
12 46.97 19 12 31.056 15.92 67 27 28 —0.073
19 46.62 19 30.06 16.56 2 52 53 0.043
30 46.14 30 29.63 16.51 —7 17 20 0.051
40 52.85 40 36.45 16.40 10 19 39 0.036
48 50.09 48 34.14 1595 69 5813 —0.089

The errors of level and collimation were practically
destroyed, hence in equation (19) of Chap. IIL, we may
make b=0, ¢c=0; which reduces it to

a=T+AT+ a4,
in which @, the azimuth constant, is expressed in time. If
we replace the last term by '-;i;, a will be expressed in are,
and the equation may be written
]‘% =0.
Substituting in this the values of 7'—a and % from the

(T—a)+AT+a

table, we obtain the following six equations of condition :
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16.54 + AT +0.033a. =0,
1592 + AT —0.073a = 0,
16.56 + AT+ 0.043a = 0,
16.51 + AT +0.051a = 0,
. 16.40 + AT +0.036 0 =0,
15.95 + AT —0.089a = 0.

In order to reduce the absolute terms, put
e=AT+ 16.55 H
the equations will then become

—0.014+ ¢+ 0.033a =0,
—0.63+¢—0.073a =0,
+0.01 4+ e +0.043a =0,
—0.04 +e¢+0.051a=0,
—0.16+ e+ 0.036a =0,
—0.60 + ¢ —0.089a = 0.

From these we find the two normal equations:

—142+4+6e+0.001a =0,
0.092 4-0.001¢ 4 0.02 a = 0.
Multiply the first by 20, and subtract the second, then
— 2849 +120e=0; whence e=0".24.
AT =e—16.55 = — 1631 = clock correction.

Substitute the value of e in the second normal equation,

then
0.092 + 0.0002 + 0.02a = 0;

whence a = — 4".61 = azimuth error, E. of N.
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CoNDITIONED OBSERVATIONS.

196. In some cases the results obtained by observation
are not independent, but are connected by rigorous condi-
tions which they are required to satisfy. Such observations
are said to be conditioned. As examples of conditioned
observations we may cite the following:

(1) If two or more magnitudes of any kind, and also
their sum, are measured, the results must satisfy the condi-
tion that the sum of the single magnitudes is equal to the
measured sum.

(2) If the angles which close the horizon at a given
station are measured, the results are subject to the condition
that their sum is 360°.

~ (3) If the three angles of a triangle are measured, the
sum of the results should equal 180° if the triangle is
plane, or 180° + the spherical excess if it is spherical.

197. Adjustment of Observations. — Now in practice the
results of observations are never found to satisfy such con-
ditions exactly, so that it becomes necessary to apply to
them small corrections; and these should be so determined
as to give the most probable values, as well as such as will
satisfy the required conditions. The most probable values
will be found by distributing the total error among the
observations in such way that the correction which each
receives is inversely proportional to its weight. If the
observations are of equal weight, the observed values will
receive equal corrections.

The process of finding and applying these corrections is
called adjustment of the observations. The following exam-
ples include only the simplest cases.
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ExAMPLES.

1. The differences of longitude of Brest and Paris, France,
and Greenwich, England, were determined in 1872 as fol-
lows. It is required to adjust the observations.

(1) Brest west of Greenwich, 17™57%.165, weight 19.
(2) Greenwich west of Paris, 9 21.107, « 6.

(3) Brest west of Paris, 27 18.199, “ 6.
Sum of (1) and (2)=27 18.272
Total error = 0,073

As the corrections are to be inversely as the weights, let
that of observation (1) be denoted by %, and those of

observations (2) and (3) by 2 5 Ve shall then have

(& +3 + Pz = ffz=0073,

whence 2= 0.189. The corrections then are

X
| E_OOOQ 6=0.032;
which being applied to the observed values give for the
adjusted values,

(1) 17=57.156,

(2) 9 21.075

(3) 27 18.231,

which satisfy the condition that the sum of the first two
is equal to the third. The correction for the sum will
evidently have a sign opposite to those of the single
observations.

2. It is required to adjust the following angles measured
at the station O:
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AOB= 76°27 51".4, weight 6.
BOC=128 3126 .8, « 4.
0OD= 6916 15.3, « B&.
DOA= 854433.7, « 6.

360° 00' 07"".2
To find the corrections, we put

+1+h+Da=1oo=

E(—)w_

whence 2 =9.19. Hence the required corrections are

7.2,

§=2.30, ‘§=1.84, §=1.53;

which being subtracted from the observed results according
to their weights, give as the most probable values:

AOB= 76°27'49".87
BOC=128 31 24 .50
COD= 69 16 13 .46
DOA= 85 44 32 17

360° 00' 00".00

3. Adjust the following measured angles of a spherical
triangle, the weights being equal. The spherical excess
is 4".14.

Measured values. Adjusted values.
41°58' 51".476 41°58' 51".182
53 53 55 .455 53 53 55 .162
84 07 18 .089 84 07 17 .796

180 00 5 .019 180 00 4 .140

4 140

Error =0 .879
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4. Acijust the following measured angles of a plane

triangle.

Measured values. Adjusted values.
55°12'29".7, weight 10. 55°12'33".14
76 3143 .2, « 12 76 31 46 .07
48 15 38 .5, ¢« 1b. 48 15 40 .79

179 59 51 4 » 180 00 00 .00
Error=8 .6

The corrections are found to be 3.44, 2.87, and 2.29.

5. The following angles closing the horizon were meas-
ured at Pine Mount station of the U. S. Coast Survey.
Find the adjusted values.

Measured values. Adjusted values.
65°11' 52".500, weight 3. ©  65°11'53".4145
66 24 15 563, « 3. 66 24 16 4675

87 02 24 .703, « 3. 87 02 25 .6176
141 21 21 .757, « 1 141 21 24 .5005

359 59 b4 .513 360 00 00. 0000
Error =5 .487
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EXPLANATION OF THE TABLES.

Table 1., from Bessel’s Refraction Tables, gives the mean refraction
(assuming an atmospheric pressure of 29.6 inches, and temperature of
49° F.) for each degree of altitude from 10° to 76°, and then for every
five degrees to the zenith, together with the factors by which it is to be
multiplied for different readings of the barometer and thermometer.
The following is an example of the method of finding the correction
for refraction by means of Table L. : —

Given the apparent altitude = 41° 23/ 17" =41°.388 ; Bar. reading,
80.2 in. ; Ther. reading, 57°.
‘We find from the table —

Mean refraction = 66'".4 log 1.81658
Bar. 30.2 ; factor =1.020 log 0.00860
Ther. 67; factor = 0.984 log 1.99209

Cor. for refraction = 65 .64 log 1.81717

Table II. gives the logarithms of 4 and B, the coefficients in the
equation of equal altitudes, for values of the interval 2¢, from 8 to 9
hours. For explanation, with an example of the use of this table, see
Art. 95. :

Table III. gives the values of %, the coefficient of the expression for
the reduction to the meridian, for values of the hour angle up to 18
minutes ; also the logarithms of n, the factor depending on the rate of
the clock. See Articles 123 and 124, and the example following.
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TABLE L

THE CORREECTION FOR REFRACTION.

' |

|| e | pigr. | App| Mean g | par. | Factor. | Ther.| Factor.
" fo o ! Inch. “ °
0.0 | 5, || 44 807 | 54 | 810 | 1.047 | 88 | 929
6.1 | (e8| 1 18| 55 86 | 932
102 | g |l42 ]| 1 40 | 55| 809 | 1044 84 | 935
155 [ 23141 1 63| 23| 308 | 1041 | 82 | 939
166 | 7 (140 1 87 | 55|l 807 | 1037 || 80 | 942
17.7 | |88 ] 1112 | 50 808 | 1034 || 78 046
188 | 11 (/88| 1138 | [7 | 305 | 1.031 | 76 | .949
199 |17 (/87| 1165 | 5ol 804 | 1027 ' 74 | 958
210 | 1y |/ 86| 1193 | 50 803 | 1024 || 72 | 956
222 | 1718 | 1223 | o7 |l 802 | 1.020 || 70 | .960
233 | 15 (| 84| 1254 | 55 801 | 1017 | 68 | .964
245 | 15 || 38 | 1287 :_;; 800 | 1.014 || 66 | .967
257 | 19 | 82| 1321 ;:'7 ' 64 | 971
269 | ;g || 81| 1358 S | 209 | 1010 || 62 | 975
282 | 15|80 | 1307 | 7 298 | 1007 | 60 | .978
204 | 15 (129 | 1438 | | 297 | 1003 || 58 | .982
307 | | 28| 1482 | 7o ( 296 | 1.000 | 56 | .986
820 | 15|/ 27| 1628 | [0l 295 | 907 || 54 | .990
333 | 74|26 1578 | oy 294 | 903 | 52| 904
347 | 14 1/2 |2 32 ‘,"7 ;208 | 990 || 50 | .998
36.1 | ;4|22 89 o |l 202 | 987 || 48 | 1.001
37.5 | 174 (| 28 | 2152 (;- 1291 983 || 46 | 1.005
389 |15 |l22| 2210 | Ty 200 | .98 1 44 | 1.009
404 | ;2121 | 2298 | [0 il | 42 | 1.013
419 | 10 (/20| 2373 | gg - 289 | 976 | 40 | 1.017
435 | 16 (| 19| 2461 | oo | 288 | 973 || 38 | 1.022
45.1 | 16 (| 18 | 2658 | oo (| 287 | 970 | 36 | 1.026
467 | 17 |117 1 3 66 | o0 || 286 | 966 | 34 | 1.030
484 | 1o |16 | 3186 | ;o || 285 | 963 || 32 | 1.034
502 | 1w || 15 | 3321 | ;3 | 284 | 960 || 30 | 1.038
619 | 19 || 14 | 3 474 1‘7", 283 | .956 * 28 | 1.042
538 | ;g |l 18 [ 4 49 20"1’ 282 | 953 || 26 | 1.047
85.7 | g | 12 | 4250 | 5or || 281 | 949 | 24 | 1051
1.7 | 9o || 11 | 4 485 | 520 || 28.0 | 946 || 22 | 1.066
590.7 | #9110 | 5 162 : Il 20 | 1.060




TABLES.

TABLE IL

COEFFICIENTS OF THE EQUATION OF EQUAL ALTITUDES

OF THE SUN.

3h 4h 5h
2t | -
Log A Log B Log A Log B Log A4 Log B
\ T
m
0| 94172 9 3828 9.4260 0.3635 0.4374 9.3369
2 4174 3822 4263 3627 4378 3368
4 4177 3817 .4266 3620 4383 3348
(] 4179 3811 4270 3612 4387 3337
8 4182 3806 4273 .3604 4391 3327
10 4184 .3800 4277 3596 4396 3316
12 4187 3794 4280 35688 4400 3306
14 4100 .3789 4284 .3580 .4406 3204
16 4193 3783 .4288 3672 4409 .3283
18 4196 3777 4201 3564 4414 3272
20 4198 81 4205 .3666 4418 3261
22 4201 3766 4209 35647 4423 3249
4 .4204 3769 4302 35638 4427 | . 3238
26 .4207 3762 4306 .35630 4432 .3226
28 4209 3746 4310 3621 4437 3214
80 4212 3740 4314 3512 4441 3203
82 4216 3733 4317 35603 4446 3191
34 4218 3727 4321 3404 4451 3178
36 4221 3720 4326 3485 4456 3166
38 4224 3713 4329 3476 4460 3164
40 4227 3707 4333 3467 4465 3142
42 4231 3700 4337 3467 4470 3129
44 4234 3693 4341 3448 4475 3116
46 4237 .3686 4345 3438 4480 3103
48 4240 3679 4349 3429 4485 3001
50 4243 3672 4353 3419 4490 .3078
52 4246 3665 4357 .3409 4494 3064
54 4260 3667 4361 .3399 4600 3051
56 4263 .3650 4366 3389 4506 3038
58 | 9.4256 0.3643 9.4370 9.3379 0.45610 0.3024




TABLES. 5

TABLE II

COEFFICIENTS OF THE EQUATION oF EQUAL ALTITUDES
OF THE SUN.

eh 7h sh
2t ‘ — —
Log A Log B LogdA | LogB Log A Log B
— .
0| 94515 | 93010 | 9.4685 | 92630 | 0.4884 | 9.1874
3| 4521 2996 4691 2611 4892 1848
4| 4526 | 2082 4697 2492 | 4809 | 1822
8| .4531 2068 | .4704 2473 | 4906 | 179
8| 4530 | .2054 4710 | 2454 | 4913 | 1769
10 4542 2040 4716 | 2434 4921 1742
131 4547 2025 | 4723 | 24156 | 4928 | 1715
4 4552 | 2011 4720 | 2396 | 4935 | .1687
16| 4558 | 2806 | 4735 | 2375 | 4943 | .1659
18| 4563 | 2881 4742 2356 | 4950 | 1630
20 | 4560 | 2866 | ..4748 | 2334 4938 | .1602
23 | 4574 | 2850 | 4755 | 2813 | 4965 | .1573
24 | 4580 | 2835 | 4761 2292 4973 | 1543
26 | 4585 | 2819 | 4768 | 2271 4980 | 1518
28 | 4591 2803 | 4774 | 2260 | 4988 1483
30 | 4597 2788 | 4781 2228 | 4996 | 1463
32 | 4602 2772 4788 | 2206 5003 | 1422
34| 4608 | 2756 | 4794 | 2184 5011 1390
36| 4614 | 27390 | .4801 2162 | -.5019 | 1359
38 | 4620 | 2723 | 4808 | 2140 | .5027 1327
40| 4625 | 2706 | 4815 | 2117 5035 1204
43 | 4631 2689 | .4821 2004 5042 1261
4 | 4637 2672 | 4828 | 2070 5050 1228
48 | 4643 | 2655 | .4835 2047 5058 1194
48| 4649 | 2038 | 4812 | 2023 -5080 1159
50 | 4655 | 2620 | 4819 | .1909 5074 | 1126
53 | .4661 2602 4836 | 1974 | .5082 1089
54 | 4667 2581 | 4863 | 1950 | .5001 1054
56 | 4673 2566 | 4870 | 1925 | .5099 | .1017
58 | 04679 | 92518 | 94877 | 91000 | 9.5107 | 9.0981




TABLES.

TABLE IIL

For CoMPUTING THE REDUCTION TO THE MERIDIAN.

.

Values of k.

P om 1m 2m 8m 4m Bm ém ’ qm

" n " n n n " "

8

0 0.00 | 1.96 7.85 | 17.67 | 31.42 | 49.09 | 7068 | 96.20
2 0.00 | 210 8.12 | 18.07 | 31.94 | 40.74 | 7147 | 97.12
4 001 | 223 8.39 | 18.47 | 32.47 | 60.40 | 72.26 | 08.04
[} 002 | 238 8.66 | 18.87 | 33.01 | 51.07 | 73.06 | 98.07
8 0.03 | 2.62 8.94 | 19.28 | 33.64 | 51.74 | 73.86 | 99.90

10 005 | 2.67 9.22 | 10.69 | 34.09 | 52.41 | 74.66 | 100.84

12 0.08 | 2.83 9.50 | 20.11 | 34.64 | 53.09 | 76.47 | 101.78
14 0.11 | 2.99 9.79 | 20.68 | 85.19 | 63.77 | 76.29 | 102.72
16 0.14 | 3.16 | 10.09 | 20.95 | 35.74 | 54.46 | 77.10 | 103.67
18 0.18 | 3.32 | 10.39 | 21.38 | 36.30 | 55.15 | 77.93 | 104.63

20 | 022 | 349 | 10.69 | 21.82 | 36.87 | 55.84 | 78.756 | 105.68
22 0.26 | 3.67 | 11.00 | 22,25 | 37.44 | 66.66 | 79.68 | 106.656
24 031 | 8.85 | 11.31 | 22.70 | 38.01 | 67.25 | 80.42 | 107.51
26 037 | 4.03 | 11.63 | 23.14 | 38.69 | 57.96 | 81.26 | 108.48
28 043 | 422 | 11.95 | 23.60 | 39.17 | 58.68 | 82.10 | 109.46°

30 049 | 442 | 12.27 | 24.05 | 39.76 | 59.40 | 82.95 | 110.44
32 0.66 | 4.62 | 12.60 | 24.51 | 40.35 | 60.11 | 83.81 | 11143
34 063 | 4.82 | 12.93 | 24.98 | 40.956 | 60.84 | 84.66 | 112.41
36 0.71 | 508 | 13.27 | 25456 | 41.65 | 61.67 | 856.62 | 118.40
88 080 | 524 | 13.62 | 25.92 | 42.16 | 62.31 | 86.39 | 114.40

40 0.87 | 545 ' 13.06 | 26.40 | 42.76 | 63.056 | 87.26 | 115640

42 096 | 567 | 14.31 | 26.88 | 43.37 | 63.79 | 88.14 | 116.40
4 108 | 590 | 14.67 | 27.37 | 43.99 | 64.64 | 80.01 | 11741
46 1156 | 6.13 | 16.03 | 27.86 | 44.61 | 6629 | 80.89 | 118.43
48 126 | 636 | 1539 | 28.35 | 46.24 | 66.056 | 90.78 | 119.46
50 136 | 6.60 | 15.76 | 28.85 | 45.87 | 66.81 | 91.68 | 120.47
52 148 | 6.84 | 16.14 | 20.36 | 46.60 | 67.68 | 92.67 | 121.49
54 1.69 | 7.09 | 16.51 | 29.86 | 47.14 | 68.35 | 93.47 | 122.563
56 171 | 7.34 | 16.80. | 30.38 | 47.79 | 69.12 | 94.38 | 123.67
58 1.83 | 7.60 | 17.28 | 30.90 | 48.43 | 69.90 | 95.29 | 124.61




TABLES.

TABLE III

For CoMPUTING THE REDUCTION TO THE MERIDIAN.

Values of %.

P gm gm 10m 11m 12m 18m

8 n " n n n n

0 125.66 159.02 196.32 237.64 282.68 331.74

2 126.70 160.20 197.63 238.98 284.26 333.44

4 127.76 161.39 198.94 240.42 285.83 336.156

6 128.81 162.68 200.26 241.87 287.41 336.86

8 129.87 163.77 201.59 243.33 289.00 338.58
10 130.94 164.97 202.92 244.79 290.58 340.30
12 132.01 166.17 204.25 246.256 292.18 342.02
14 133.09 167.37 205.69 247.72 293.78 343.76
16 134.17 168.58 206.93 249.19 295.38 344.49
18 135.26 169.80 208.27 250.67 296.99 347.23
20 136.34 171.02 209.62 262.15 298.60 348.97
22 187.43 172.24 210.98 253.63 300.21 360.71
24 138.53 173.47 212.34 256.12 301.83 352.46
26 139.63 174.70 213.70 2606.62 303.46 354.22
28 140.74 176.94 216.07 268.12 305.09 366.98
30 141.86 177.18 216.44 259.62 306.72 3567.74
32 142.96 178.43 217.81 261.12 308.36 3569.51
34 144.08 179.68 219.19 262.64 310.00 361.28
36 145.20 180.93 220.58 264.156 311.65 363.07
38 146.33 182.19 221.97 265.68 313.30 364.85
40 147.46 183.46 223.36 267.20 314.956 366.64
42 148.60 184.72 224.76 268.73 316.61 368.42
44 149.74 185.99 226.16 270.26 318.27 370.21
46 150.88 187.27 227.67 271.79 319.94 372.01
48 152.03 188.56 228.98 273.34 321.62 373.82
50 153.19 189.83 230.39 274.88 323.29 375.62
52 154.35 191.12 231.81 276.43 324.97 37743
54 1565.61 192,41 233.24 277.98 326.66 379.26
56 156.67 193.71 234.67 279.55 328.36 381.08
58 157.84 195.01 236.10 281.12 | 330.04 382.90




