ŒUVRES
DE
THÉON DE SMYRNE
TRADUITES PAR J. DUPUIS

ÉPILOGUE
LE NOMBRE DE PLATON
(MÉMOIRE DÉFINITIF)
ΘΕΩΝΟΣ ΣΜΥΡΝΑΙΟΥ
ΠΛΑΤΩΝΙΚΟΥ
ΤΩΝ ΚΑΤΑ ΤΟ ΜΑΘΗΜΑΤΙΚΟΝ ΧΡΗΣΙΜΩΝ
ΕΙΣ ΤΗΝ ΠΛΑΤΩΝΟΣ ΑΝΑΓΝΩΣΙΝ

THÉON DE SMYRNE
PHILOSOPHE PLATONICIEN

EXPOSITION
DES CONNAISSANCES MATHEMATIQUES UTILES
POUR LA LECTURE DE PLATON

TRADUITE POUR LA PREMIÈRE FOIS DU GREC EN FRANÇAIS

Par J. DUPUIS

PARIS
LIBRAIRIE HACHETTE ET Cie
BOULEVARD SAINT-GERMAIN, 79
1892
PRÉFACE

Nous n'avons aucune donnée précise sur l'époque à laquelle vécut Théon de Smyrne; mais il est certainement postérieur au musicographe Thrasyle, puisqu'il le cite dans ses écrits et il est probablement antérieur à l'astronome Claude Ptolémée, auteur de l'Almageste qu'il n'eût pas manqué de citer, si Ptolémée l'avait précédé. Il doit donc avoir vécu entre le temps de Tibère près duquel Thrasyle était en faveur à titre d'astrologue, et le temps d'Antonin-le-Pieux sous lequel Ptolémée s'est illustré (*).

Il vivait donc sans doute au commencement du second siècle de notre ère, c'est-à-dire au temps de Plutarque, et c'est peut-être ce Théon que Plutarque introduit comme interlocuteur dans son livre Du visage qui apparaît sur le disque lunaire, dans les Questions de table, et dans le livre Sur le ζ του του τοῦ Δελφός (**) . C'est sans doute encore lui que Théon d'Alexandrie, commentateur de Ptolémée, appelle Théon l'ancien « Ὁιον θεών πελαίων ».

Théon a composé un abrégé de mathématiques en cinq livres, qui a pour titre : Τῶν κατὰ τὸ μαθηματικάν χρησίμων εἰς τὴν Πλάτωνος ἀνάγνωσιν, Des connaissances mathématiques utiles pour la lecture de Platon. Cette exposition abrégée comprenait : I, l’arithmétique; II, la géométrie (plane); III, la stéréométrie (géométrie de l’espace); IV, l’astronomie; et V, la musique.

La musique se composait alors de trois parties : les lois mathématiques des sons, la musique instrumentale, et l’harmonie des sphères célestes. Dans son travail, Théon omet la musique instrumentale qui était considérée comme étrangère aux spéculations philosophiques et il expose la théorie des nombres musicaux immédiatement après l’arithmétique. Il dit : « Puisque les principes numériques de la musique se rattachent à la théorie des nombres abstraits, nous leur donnerons le second rang pour la facilité de notre étude (*) ». Et quelques lignes plus loin il ajoute : « Ainsi, dans notre plan, les lois numériques de la musique viendront immédiatement après l’arithmétique; mais, d’après l’ordre naturel, la cinquième place doit être donnée à cette musique qui consiste dans l’harmonie des mondes (**) ».

L’arithmétique, les lois mathématiques de la musique et l’astronomie sont seules parvenues jusqu’à nous. Il manque les livres sur la géométrie et sur la stéréométrie, ainsi que l’écrit sur l’harmonie du monde céleste que Théon dit expressément avoir composé (***)

Michel Psellus, écrivain byzantin du xié siècle a composé un petit traité sur les quatre sciences mathématiques : Εὐσύνοπτον σύνταγμα εἰς τὰς τέσσαρας μαθηματικὰς ἐπιστήμας, ἀριθμητικὴν, μουσικὴν, γεωμετρίαν καὶ ἀστρονομίαν. Cet écrit

(*) I, ii, p. 27, lignes 13-16 de la trad.
parait être pour l'arithmétique, la musique et l'astronomie, un résumé des pages de Théon, mais il est tellement abrégé que nous ne croyons pas qu'on puisse combler en partie la lacune de Théon par les notions trop succinctes de géométrie et de stéréométrie de Michel Psellus.

La première partie de l'ouvrage de Théon traite des nombres pairs et des nombres impairs, des nombres hétéromèques et des nombres promèques, des nombres semblables, des nombres polygones et des nombres pyramidaux, des nombres latéraux et des nombres diagonaux,... Elle ne contient rien sur l'arithmétique pratique des Grecs, que Platon appelait \(\lambda \gamma \iota \tau \iota \iota \chi \theta \iota \) (science du calcul), et qu'il distinguait de l'\(\alpha \rho \theta \mu \nu \tau \iota \iota \chi \theta \) (science des propriétés des nombres). Les démonstrations manquent, Théon se borne à de simples vérifications.

La seconde partie comprend 61 paragraphes : les 36 premiers traitent des nombres musicaux ; les 25 autres, qui traitent des analogies, des quaternaires et des médiétés, seraient presque tous mieux à leur place dans la première partie.

La troisième partie traite de la forme de la terre, du mouvement des planètes, des éclipses... Elle contient de nombreuses erreurs que le lecteur relèvera facilement.

Nous donnons, à la suite de la préface, une table alphabétique assez étendue des auteurs cités et des principales matières contenues dans ces trois parties.

Les seules éditions de Théon parues jusqu'à ce jour sont :

Specimen Academicum inaugurale, exhibens Theonis
Smyrnæi arithmeticam, Ballialdi versione, lectionis diversitatem et annotatione auctam... publico ac solenni examini submitit Janus Jacobus de Gelder..... Lugduni Batavorum, MDCCXXVII. — Éd. gr.-lat. in-8°, de LXXII-200 pages, ne contenant que l’arithmétique, comme l’indique le titre.

Theonis Smyrnæi Platonici liber de Astronomia... textum primus edidit, latine vertit, descriptio et notis illustravit Th. H. Martin, Facultatis litterarum in Academia Rhedonensi decanus..... Parisiis, MDCCCCLXIX. — Éd. gr.-lat. in-8°, de 480 pages, ne contenant que l’astronomie, ainsi que l’indique le titre.

Theonis Smyrnæi, Philosophi Platonici, Expositior rerum mathematicarum ad legendum Platonem utilium. Recensuit Eduardus Hiller Lipsiae, MDCCCLXXVIII. — Éd. gr. in-12, de VIII-216 pages.

Cette dernière édition, — très soignée comme celles de Boulliau, de de Gelder et de Thomas-Henri Martin — contient tout le texte grec de ce qui nous reste de Théon, et les nombreuses variantes de plusieurs manuscrits.

Nous offrons aux lecteurs de Platon et aux rares amis de l’histoire des sciences la première traduction française de ce qui nous reste de l’Exposition de Théon. Si les mathématiques n’ont rien à gagner à la publication de cette traduction, l’histoire des sciences peut y trouver du moins quelques renseignements utiles. Quant à nous, nous avons trouvé dans Théon la confirmation de l’interprétation que nous avons donnée en 1882 des termes énigmatiques du passage de la République de Platon, où il est question du Nombre géométrique, valeur hypothétique de la grande année après laquelle tous les événements humains devaient se reproduire dans le même ordre.

Tout le premier chapitre est rempli de citations de la République, d’Épinomis, des Lois, de Phèdon, de Phèdre et de Théétète, dialogues de Platon ou attribués à Platon. C’est plutôt une introduction à tout l’ouvrage de Théon.
qu'une partie du livre sur l'arithmétique. Les citations étant rarement textuelles, au moins dans leur entier, sont très probablement faites de mémoire. Lorsque la différence des deux textes est trop sensible, nous avons cru devoir conserver en général celui de Théon. L'exception est signalée en note.

Outre les ouvrages de Platon et d'Aristote, ouvrages que Théon paraît avoir sus par cœur, il avait lu les livres d'un grand nombre d'auteurs (*) dont il cite, dans le cours de son Exposition, plusieurs passages qu'on ne trouve guère ailleurs.

Ce qui nous reste de l'Exposition de Théon nous est parvenu en deux parties : la première (p. 2-196 de notre édition) se trouve dans le ms. 307 de la bibliothèque Saint-Marc à Venise; la seconde (p. 198-332) dans le ms. 303 de la même bibliothèque.

M. Édouard Hiller les a examinés à Bonn où ils lui avaient été envoyés, puis à Venise, avant de composer l'excellente édition dont nous avons parlé. Le premier manuscrit en parchemin est du xi° ou xii° siècle; le second en papier de grand format est du xiv° ou xv° siècle. Les titres des chapitres de ces manuscrits, reproduits dans les éditions de Boulliau, de de Gelder et de Th.-H. Martin, étant souvent mal choisis ou assez mal placés, nous avons cru devoir en supprimer plusieurs du corps du texte, nous les reportons alors dans les notes des bas de pages. Nous avons conservé les numéros des paragraphes pour la commodité des renvois.

Quand nous proposons une leçon des manuscrits différente de celle d'Éd. Hiller, nous l'indiquons en note; et quand nous proposons une leçon différente de celle des manuscrits, nous faisons suivre la note de nos initiales J.D. — Quoique nous conservions généralement alors

(*) Voyez la Table alphabétique.
dans le texte courant, la leçon d'Hiller, la traduction est faite sur la correction proposée en note.

La Bibliothèque nationale de Paris possède plusieurs manuscrits de Théon ; ils sont inscrits sous les n°s 1806, 1817, 1819, 1820, 2013, 2014, 2428, 2450, 2460. Ce dernier manuscrit contient entre autres ouvrages sur la musique, celui de Théon, sous ce titre : Θέωνος Πλατωνικοῦ συγκεφαλαίως καὶ σύνοψις τῆς θλης μουσικῆς. Résumé et esquisse de toute la musique de Théon le Platonicien. Outre les deux manuscrits de Venise dont nous avons parlé, M. Hiller signale encore, dans la préface latine de son édition, à la bibliothèque Saint-Marc de Venise, le ms. 512, du xiie ou xiiie siècle; à la bibliothèque Riccardienne de Florence, le manuscrit 41 du xe siècle; à la Bibliothèque nationale de Naples, le ms. 260, du xe ou xvie siècle; à la bibliothèque Barberine de Rome, le ms. 86, du xvie siècle; à la Vaticane, le ms. 221 et, dans la collection d'Urbin, le ms. 77, tous deux du xvie siècle.

Voici l'indication de quelques autres bibliothèques qui possèdent des manuscrits de Théon :

En Espagne, à l'Escorial.

En Hollande, à Leyde.

En Italie, à Bologne; à Florence, bibliothèque Laurentienne; à Milan, bibliothèque Ambrosienne; à Turin, bibliothèque royale.

Nous avons collationné plusieurs passages de notre texte sur les manuscrits de la Bibliothèque nationale de Paris et sur les manuscrits de quelques bibliothèques d'Italie, pendant une mission dont nous avons été chargé en 1887 en Italie, en Grèce et en Bavière.

Chalcidius, philosophe platonicien du iiie siècle, a inséré la plus grande partie de l'astronomie de Théon dans un
commentaire latin sur le *Timée* (*). D'après H. Martin, qui a remarqué le premier cette insertion, Chalcidius n'a presque rien ajouté à l'ouvrage de Théon, qu'il semble donner comme sien. Il a omis ou résumé plusieurs passages importants et il en a mal compris quelques autres. Il n'a rien négligé, dit H. Martin, pour faire disparaître les traces de son larein : *Furti autem sui vestigia sedulo dele-vit* (**).

Le commentaire de Chalcidius offre quelque avantage pour la correction du texte de Théon, et réciproquement.

Nous avons été très sobre de notes, de commentaires et de rectifications, voulant éviter de faire jouer à une œuvre scientifique, même très imparfaite, un rôle qui parût secondaire.

Nous donnons, après les notes, un Index des mots grecs qui ne se trouvent pas dans les dictionnaires ou qui n'y sont pas avec le sens que leur attribue Théon, et un Index des mots français nouveaux : pour éviter des périphrases qu'il aurait fallu souvent répéter dans un même paragraphe, nous avons dû franciser un certain nombres de mots grecs ou de mots latins correspondants.

Après les deux index, nous indiquons, comme Épilogue, nos dernières recherches — nous pourrions dire « notre dernier mot » — sur le *Nombre géométrique* de Platon.

Avant de livrer tout ce travail à l'impression, nous l'avons lu à M. Pierre-Auguste Bertault, professeur agrégé de mathématiques, auteur d'un ouvrage philosophique très remarquable, en cours de publication, qui a pour titre : *Introduction à la Recherche des causes premières*. Quatre volumes parus dont les premiers ont été déjà réimprimés (librairie Félix Alcan), traitent de la méthode :

(**) *Liber de astronomia*, p. 19.

J. D. PROVISEUR HONORAIRE,
DEMIER DIRECTEUR
DE L'ÉCOLE PROFESSIONNELLE FRANÇAISE DE MULHOUSE.

Paris, 12 août 1892.
TABLE ALPHABÉTIQUE

DES AUTEURS CITÉS DANS THÉON ET DES PRINCIPALES MATIÈRES

Le premier nombre, en caractères romains, indique le livre de Théon, le second indique le paragraphe.
Le nombre, en chiffres ordinaires, indique la page de la traduction.
La parenthèse vide () tient lieu du mot ou des mots en tête de chaque alinéa : elle en indique la répétition.

ALEXANDRE D'ÉTOLE, III, xv, 227-229.
ANAXIMANDRE dit que la terre est suspendue dans l'espace et se meut autour du centre du monde, III, xl, 321.
ANAXIMÈNE a montré que la lune reçoit sa lumière du soleil et de quelle manière elle s'éclipse, III, xl, 321.
Angle droit, définition, II, liii, 483.
Année, valeur de l' () tropique, III, xii, 223. Grande (), lx, 321.
Antiphone, intervalles consonants () : l'octave et la double octave, II, v, 83.
ARATUS, III, xvi, 239.
ARCHIMEDE, d'après (), une circonférence de cercle, développée en ligne droite, vaut trois fois le diamètre et à peu près un septième de ce diamètre, III, iii, 205.
ARCHYTAS, I, iv, 33. v, 35. — II, xiii, 101, xl ix, 175.
ARISTOTE, I, v, 35. — III, xxxi, 287. xxxiv, 305. xli, 327.
ARISTOXÈNE, II, viii, 89. xii, 93. xiii bis, 105. xiv, 109.
Aristoxéniens, II, xii, 93.
Arithmétique, traité spécial, I, ii-xxxii, 25-77. De toutes les sciences, l' () est la plus nécessaire, Introd. 7. L' () est un don de Dieu, id., 13.

Astre, les () visibles ne sont pas les mêmes dans les différents pays, III, ii, 201. Des divers modes d'apparition et de disparition des (), xiv, 225.

Axe, Platon, dans le mythe du Pamphylien, dit qu'il y a un autre () que celui des étoiles, III, xvi, 233. Cet autre (), perpendiculaire au zodiaque, fait avec celui des étoiles un angle égal à l'angle au centre du pentagone régulier, xxiii, 245. xl, 321. xlii, 327.

Bomisque (de βωμίσκω, petit autel), parallélépipède rectangle ayant les trois côtés inégaux, I, xxix, 71.

Callippe, III, xxxi, 289, 291. xli, 327.

Canopus, d'où cette étoile commence à être visible, III, ii, 201.

Canon harmonique, détermination des lois numériques des sons à l'aide du () à une seule corde, ou à deux cordes égales vibrant à l'unisson, II, xii, 95. Division du (), xxxv, 143.

Carré, nombre également égal, I, xi, 43. Génération des nombres () par l'addition des impairs successifs en commençant par l'unité, xv, 47. xix, 53. xxv, 63. La moyenne géométrique entre deux () successifs est un nombre hétéromèque, xvi, 47. La réciproque n'est pas vraie, c'est-à-dire que deux hétéromèques successifs n'ont pas pour moyen proportionnel un (), id., 49.

Les () sont divisibles par 3, ou le deviennent après la soustraction d'une unité; ils sont aussi divisibles par 4, ou le deviennent après la soustraction d'une unité, xx, 59. Le () qui n'est divisible ni par 3 ni par 4 admet ces deux diviseurs après la soustraction d'une unité, id., et note IV. Tous les () sont semblables, xxii, 61.

Centre, dans les corps animés le () du corps, c'est-à-dire de l'animal, en tant qu'animal, est différent du centre du vo-
lume, III, xxxiii, 303. Pour l’homme, le () de la créature ani-
mée est dans le cœur et le () du volume est dans l’ombilic, id.
Pour le monde, en tant que monde et animal, le () est dans
le soleil qui est en quelque sorte le cœur de l’univers et le ()
du volume est la terre froide et immobile, id.
Cercle, () célestes parallèles, III, v, 213. () arctique, antarcti-
tique, équinoxial, id., 215. Les durées du jour et de la nuit sont
egales pour tous les lieux de la terre, quand le soleil décrit le
() équinoxial, id. L’équinoxial et les tropiques sont des ()
donnés de grandeur et de position, ix, 217. Le zodiaque, l’ho-
ronz et le méridien sont des () donnés de grandeur, id., 219.
Pour la zone terrestre qui se trouve sous la ligne équinociale,
les deux pôles apparaissent aux extrémités de l’horizon et les
() parallèles sont perpendiculaires à l’horizon, id. () du
milieu des signes, x, 219.
Chaldéens, ils ont employé des méthodes arithmétiques pour
expliquer les phénomènes astronomiques, III, xxx, 287.
Cinq, du nombre (), II, xliv, 167.
Circonférence, mesure de la () selon Archimède, III, iii, 205.
Circuit (περίγραφος), définition, I, vii, 41.
Colure ou cercle méridien, III, viii, 217.
Consonance, () de quarte, de quinte, d’octave, II, vi, 87. Au-
tres (), id. Découverte des lois numériques des (), xii bis,
93. De l’addition et de la soustraction des (), xiii bis, 101 et
note IX. La première de toutes les (), dit Platon, est la quarte;
c’est par elle qu’on trouve toutes les autres, xiii bis, 107. Rai-
sons des (), xxxiii, 139. Les rapports qui représentent les ()
se trouvent tous dans le quaternaire de la décade, xxxvii, 153.
Coucher des astres, il se fait de plusieurs manières, III, xiv, 225.
Corps divins (les astres), les levers et les couchers des () ne
résultent pas de ce que ces corps s’allumeraient et s’étein-
draient successivement, III, xii, 323.
Cube, tous les nombres () sont semblables, I, xxii, 63. Voyez
Duplication du cube.
Dadouchie, port des flambeaux dans les cérémonies de l’initiation,
Intro. 15.
Décade, la () est un nombre parfait, I, xxxii, 77 et note VIII.
Elle constitue le quaternaire, II, xxxvii, 153. Les Pythagoriciens
ont ramené tous les nombres à la (), xxxix, 163. Propriétés
des nombres contenus dans la (), xl-xlxi, 165-175.
Dercylides, auteur du livre Des fuseaux dont il est question dans
la République de Platon, III, xxxix, 321.
Deux est le seul nombre pair qui soit premier, I, vi, 39.
Diagramme musical, celui de Platon comprend quatre octaves,
une quinte et un ton, II, xii bis, 105 et note X. Celui d’Aristo-
Xène ne comprend que deux octaves et une quinte, id.
Dicéarque, III, m, 207.
Désis, déf. des Pythagoriens, II, xii, 93. Déf. des Aristoxéniens,
id. Les Aristoxéniens considèrent le () mineur ou quart de
ton comme le plus petit intervalle appréciable, id.
DieuX, il y a huit (), maîtres de l’univers, II, xlvi, 173.
Dioptrre, III, m, 207.
Dix. Voy. décade.
Docide (de δώξις, petite poutre), parallélipipède rectangle ayant
deux côtés égaux et le troisième plus grand, I, xxix, 71 et II,
liv, 187.
Duplication du cube, problème de la (), Introd. 5. Voy. aussi,
note I, la solution de Platon.
Éclipse, de soleil et de lune, III, xxxviii, 313, () des autres pla-
netes, xxxvi, 313. Il y a () de lune quand, le soleil étant à un
nœud, la lune est à l’autre nœud, xxxix, 319. () totale, id.
Égalité, elle est le principe et l’élément des proportions, II, li,
177. Réciproquement, les proportions se résolvent en égalité,
liv, 183.
Égyptiens, ils ont employé des méthodes graphiques pour expli-
quér les phénomènes astronomiques, III, xxx, 287.
Épicure; hypothèse du cercle () pour expliquer les apparences,
III, xxvi ter, 257. L’hypothèse de l’() est une conséquence de
celle de l’excentrique et réciproquement, id., 269. Hipparque
vante comme sienne l’hypothèse de l’() et pose en principe
que l’() de chaque planète se meut sur le concentrique et que
la planète se meut sur l’(), xxxiv, 305. Platon parait préférer
aussi l’hypothèse de l’() à celle de l’excentrique, id. Il pense
que ce ne sont pas des sphères, mais des cercles solides, qui
portent les planètes, id.
Équinoxial, III, v, 215.
Étoiles, elles sont emportées ensemble par un mouvement circulaire unique et simple, avec la première sphère, comme si elles y étaient fixées et elles ont toujours la même position relative sur cette sphère, III, xi, 221.
Eudème a écrit Sur l’astronomie, III, xl, 321.
Euripès, flux et reflux de la mer dans les détroits : il se produisent généralement sept fois par jour, II, xlvi, 173 et note XV.
Évandre, II, xlvii, 173.
Exagone, nombre (), I, xx, 57 et xxvi, 67.
Excentrique, hypothèse d’un cercle () pour expliquer les apparitions, III, xxvi bis, 253. L’hypothèse de l’ () est une conséquence de celle de l’épicycle, et réciproquement, xxvi ter, 269.
Selon Platon, l’épicycle est préférable à l’ (), xxxiv, 305.
Expiations, les (), traité d’Empédocle, II, xlvi, 171.
Figure, déf. des () planes et des () rectilignes, II, liii, 183.
Fond d’un rapport, déf., II, xxix, 131.
Genre chromatique, il se compose, en allant du grave à l’aigu, d’un demi-ton, suivi d’un autre demi-ton et d’un trihémiton indécomposé, II, x, 91. Pourquoi le () se nomme ainsi, id.
Genre diatonique, il se compose, en allant du grave à l’aigu, d’un demi-ton, d’un ton et d’un autre ton, II, ix, 91. Pourquoi le () se nomme ainsi, id. Platon préfère le () aux deux autres, parce qu’il est simple, noble et plus naturel, xu, 93. II l’a étendu jusqu’à la quatrième octave, augmentée d’une quinte et d’un ton, xiii bis, 105 et note X.
Genre enharmonique, dans le () la voix, partant du son le plus grave, progresse par un diésis (quart de ton), un autre diésis et un double ton, II, xi, 93. Pourquoi le () se nomme ainsi, xi, 93. Le () est très difficile, il demande beaucoup d’art et d’étude, id.
Gnomon (arithmétique), la raison des (), dont la somme donne un nombre polygone, est toujours moindre de deux unités que
le nombre des angles du polygone, I, xx, 57. Définition générale des (), xxiii, 63.

Gnomon (astronomique), les () montrent, que la terre n’est qu’un point par rapport à l’univers; III, iv, 213. Ils montrent aussi le mouvement du soleil en latitude, xxvii, 281.

Gymnastique, il faut l’apprendre aux enfants, Introd. 21.

Harmonie, l’astronomie et l’(), selon la doctrine des Pythagoriciens, sont deux sciences sœurs, Introd. 11. — Défin. de l’(), II, iv, 81. () lydienne, phrygienne, doriene, id. () céleste.

— D’après les Pythagoriciens, les astres, par leurs mouvements, produisent des sons dont les intervalles consonants sont égaux à ceux de l’octave, III, xv, 229.

Hérophile, II, xlv, 473.

Hétéromèque, nombre (), I, xiii, 43. Les () sont nécessairement pairs, id., 45. La moyenne géométrique entre deux carrés successifs est un nombre (); mais le carré compris entre deux nombres () successifs n’est pas leur moyenne géométrique, xvi, 47. Génération des () par l’addition des nombres pairs successifs, en commençant par deux, xix, 53.

Hipparche, III, xvi ter, 269. xxxii, 299. xxxiv, 305. xxxviii, 315. xxxix, 319. xlii, 327.

Hippase de Métaponte, II, xii bis, 97.

Horizon, défin., III, vii, 217.

Huit, du nombre (), II, xlvii, 173.

Hypothèse, des () de l’astronomie, III, xli, 321.

Ibycus, III, xvi, 239.

Initiation aux mystères, Introd. 21.

Inscription égyptienne, II, xlvii, 173.

Intervalle, défin., II, iii, 81. Système d’(), id. () consonant, dissonant, v, 83. En quoi diffèrent l’() et le rapport, xxx, 133.

Introduction à tout l’ouvrage de Théon, pp. 3-25.

Jupiter, fait le tour du zodiaque en 12 ans environ, III, xii, 223.

Il peut éclipser Saturne, xxxvii, 314.

Lasus d’Hermione, II, xii bis, 97.

Lever des astres, il se fait de plusieurs manières, III, xiv, 225.

Ligne, défin. de la (), de la () droite, de la () courbe, II, liv, 185. Défin. des () droites parallèles, id.
Limma, selon Platon l'intervalle de quarte comprend deux tons et un reste (limma) qui est en raison de 256 à 243; détermination de ce rapport, II, xiv, 109 et xxxiv, 141. Le (!) est moindre que le demi-ton, xiv, 113 et note XI.

λόγος, en combien de sens on prend le mot (!), II, xviii, 117.

Selon Platon, on appelle (!) la pensée mentale, le discours parlé, l'explication des éléments de l'univers et la raison de proportion, id., 119.

Lois, dialogue de Platon, Introd. 15.

Lois numériques des sons, détermination des (!) avec le canon harmonique; en frappant deux vases égaux, l'un vide, l'autre successivement plein de liquide à la moitié, au tiers, au quart; avec des flûtes; avec des poids, II, xu bis-xiii, 93-101.

Lucifer, astre de Vénus, III, vi, 213.

Lune, ses éclipses ne sont pas observées à la même heure de tous les lieux de la terre, III, n, 201. Elle parcourt le zodiaque en 27 jours et un tiers, xii, 223. La (!), qui est la planète la plus rapprochée de la terre, éclipse les planètes et les étoiles au-dessous desquelles elle passe et ne peut être éclipsée par aucune d'elles, xxxvii, 311. Mouvement des nœuds de son orbite, xxxviii, 315. Éclipses de (!), id. et xxxix.

Lybiques, récits (!), II, xviii, 119.

Lyre octacorde, sur la (!) l'hypate, qui est le son le plus grave, et la nêте, qui est le son le plus aigu, s'accordent par opposition et donnent la même consonance, II, vi, 87.

Lysias, II, xviii, 119.

Mars, parcourt le zodiaque en un peu moins de deux ans, III, xii, 223. Il éclipse quelquefois les deux planètes qui lui sont supérieures, xxxvii, 313.

Mathématiques, de l'utilité des (!), Introd. 3 et suiv. La connaissance des (!) n'est pas inutile et sans fruit pour l'étude des autres sciences, id. Il est impossible d'être parfaitement heureux sans les (!), 5. — De l'ordre dans lequel on doit étudier les (!), I, n, 25.

Médiété, de la (!) géométrique, de la (!) arithmétique, de la (!) harmonique, II, t, 175. Définition générale des (!), lv, 187. Dans la (!) arithmétique, le moyen terme est égal à la demi-somme des extrêmes, lv, 187. Dans la (!) géométrique, le carré du

Cinquième (), \textit{LIX}, \textit{id}. Sixième (), \textit{LX}, \textit{id}. Comment on trouve le moyen terme des () dont on connaît les deux autres ; détermination du moyen arithmétique, du moyen géométrique et du moyen harmonique, \textit{LXI}, 193 et note \textit{xvi}.

Mer, la surface des () est sphérique, III, iii, 203.

Mercure (dieu), lyre de (), image de l'harmonie du monde, III, xv, 231.

Mercure (planète), rarement visible, III, xxxvii, 313. Elle s'écarte de part et d'autre du soleil de 20 degrés environ, c'est-à-dire à peu près de deux tiers de signe, \textit{xlix}, 225 et \textit{XXXIII}, 301. Les planètes () et Vénus éclipsent les astres qui sont directement au-dessus d'elles ; elles peuvent même s'éclipser mutuellement, suivant que l'une des deux est plus élevée que l'autre, les deux planètes tournant autour du soleil, \textit{XXXVII}, 313.

Monade, pourquoi elle est ainsi nommée, I, iii, 29. Elle diffère de ce qui est un, \textit{id}. La () est impaire, v, 35. Elle n'est pas un nombre, mais le principe des nombres, \textit{vii}, 39.

Monde, le () entier est sphérique, III, i, 199. Le mouvement lui a été communiqué par un premier moteur, \textit{XXII}, 241. Le centre du (), en tant que monde et animal, est dans le soleil qui est en quelque sorte le cœur de l'univers, \textit{XXXIII}, 303. Le () est fini et ordonné, \textit{xlii}, 323.

Moyen proportionnel, tout () est un nombre moyen, mais tout nombre moyen n'est pas un (), II, \textit{xxxii}, 137.

Musicien, le philosophe seul peut être réellement (), \textit{Introductio}. 17.

Musique, traité spécial, II, i-xxvi, 79-153. Utilité de la musique, \textit{Introductio}. 17. La () céleste, qui résulte du mouvement et du concert des astres, doit occuper le cinquième rang dans l'étude des mathématiques, c'est-à-dire venir après l'arithmétique, la géométrie, la stéréométrie et l'astronomie, II, i, 79 et III, \textit{xliv}.
Table alphabétique

331. Mais les principes mathématiques de la (), se rattachant à
la théorie des nombres abstraits, doivent venir immédiatement
après l'arithmétique, I, ii, 27. — Il y a trois parties dans la (),
III, xlv, 331.

Neuf, du nombre (), II, xlv, 173.

Nœud, ascendant, descendant, III, xxxviii, 315. Les () se portent
vers les signes suivants du zodiaque, c'est-à-dire vers les signes
qui les suivent dans leur passage au méridien, id. Si la conjonction
mensuelle du soleil et de la lune se fait près des (), il y
a éclipse de soleil, id.

Nombre, selon la doctrine des Pythagoriciens, les () sont pour
ainsi dire le principe, la source et la raison de toutes choses, I,
ii, 27. Du () pair et du () impair, v, 35. Du () pairement-
pair, vii, 41. Du () pairement-impar, x, 43. Dans la suite
naturelle des () 1, 2, 3, 4, ... les rapports successifs d'un
termé à celui qui le précède vont en diminuant, v, 37. () pre-
miers, on les nomme aussi composés, linéaires, enthymétriques
et pairement-imparis, vi, 37. () premiers entre eux,
id., 39. () composés, vii, 39. () composés entre eux, id. ()
plans, () solides, vii, 41. () plans semblables, xxi, 61. Tous
les carrés sont semblables, id. Tous les cubes sont semblables
id., 63. () également égaux ou carrés, xi, 43. () hétéromé-
que, xiii, 43. Les () hétéromèques sont nécessairement pairs,
id., 43. Génération des () hétéromèques par la sommation des
() pairs successifs en commençant par deux, xix, 53. () pa-
railléogramme, xiv, 45. () promèque, xvii, 51. () triangulaire
xix, 55. La somme de deux () triangulaires successifs est un
carré, xvi, 69. () carrés, leur génération, xv, 47. xx, 57.
xxv, 65. () pentaèdres, xx, 57; leur génération, xxvi, 67. ()
exagones, xx, 57; leur génération, xxvii, 67. () heptagones et
octogones, id., 69; Voy. la note V. () pyramidaux, xxx, 71 et
note VI. () latéraux et diagonaux, xxxi, 71 et note VII. ()
circulaires, sphériques ou récurrents, xxiv, 65. () parfaits,
abondants, déficients, xxxii, 73. Génération des () parfaits,
id. Dans la progression des () doubles, des () triples, com-
mençant par l'unité, les termes sont carrés de deux en deux,
cubiques de trois en trois, et carrés et cubiques de six en six;
dans ce dernier cas, comme carrés, leurs côtés sont des ()
cubiques, et comme cubes leurs côtés sont des () carrés, xx, 59.
Octave, elle est la somme d'une quarte et d'une quinte, II, xiv, 109. Système musical parfait formé de deux (), xxv, 143 et suiv. Voy. aussi la note XII.
Oïnôpide a trouvé le premier l'obliquité du zodiaque et il a cru à l'existence d'une grande année, III, xl, 321.
Ordre, de l'() dans l'univers et du désordre dans le monde sublunaire, III, xxii, 241.
Parallélépipède, définit du (), du () rectangle, du cube, II, liv, 187.
Parallélogramme, nombre (), I, xiv, 45. Figure (), II, liii, 185.
Paraphone, intervalle consonant () : la quinte et la quarte, II, v, 83.
Pentédécacorde, lyre à quinze cordes, elle comprenait deux octaves, II, xiii, 105.
Péripatéticiens, II, xviii, 117.
Phaéton, astre de Jupiter, III, vi, 215.
Phanès, nom donné par les Pythagoriciens à l'Univers considéré comme un Tout animé, au dieu de la lumière et quelquefois à l'Amour, cité dans un serment d'Orphée, II, xlvii, 173.
Phénix, astre de Saturne, III, vi, 215.
Philèbe, dialogue de Platon, I, iv, 33.
Philostrat, I, iv, 33. — II, xlx, 175.
Planètes, III, vi, 215. Elles sont emportées avec l'univers dans le mouvement diurne, d'orient en occident ; elles ont en outre un mouvement en longitude, en sens contraire du mouvement de l'univers, et un mouvement en latitude du tropique d'été au tropique d'hiver et réciproquement, xii, 221. Elles varient de grandeur apparente, étant tantôt plus loin tantôt plus près de la terre, id. La vitesse de leur mouvement à travers les signes paraît inégale, id. Durée de leurs révolutions, id. Ordre des distances des (), d'après les Pythagoriciens : la Lune, Mercure, Vénus, le Soleil, Mars, Jupiter et Saturne, xv, 227. Les

Platonicien, le (), ouvrage perdu d'Ératosthène, *Introduct. 5* et II, xxx, 133.

Platyme, parallépipède rectangle ayant deux côtés égaux et le troisième plus petit, I, xxix, 71 et II, lxx, 187.

Point, ce n'est ni par la multiplication, ni par l'addition, que le () forme la ligne, mais par un mouvement continu, de même que la ligne forme la surface et la surface le volume, II, xxxi, 137. Défin. du (), liii, 183.
Polygone, défin. II, liii, 185. Nombre (), voy. nombre triangulaire, carré, pentagone, exagone, ...

Posidonius, II, xlvi, 171.

Promèque, nombre (), déf. I, xvii, 51. Il y a trois classes de nombres (), id. Figure (), II, liii, 187.

Proportion, déf. II, xxi, 121. () continue, discontinue, xxxi, 133. () arithmétique, géométrique, harmonique, xxxii, 139. Règle d’Adraste pour déduire de trois termes quelconques en () continue tant de () continues qu’on voudra, li, 177 et la note.

Pyroïs, astre de Mars, III, vi, 215.

Pythagoricien, le (), ouvrage perdu d’Aristote, I, v, 33.

Quadrilatère, déf. II, liii, 185.

Quarte, est la première de toutes les consonances, d’après Platon, II, xiii bis, 107. L’intervalle de () comprend deux tons et un reste (limma) qui est en raison de 236 à 243, xiv, 109-113.

Quaternaire, le () 1, 2, 3, 4, renferme toutes les consonances, II, xii bis, 97. Il y a onze quaternaires : I, le () 1, 2, 3, 4; II, le () formé des deux progressions 1, 2, 4, 8, et 1, 3, 9, 27, c’est-à-dire l’unité, le côté, le carré et le cube; III, les grandeurs, (point, ligne, surface, solide); IV, les éléments (feu, air, eau, terre); V, les figures des éléments (pyramide, octaèdre, icosahédre, cube); VI, les choses engendrées (semeence, longueur, largeur, hauteur); VII, les sociétés (homme, famille, bourg, cité); VIII, les facultés du jugement (pensée, science, opinion, sens); IX, les parties de l’animal (la partie raisonnable de l’âme, l’irascible, la concupiscible et le corps); X, les saisons; XI, les âges (enfance, adolescence, virilité, vieillesse), II, xxxvm, 153-161. Les termes de ces () correspondent aux nombres 1, 2, 3, 4 de celui de Pythagore, id. Tous les nombres peuvent être considérés comme ayant leur raison dans le (), xxxix, 163.

Quatre, ce nombre est l’image du solide; et de plus, il complète les consonances, II, xlviii, 167 et la note.

Quinte, elle surpasse la quarte d’un ton, II, xxxvi, 149.
Raison, voy. rapport.

Rapport, dans la série des nombres 1, 2, 3, 4,... le () de deux termes successifs décroit sans cesse, I, v, 37. Il est impossible de trouver le () entre deux choses qui ne sont pas de même espèce, II, xix, 119. () multiple, xxii, 121. () superpartiel ou sesquipartiel, id et xxiv, 125. () sous-multiple, sous-sesquipartiel, xxii, 121. () multi-superpartiel, xxvi, 127. () épimère, xxii, 123 et xxv, 127, () polyépimère, xxii, 123 et xxvii, 129. () hypépimère, xxv, 127. () hypo-polyépimère, xxvii, 129. () de nombre à nombre, xxviii, 131. Fond d’un (), xxix, 131. Le fond des () sesquialtères est 3/2; pour les () sesquiterces ou épîtrites c’est 4/3,... id. En quoi diffèrent l’intervalle et le (), xxx, 133.

Rectangle, déf. du () carré, du () promèque, II, lxxx, 187.

République, dialogue de Platon, Introd. 3, 7, 9, 11, 17, 21. — III, xvi, 233 et xxxiv, 305.

Saturne, fait le tour du zodiaque en un peu moins de trente ans, III, xii, 223.

στερας, nom commun à tout astre brillant (étoile ou planète), III, xvi, 239.

Serment des Pythagoriciens, II, xxxviii, 135.

Sirènes, Platon et quelques auteurs désignent ainsi les planètes, III, xvi, 239.

Six, du nombre (), II, xlv, 169. Il est parfait, id. On l’appelait mariage, id. et note XIV.

Soleil, il parcourt le zodiaque en 365 jours et 4/4 environ, III, xii, 223. Les Pythagoriciens veulent que le cercle du () tienne le milieu entre ceux des autres planètes, le () étant comme le cœur de l’univers, xv, 227. D’après Alexandre d’Étolie, dans le concert céleste, le () donne la mèse, id., 229. Mouvement du () expliqué par un excentrique, xxvi bis, 253; par un épicycle, xxvi ter, 237. Temps du retour du () à la même longitude, à la même latitude, au même éloignement qui produit l’inégalité nommée anomalie, xxvii, 279. Le () n’a ni station, ni rétro-
gradation, xxix, 283. Le () peut être éclipsé par la lune et lui-même peut cacher tous les autres astres, d'abord en les noyant dans sa lumière et ensuite en se trouvant directement entre eux et nous, xxxvii, 313. Selon Hipparque, le volume du () contient 1880 fois environ celui de la terre, et le () est beaucoup plus éloigné de la terre que la lune, xxxix, 319.

Solide, définition, II, lxxi, 185.

Son, défin. qu'en donne Thrasylle, II, ii, 81. Du () enharmonique, id. Le bruit du tonnerre n'est pas un () enharmonique, id. () aigu, moyen, grave, iv, 83. Les () diffèrent les uns des autres par les tensions, vi, 85. L'air étant frappé et mis en mouvement, le () produit est aigu, si le mouvement est rapide; il est grave, si le mouvement est lent, id. Les () propres à la modulation ont entre eux certain rapports multiples ou sesquipartiel, ou simplement de nombre à nombre, id. Les () qui donnent le dièse ou demi-ton sont dans le rapport de 256 à 243, xiv, 109 et xxxiv, 141.

Sphère, mesure de son volume, III, iii, 205.

Sphère de Platon, III, xxiii, 245.

Sphère droite, III, ix, 219.

Sphère étoilée, dans le concert céleste, elle donne la nède conjointe, d'après Alexandre d'Étolie, III, xv, 229; et elle donne la quarte par rapport au soleil, id.

Sphéricité de l'Univers, III, i, 199; de la terre, ii, 201; des mers, iii, 203.

Stélabon, astre de Mercure, III, vi, 245.

Surface, déf. de la (), de la () plane, de la () courbe, II, lxxi, 185.

Terme, définition, II, xx, 121.

Ternaire, le () est un nombre parfait; raison de cette perfection 1, xxxii, 77.

Terre, la () est un sphéroïde placé au centre du monde. Elle n'est qu'un point par rapport à la grandeur de l'Univers. III, i, 199 et iv, 211. Preuves de la sphéricité de la (), ii, 201. D'après Ératosthène, le tour de la (), mesuré suivant la circonférence d'un grand cercle vaut à peu près 252 000 stades,
TABL ALPHABÉTIQUE

m, 205; et le diamètre de la () vaut 80 182 stades, id., 207. Volume de la (), évalué en stades cubiques, id., 209 et note XVII. D'après Alexandre d'Étolie, la () dans le concert céleste donne le son grave de l'hypate, xv, 229. Elle donne la quinte par rapport au soleil, id. Selon Hipparque, le volume de la () contient plus de 27 fois celui de la lune, xxxix, 319. La (), foyer de la maison des dieux, est en repos, et les planètes se meuvent avec toute la voûte céleste qui les enveloppe, xli, 323.

Thalès, III, xl, 321.
Théon, avait écrit des Commentaires sur la Rp. III, xvi, 239.
Timée, dialogue de Platon, II, xxxviii, 157. xlvi, 171.
Timothée, II, xlvii, 173.
Ton, déf., II, vii, 89 et xiv, 107. La quinte surpasse la quarte d'un (), id. Le () ne peut pas se diviser en deux parties égales, viii, 89 et xvi, 113. Les anciens ont trouvé que le () est en raison de 9 à 8, xiv, 109. Comment on a déterminé ce rapport, xv, 113.
Triangle, déf., II, liii, 185.
Triangulaire, nombre (), I, xix, 55 et xxxiii, 63.
Tropique d'été, d'hiver, III, v, 215.
Un, de l'() et de la monade, I, iii, 29. () en tant que () est sans parties et indivisible, id. et la note II. () est le premier des impairs, v, 35.
Univers, de l'ordre dans l'() et du désordre dans le monde sublunaire, III, xxvii, 241.
Vénus s'écarte du soleil de 50 degrés environ, à l'orient et à l'occident, III, xii, 225 et xxxiii, 301. Voy. Mercure.
Zodiaque, c'est dans le () que sont emportés le soleil, la lune et les autres planètes, III, vi, 215. Le () a une certaine largeur, comme la surface latérale d'un tambour, x, 219. Obliquité du (), xxiii, 245. xl, 321. xlii, 327.
<table>
<thead>
<tr>
<th>Abbreviation</th>
<th>Full Form</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>arith.</td>
<td>arithmétique</td>
<td>math.</td>
</tr>
<tr>
<td>astr.</td>
<td>astronomie</td>
<td>m. à m.</td>
</tr>
<tr>
<td>bibl.</td>
<td>bibliothèque</td>
<td>ms.</td>
</tr>
<tr>
<td>c.-à-d.</td>
<td>c'est-à-dire</td>
<td>mus.</td>
</tr>
<tr>
<td>cap.</td>
<td>caput</td>
<td>n.</td>
</tr>
<tr>
<td>ch.</td>
<td>chapitre</td>
<td>p.</td>
</tr>
<tr>
<td>cf.</td>
<td>conférez</td>
<td>Rp.</td>
</tr>
<tr>
<td>conj.</td>
<td>conjecture</td>
<td>sous-entendu</td>
</tr>
<tr>
<td>déf.</td>
<td>définition</td>
<td>t.</td>
</tr>
<tr>
<td>éd.</td>
<td>édition</td>
<td>trad.</td>
</tr>
<tr>
<td>éd. gr.-lat.</td>
<td>éd.grecque-latine</td>
<td>vol.</td>
</tr>
<tr>
<td>géom.</td>
<td>géométrie</td>
<td>voy.</td>
</tr>
<tr>
<td>introd.</td>
<td>introduction</td>
<td>vs.</td>
</tr>
<tr>
<td>l.</td>
<td>ligne</td>
<td>J D.</td>
</tr>
</tbody>
</table>

La parenthèse ordinaire () sert à enclore un ou plusieurs mots d'explication que le traducteur ajoute à la version.

La parenthèse à crochets [] sert à enclore un ou plusieurs mots du texte que l'on propose de supprimer.

Et la parenthèse oblique < > sert à enclore un ou plusieurs mots que le traducteur propose d'ajouter au texte.
THÉON DE SMYRNE

PHILOSOPHE PLATONICIEN
ΘΕΩΝΟΣ ΣΜΥΡΝΑΙΟΥ
ΠΛΑΤΩΝΙΚΟΥ
ΤΩΝ ΚΑΤΑ ΤΟ ΜΑΘΗΜΑΤΙΚΩΝ ΧΡΗΣΙΜΩΝ
ΕΙΣ ΤΗΝ ΠΛΑΤΩΝΟΥ ΑΝΑΓΝΩΣΙΝ

< ΜΕΡΟΣ Α >

< ΕΙΣΑΓΩΓΗ >

"Ότι ἀναγκαῖα τὰ μαθήματα

α. "Ότι μὲν οὖν, οἶδα τι συνεῖναι τῶν μαθηματικῶν λεγομένων παρὰ Πλάτωνι, μή καὶ αὐτὸν ἦσθημένον ἐν τῇ θεωρίᾳ ταύτῃ, τάς ἀν πόσον ὁμολογήσειν: ὡς δὲ οὐδὲ τὰ ἀλλὰ ἀνωφελῆς οὐδὲ ἄνόντας ἢ περὶ ταύτη ἐμπερίᾳ, διὰ πολλῶν αὐτὸς ἐμφαπίζειν έδοξε. τὸ μὲν οὖν συμπάττῃς γεωμετρίας καὶ συμπάττῃς μουσικῆς καὶ ἀστρονομίας ἐμπειρον γενόμενον τοῖς Πλάτωνος συγγράμμασιν ἐντυγχάνειν μακαριστόν μὲν εἰ τῷ γένοιτο, οὐ μὴν εὐπορον οὐδὲ ἐχῦοις ἄλλα τάνυ πολλοῦ τοῦ εἰ παίθοιν τόνου δεόμενον. ὡστε δὲ τοὺς δυσμακρικότατος τοῦ ἐν τοῖς μαθήμασιν ἀπεχθήναι, ὁρεγομένους δὲ τῆς γνώσεως τῶν συγγραμμάτων αὐτοῦ μή παντάπασιν ὃν πολοῦτι δυσμακρεῖν, κεφαλαίῳ καὶ σύντομον ποιησόμεθα τῶν ἀναγκαίων καὶ ὃν δὲ μάλιστα τοῖς ἐντευξομένοις Πλάτωνι μαθηματικῶν θεωρημάτων παράδοσιν, ἀριθμητικῶν τε καὶ μουσικῶν καὶ γεωμετρικῶν τῶν τε κατὰ στερεομετρίαν καὶ ἀστρονομίαν, ὃν γερὰς
THÉON DE SMYRNE
PHILOSOPHE PLATONICIEN
DES CONNAISSANCES MATHEMATIQUES UTILES
POUR LA LECTURE DE PLATON

PREMIÈRE PARTIE

INTRODUCTION

De l'utilité des mathématiques

I. Tout le monde conviendra assurément qu'il n'est pas possible de comprendre ce que Platon a écrit sur les mathématiques, si l'on ne s'est pas adonné à leur étude. Lui-même a montré en beaucoup d'endroits que cette connaissance n'est pas inutile et sans fruit pour les autres sciences. Celui-là donc doit être estimé très heureux qui, en abordant les écrits de Platon, possède bien toute la géométrie, toute la musique et l'astronomie. Mais ce sont là des connaissances dont l'acquisition n'est ni rapide, ni facile; elle exige, au contraire, un travail assidu dès la première jeunesse. Dans la crainte que ceux qui n'ont pas eu la possibilité de cultiver les mathématiques et qui désirent néanmoins connaître les écrits de Platon ne se voient forcés d'y renoncer, nons donnerons ici un sommaire et un abrégé des connaissances nécessaires et la tradition des théorèmes mathématiques les plus utiles sur l'arithmétique, la musique, la géométrie, la stéréométrie et
οὐχ οὖν τε εἶναι φήσι τυγχαίνει τοῦ ἄριστου βίου, διά πολλῶν πάνυ ὑπλώσας ός οὐ χρή τῶν μαθημάτων ἀμελεῖν.

Ἤρατοσθένης μὲν γὰρ ἐν τῷ ἑτυγραφομένῳ Πλατωνικῷ φήσιν ὅτι, Δηλόιοι τοῦ θεοῦ χρῆσαντος ἐπὶ ἅπαλλαχῆ λοιμοῦ βωμὸν τοῦ ὄντος διπλασίονα κατασκευάσαι, πολλὴν ἀρχιτέκτοσιν ἐμπεσέαν ἀπορίαν ἤστούσιν ὅπως χρῆ στερεόν στερεοῦ γενέσθαι διπλάσιον, ἀρκέσαι τε πευκομένους περὶ τοῦτο Πλάτωνος. τόν δὲ φάνηκαν αὐτοῖς, ός ἄρα οὐ διπλασίων βωμοῦ ὁ θεὸς θεόμενος τούτῳ Δηλίοις ἐμανετέστατο, προφέρων δὲ καὶ ὑνειδίζον τοῖς "Εἴλησιν ἀμελοῦσι μαθημάτων καὶ γεωμετρίας ὀλιγορροχὸν.

ἀκολούθως δὲ τῇ τοῦ Πολυδίου παρανεπείκαι πολλὰ καὶ αὐτός διεξείτων ὑπὲρ τοῦ ἐν τοῖς μαθημάσι χρησιμοῦ. ἐν τε γὰρ τῇ Ἐπινομίῳ προτείχοντο ἐπὶ τὰ μαθημάτα φήσιν, οὐ γὰρ ἄνευ τούτων ποτέ τις ἐν πόλει εὐδαιμόνων γενέσθαι φύσις, ἀλλ' ὅσος ὁ τρόπος, αὕτη ἤ τροφή, ταῦτα τὰ μαθήματα, εἶτε χάλεπτα εἶτε ὑδάει, διὰ ταῦτα ἢτεν· ἀμελήσαι δὲ οὐ θεμιτὸν ἐπὶ θεοῦ, καὶ ἐν τοῖς ἐφεξῆς τοῦτον φήσιν ἐν πολλῶν ἐνα γεγονότα εὐδαιμόνα τα ἔσεσθαι καὶ συμφώναν ἀμα καὶ μακάριον.

ἐν δὲ τῇ Πολιτείᾳ φησιν, ἐκ τῶν ἐκτῶν οἱ προκριθέντες τιμᾶς τε τῶν ἄλλων μείζους οἴονται, τὰ τε χύδων μαθήματα πώσιν ἐν τῇ παιδείᾳ γενόμενα τούτοις συνακτέον εἰς σύνοψιν οἰκειοτέροσιν τε ἄλλης τῶν μαθημάτων καὶ τῆς τοῦ ὄντος φύσεως, παρανεῖ τε πρότον μὲν ἔμπειρον γενέσθαι ἀριθμητικῆς, ἐπειτά γεωμετρικῆς, τρίτον δὲ στερεομετρίας, τέταρτον ἀστρονο-

Ligne 16 ἔτα ταύτης ἢτον] les diverses éditions de Platon donnent ταύτη τοιούτου, cf. Epinomis, p. 992 B.
49 ξα ἐκτῶν] le texte de Platon porte εἴκοσιτῶν, cf. République VII, p. 537 B.
l'astronomie, sciences sans lesquelles il est impossible d'être parfaitement heureux, comme il le dit *, après avoir longue-
ment démontré qu'on ne doit pas négliger les mathématiques.

Ératosthène, dans le livre qui a pour titre le Platonicien,
rapporte que les Déliens ayant interrogé l'oracle sur le moyen de se délivrer de la peste, le dieu leur ordonna de construire un autel double de celui qui existait déjà. Ce pro-
blème jeta les architectes dans un étrange embarras. Ils se demandaient comment on peut faire un solide double d'un autre. Ils interrogèrent Platon sur la difficulté. Celui-ci leur 10 répondit que le dieu avait ainsi rendu l'oracle, non qu'il eût aucun besoin d'un autel double, mais pour reprotocher aux Grecs de négliger l'étude des mathématiques et de faire peu de cas de la géométrie *.

Pour entrer dans ces vues d'Apollon Pythien, il s'étendit dès lors longuement, dans ses entretiens, sur l'utilité des mathématiques. C'est ainsi que dans l'Epinomis, voulant ex-
citer à les étudier, il dit : « Personne, certes, ne saurait être « heureux dans l'État, s'il les ignore ; telle est la voie, telle « est l'éducation, telles sont les sciences, faciles ou non à 20 « apprendre, qui peuvent conduire à cette fin ; on n'a pas « le droit de négliger les dieux... * » Plus loin il dit encore : que « s'il y en a un seul qui soit tel (mathématicien), c'est « celui-là qui sera favorisé de la fortune et au comble de la « sagesse et de la félicité * ».

Dans la République, voici ce qu'il écrit : « A partir de vingt-
cinq ans, ceux qu'on aura choisis obtiendront des distinc-
tions plus honorables et on devra leur présenter dans leur « ensemble les sciences que tous, dans l'enfance, ont étudiées « isolément, afin qu'ils saisissent sous un point de vue général 30 « et les rapports que ces sciences ont entre elles, et la nature « de l'être * ». Il prescrit de se livrer d'abord à l'étude de

μίας, ἦν φησιν εἶναι θεωρίαν ήφορμένου στερεοῦ, πέμπτων δὲ μουσικῆς. τὸ τε χρήσιμον παραδεικνύς τῶν μαθημάτων φησίν· ἡδὸς εἰ, ὅτι ένυκας δεδιέναι, μὴ ἄχρηστα τὰ μαθήματα προστάτειοι. τὸ δ’ ἔστιν οὐ πάνυ φαύλοις, ἀλλὰ πάσι χαλεπῶν πιστεύειν, ὅτι ἐν τούτω τοῖς μαθημάτων ἐκάστου οὖν ὄργανοι τὸ ψυγής ἐκκαθαίρεται καὶ ἀναξιωτερεῖται ὄμως τυφλούμενον καὶ ἀποσβενύμενον ὑπὸ τῶν ἀλλων ἐπιτηδευμάτων, κρείττον δὲ σωθήναι μυρίων ὀμμάτων· μόνῳ γὰρ αὐτῷ ἀλήθεια ὁρᾶται.

ἐν δὲ τῷ ἐθνὸμῳ τῆς Πολιτείας περὶ ἀριθμητικῆς λέγων ὡς

10 ἐστὶν ἀναγκαιοτάτη τασῶν φησιν, ἐπειτά ἃς δεὶ πάσας μὲν τέχνας, πάσας ἢ διανοιας καὶ ἐπιστήμας καὶ τῇ πολεμικῇ. παγνέλουσιν γοῦν στρατηγὸν Ἀγαμέμνονα ἐν ταῖς τραγῳδίαις Πολαμήδης ἐκάστοτε ἀποφάνει. φησὶ γὰρ ἁριμὸν εὐρέων τὰς τὰξεις καταστῆσαι τῷ στρατάσπεδῷ ἐν Πλάτῳ καὶ ἐξαιρισθήσαι ναοῖς τα καὶ τὰ ἀλλὰ πάντα, ὡς πρὸ τοῦ ἀναρίθμητων ὄντων καὶ τοῦ Ἀγαμέμνονος ὡς ἔσοικεν ὅτις ὅσον εἶχε πόδας εἰδότος, εἶχε μὴ ἐπιστάτῳ ἁριμαίοι. κινούνεις οὖν τῶν πρὸς νόησιν ἁγότων φύσει εἶναι, καὶ οὕδεις αὐτῶς γράφται ἐλεκτικῶς ὅτι πρὸς ὑστᾶν καὶ νοῆσεις παρακλητικῶς.

Les manuscrits et les textes imprimés de Théon contiennent en général peu d'alinéas, nous en augmentons le nombre pour que la traduction française soit toujours en regard du texte grec.
l'arithmétique, puis à celle de la géométrie, en troisième lieu à celle de la stéréométrie, ensuite à celle de l'astronomie qu'il dit être l'étude du solide en mouvement, enfin il exhorte à apprendre en cinquième lieu la musique. Après avoir montré l'utilité des mathématiques, il dit : « Vous êtes amusant, vous qui semblez craindre que je vous impose des études inutiles. Ce n'est pas seulement, du reste, à des esprits médiocres, c'est à tous les hommes qu'il est difficile de se persuader que c'est par ces études, comme avec des instruments, que l'on purifie l'œil de l'âme et qu'on fait briller d'un nouveau feu cet organe qui était obscurci et comme éteint par les ténèbres des autres sciences, organe dont la conservation est plus précieuse que celle de dix mille yeux, puisque c'est par celui-là seul que nous contemlpons la vérité ».

Dans le septième livre de la République, parlant de l'arithmétique, il dit que c'est de toutes les connaissances la plus nécessaire, puisque c'est celle dont ont besoin tous les arts, toutes les conceptions de notre esprit, toutes les sciences et l'art militaire lui-même. « Palamède, dit-il, représente souvent, dans les tragédies, Agamemnon comme un plaisant général; il se vante d'avoir inventé les nombres et d'avoir mis de l'ordre dans le camp et dans la flotte des Grecs devant Ilion et dans tout le reste, tandis qu'auparavant on n'avait fait aucun dénombrement et qu'Agamemnon lui-même semblait ne pas savoir combien il avait de pieds, car il ignorait complètement l'art de compter. L'arithmétique semble donc par sa nature appartenir à tout ce qui élève l'âme à la pure intelligence et l'amène à la contemplation.

14 République VII, p. 527 D, le texte de cette citation et des suivantes diffère sensiblement de celui de Platon. Plutarque semble avoir imité en partie le passage quand il dit : « Accoutumée, par les fortes atteintes de la souffrance et du plaisir, à prendre pour un être réel la substance incertaine et changeante des corps, l'intelligence devient aveugle à l'égard de l'être véritable ; elle perd l'organe qui à lui seul vaut dix mille yeux, je veux dire la vue de la lumière de l'âme par laquelle seule peut se voir la divinité » Symposiumes, VIII, quest. II, 1, p. 718 E.
καὶ πάλιν ἐν τῷ αὐτῷ φησὶν· ἐτί οἱ λογιστικοὶ εἰς ἄπαντα τὰ μαθήματα οίκεις φύονται, οὐ τε βραδεῖς εἰς τὸ δέχεσθαι αὐτοῖς αὐτῶν γενέσθαι. ἦτι ἐν τῷ αὐτῷ φησὶ· καὶ ἐν πολέμῳ ὃ ἀν ἐγείρῃ σωματικῶς τῆς εἰς ἀλλήθειαν καὶ ὀψιλόν ὁδόν. τούτῳ γὰρ ἀν δεῖ τὴν φυγήν καὶ πρὸς αὐτῶν τῶν ἀριθμῶν ἀναγάζεται διαλέγεσθαι, ὡς ἀποδεχόμενον, ἐν τοῖς αὐτῶν σώματα ἢ αὖ τὰ ὅρατα ἔχοντα ἀριθμοὺς προσφερόμενος διαλέξιν.
INTRODUCTION

« de l'être; mais personne n'en fait usage comme il faut * ». Les choses qui ne font qu'une seule impression sur nos sens n'invitent point l'entendement à la réflexion: telle est la vue d'un doigt gros ou mince, long ou court, mais celles qui font naître deux sensations opposées ont le pouvoir de réveiller et d'exciter notre entendement, comme lorsque le même objet nous paraît grand ou petit, léger ou lourd, un ou multiple. C'est donc l'unité et le nombre qui ont la vertu de réveiller et d'exciter notre intelligence, puisque ce qui est un nous paraît quelquefois multiple. La science du calcul et l'arithmé-
tique nous conduisent donc à la connaissance de la vérité *. L'art du calcul ne doit donc pas être traité à la manière du vulgaire, mais de façon à conduire les hommes à la con-
templation de l'essence des nombres, non en vue du com-
merce, comme font les marchands et les courtiers, mais pour le bien de l'âme, en lui facilitant les moyens de s'éle-
ver de l'ordre des choses qui passent, vers la vérité et l'être. C'est, en effet, cette étude qui, donnant à notre âme un puis-
sant élan vers la région supérieure, l'oblige à raisonner sur les nombres tels qu'ils sont en eux-mêmes, sans jamais souffrir que la discussion porte sur des unités visibles et tangibles *». Il dit encore dans le même livre: « Ceux qui savent calculer s'appliquent avec succès à toutes les scien-
ces, et ceux mêmes qui ont l'esprit plus lent, deviennent par là plus intelligents * ». Dans le même livre il assure encore que, dans la guerre même, l'art de calculer est très utile « pour les campements, pour la prise de possession des places, pour la concentration et le développement des troupes * ». Plus loin, faisant l'éloge des mêmes sciences, il dit que la géométrie s'occupe des surfaces, mais « que

αὕτη δ' ἀναγκάζει εἰς τὸ ἄνω ὅραν καὶ ἀπὸ τῶν ἐνθέντε ἐκεῖσε ἁγεί. καὶ μὲν δὴ περὶ μουσικῆς ἐν τῷ αὐτῷ φησίν, ὡτι ὁμεῖν δεῖται ἢ τῶν ὄντων θεωρία, ἀπρονομίας καὶ ἀρμονίας καὶ αὕται άδελφαι αἱ ἐπιστήμαι, ὡς οἱ Πυθαγορικοί.

οὶ μὲν οὖν τὰς ἀκοουμένας συμμορίας αὐ καὶ σφάγγους ἀλλή- λους ἀναμετροῦντες ἀνήνυτα ποιοῦσι τελείως παραβάλλοντες τὰ ὅτα, οἷον ἐκ γειτόνων φωνῆν θηρώμενοι, οἱ μὲν φασίν ἀκούειν ἐν μέσῳ ὀτινά ἦχον καὶ μικρότατον εἶναι διάστημα τούτο, ὁ μετρητόν, οἱ δὲ ἀμφισβητοῦσιν ὡς ὁμοιὸς ἤδη φθεγγομένου,

τὰ ὅτα τοῦ νοῦ προστιθημένοι, ταῖς χρονικοῖς πράγματα παρέ-
χουσιν ἐπὶ τῶν κολλάθων στρεφοῦντες. οἱ δὲ ἀγαθοὶ ἀριθμητικοὶ ἥγοιν ἐπικοποῦσιν, πίνεις σύμφωνοι ἀριθμοὶ ἀριθμοὶ [ἀριθμοὶ] καὶ τίνες οὐ. καὶ τοῦτο γρήσιμου πρὸς τὴν τοῦ ἀγαθοῦ καὶ καλοῦ ἥγην, ἄλλως δὲ ἀγριεῖτο. καὶ τούτων πάντων ἢ μέθοδος

ἐν μὲν ἐπὶ τὴν ἀλλήλων ἀφίκηται κοινωνίαν καὶ ξυλογισθῆ, ἢ ἐστὶν ἀλλήλως οἰκεία, φέρει αὐτὸν ἡ πραγματεία καρπὸν. οἱ δὲ ταῦτα δεινοὶ διαλεκτικοὶ. οὐ γὰρ μή δύνονται λαθεῖν τα καὶ ἀποδεξάσθαι λόγον. οὐχ οἷον τὰ δὲ τούτο μή ὡς ἐκείνοιν ἔλλοντα τῶν μαθημάτων. οὸς γὰρ ἐστὶ ὃς ἃν ἐπὶ τὴν τῶν ὄντων

θέαν ἐν τῷ διαλέγεσθαι.

πάλιν τε ἐν τῷ Ἐπινομίῳ πολλὰ μὲν καὶ ἄλλα ὑπὲρ ἀριθμη-
« l’astronomie a pour objet le solide en mouvement, qu’en conséquence elle oblige l’âme à regarder en haut et à passer des choses de la terre à la contemplation de celles du ciel ». Dans le même écrit, il parle de la musique parce que, pour la contemplation de tout ce qui existe, il faut deux choses, « l’astronomie et l’harmonie qui, selon la doctrine des Pythagoriciens, sont deux sciences sœurs* ». Ceux-là donc font un travail inutile qui, cherchant à saisir les nuances diatoniques et à comparer les sons, se contenter de prêter attentivement l’oreille et de s’approcher le plus possible de l’instrument, comme s’ils voulaient surprendre la conversation du voisin *. Les uns disent qu’ils entendent un certain son particulier entre deux sons et que l’intervalle est le plus petit qui se puisse apprécier. Les autres doutent de l’existence de ce son. Préférant tous l’autorité de l’oreille à celle de l’esprit, ils cherchent la vérité en pinçant les cordes et en tournant les clefs de leurs instruments. Mais les arithméticiens habiles cherchent par la réflexion quels sont les nombres qui répondent aux consonances et forment l’harmonie, et quels sont ceux qui répondent aux dissonances *. Cette étude conduit à la recherche du bien et du beau, toute autre est inutile. Toute méthode, si elle est générale et s’étend à toutes les propriétés communes des choses, en resserrant les liens de leurs affinités mutuelles, portera son fruit selon l’ardeur et le zèle avec lesquels on s’y sera appliqué. Il est impossible, en effet, que les dialecticiens qui y sont habiles ne sachent pas se rendre compte à eux-mêmes, et rendre compte aux autres, de la raison des choses*. C’est à quoi personne n’arrivera s’il ne prend ces sciences pour guide, car c’est en raisonnant d’après elles que nous arrivons à la contemplation des choses.

Dans l’Épinomis, Platon revient encore sur l’arithmétique

τικής διεξάγομεν, θεοῦ δόμον αύτήν λέγων, καὶ οὐχ, οὗν τε ἄνευ ταύτης σπουδαίων γενέσθαι τινά. ὑποθέτει δὲ ἄντικρυς φησίν· ἐπετερ γὰρ ἄριστον εἰς τῆς ἀνθρωπίνης φύσεως ἐξέλομεν, οὐχ ἂν που ἦτο φρόνιμοι γενοῦμεθα, οὔτε ἂν ἦτο τοῦτο τοῦ ζῶντος· φησίν, ἡ φυσική πάσαν ἁρέτην λάθοι· σχεδόν ὁ τούτου λόγος εὑρισκόμενον, δὲ τι μὴ γνώσκοι δύο καὶ τρία μηδὲ περιττὸν μηδέ ἄρτιν, ἀγνοοῦ δὲ τὸ παράπτων ἄριστον, οὐχ ἂν ποτὲ διδόναι λόγον, περὶ ὧν αἰσθησις καὶ μνήμα μόνον εὑρίσκωμεν· στερόμενος δὲ ἀληθοῦς λόγου σφαλὸς οὐχ ἂν ποτὲ γένοιτο. οὐ μὴν οὖδε τὰ τῶν ἄλλων τεχνῶν λεγόμενα, ἂ νῦν διήλθομεν, οὐδέποτε τούτων οὐδὲν μένει, πάντα δὲ ἀποτελεῖται τὸ παράπτων, ὅτι τῶν ἄριστων, τῆς ἀμελείας δέδομην δὲ νῦν τις βραχεῖας ἄριστον δεῖσθαι τὸ τῶν ἀνθρώπων γένους, ἢς εἰς τᾶς τεχνῶς ἀποθέλθατι καὶ κάποι μέγα μὲν καὶ τοῦτο. ἐν δὲ τις ἢδον τοῦ θεοῦ
13 τῆς γενέσθαις καὶ τὸ ἐθνῶν, ἅν οὐ καὶ τὸ θεοθεῖας γνωρισθῆ- σται καὶ ὁ ἄριστος ὄντως, οὐχ ἂν ἦτο τὰς μέντος γνωρισμάτων σύμ- παντα ἄριστον, ὅτις ἠμῖν δυνάμεως αἰτίως ἂν εὑρισκόμενος, ἐπεὶ καὶ μουσική πᾶσα δὲ ἄριστος μετὰ κυνήσεως τε καὶ εὐθύγγων δηλοῦν ὅτι δεῖ. καὶ τὸ μέγιστον, ἀγαθὸν ὡς πᾶντων
20 αἰτίως· ὅτι δὲ κακῶν οὐδενὸς ἐστί, τοῦτο γνωστόν. σχεδόν δὲ ἀλλογιστος, ἄκακος, ἀστήρως τε καὶ ἄριστος ἀνάρμοστος τε σφάδα καὶ πάνθη· ὅταν κακοῦ κεκοινωνήκη τινός, ὥστε λέσθηκαι πάντως ἄριστος.

ἐν δὲ τοῖς ἐφεξῆς φησίν· ἔστιν ἡμῶν μηδείς ἡμᾶς ποτε
25 πειθότω τῆς εὐσεβείας εἶναι τῷ θυσιῶν γένει. ἐκ γὰρ τοῦ τούτου φύεσθαι καὶ τὰς ἄλλας ἁρέτας τῷ μαθόντι κατὰ τρόπων. 48 δὲ ἄριστος μετὰ διαφθοράσμων, Epinomis, p. 978 Λ.
qu'il appelle « un don de Dieu » et il dit que personne ne saurait devenir vertueux sans elle. Passant ensuite à la description du contraire, il dit : « Si on ôtait le nombre à l'humain, on lui rendrait impossible toute prudence : l'âme de l'animal destitué de raison serait incapable d'aucune vertu ; elle n'aurait même plus son essence. Certes l'animal qui ne sait distinguer ni deux ni trois, qui ne connaît ni le pair ni l'impair, enfin qui ne sait rien du nombre, ne sera jamais en état de rendre raison d'aucune chose, ne la connaissant que par les sens et la mémoire. Privé de la vraie raison, il ne deviendra jamais sage. Passons en revue tout ce qui a rapport aux autres arts, nous verrons qu'il n'en est aucun qui puisse subsister, aucun qui ne périsse, si on ôte la science du nombre. A ne considérer que les arts, on pourrait croire avec quelque raison que cette science n'est nécessaire au genre humain que pour des objets de peu d'importance ; ce serait déjà beaucoup. Mais celui qui considérera ce qu'il y a de divin dans l'origine de l'homme et ce qu'il y a de mortel en lui, quel besoin de piété il a envers les dieux, celui-là reconnaîtra en lui le nombre, et nul, fut-il un prophète, ne saura ni ne comprendra jamais de combien de facultés et de force le nombre est pour nous la source. Il est évident, par exemple, que la musique ne peut se passer de mouvements et de sons mesurés par les nombres, et il n'est pas moins évident que le nombre, comme source de tous les biens, ne saurait être la cause d'aucun mal. » Au contraire, celui à qui tout nombre échappe manque en quelque sorte de raison ; il est sans ordre, sans beauté, sans grâce et enfin privé de toutes les perfections. Plus loin, il continue ainsi : « Personne ne nous persuadera jamais qu'il y ait pour le genre humain une vertu plus grande et plus auguste que la piété », car c'est par elle que

1 « Je crois, dit-il, qu'un dieu plutôt que le hasard nous a fait don de cette science pour notre conservation. » Épinomis, p. 976 E. — 3 Épinomis, p. 977 C. — 14 Épinomis, p. 977 D. — 32 Épinomis, 989 B.
ἔπειτα παραδείκνυσι θεοσθεῖαν ὅτι τρόπῳ τίς μαθήσεται. λέγει δὲ θείν μαθεῖν πρῶτον ἀστρονομίαν. εἰ γὰρ τὸ καταφεύγοντι καὶ ἀνθρώπων δεινόν, πολὺ δεινότερον θεῶν· καταφεύγοντες δ' ἂν ὁ θεὸς ἐναντίον δραμάς περὶ θεῶν· ψευδεῖς δ' ἂν δάκρυς ἐναντίον περὶ θεῶν οἱ μηδὲ τὰς τῶν αἰσθητῶν θεῶν φύσιν ἐπεκεκριμένοις, τούταν ἀστρονομίαν. ἀναγοίηθαι δὲ φησί· τοῖς πολλοῖς, ὅτι σύ- φωτατον ἀνάγκη τὸν ἀληθῶς ἀστρονόμον εἶναι, μὴ τὸν καθ' Ἡσίο- δον ἀστρονομοῦντα, οἷον δυσμάς τε καὶ ἰκανολάς ἐπεκεκριμένον, ἀλλὰ τὰς περιόδους τῶν ἐπτά, ὧς μὴ ρήματος ποτὲ πᾶσα φύσις ἣκενη γένοιτο θεωρῆσαι. τὸν δ' ἐπὶ ταύτα παρασκευάζοντα φύσεως οἷς δυνατον πολλον προδιάκειν γραφεῖ ἐστὶν ἄθιζοντα πείδα ὅντα καὶ νεκρὸν αὐτὰ μαθημάτων· ὅτι τὸ μέγαστον εἶναι ἀριθμῶν ἐπιστήμονα αὐτῶν, ἀλλ' αὐτὰ σώματα ἐγκύοντα, καὶ αὐτὰς τής τοῦ περιττοῦ τε καὶ ἀρτίου γενέσεως τε καὶ δυνάμεως, ὥσον παρέχεται πρὸς τὴν τῶν ὄντων φύσιν. τούτους δὲ ἐφεξῆς μαθημάτα μὲν κα- λοῦσι, φησί, σφάδρα γελοῖον ὄνομα γεωμετρίαν· ἐστὶ δὲ τῶν αὐτῶν ὄντων ὄμοιων ἀλλήλως φύσει ἀριθμῶν ὁμοίωσις πρὸς τὴν τῶν ἐπιπέδων μοίραν· λέγει δὲ τινα καὶ ἑτέραν ἐμπερίθην καὶ τέγχην, ἢν δὴ στερεομετρίαν καλεῖ, εἰ τις, φησί, τοὺς τρεῖς ἀριθμοὺς ἢν τὰ ἐπιπέδα εἶναι αὐξηθέντας ὁμοίως καὶ ἡμι- μοίως ὄντας, ὡς προείπον, στερεά ποιεῖ σώματα· τοῦτο δὲ θεῖον τε καὶ θαυμάστον ἐστὶ.

καὶ ἐν Νόμοις δὲ περὶ συμφωνίας τῆς κατὰ μουσικήν φής.

23 ἐν Νόμοις: il y a dans Théon en Holostei, l'auteur qui cite de mémoire, s'est trompé de dialogue, cf. Lois, III, p. 689 D.
celui qui a pris soin de s'instruire acquiert les autres vertus. Il montre ensuite comment on inspire la piété envers les dieux ; puis il dit que c'est par l'astronomie qu'il faut commencer, car, s'il est honteux de commettre le mensonge à l'égard des hommes, il l'est bien plus de le commettre à l'égard des dieux. Or, celui-là est menteur qui se fait des dieux une fausse opinion, l'exprime et n'a pas même étudié la nature des dieux sensibles, c'est-à-dire l'astronomie. « Ignorerez-vous, dit-il, que celui-là est nécessairement très sage qui est véritablement astronome, non pas astronome à la manière d'Hésiode, s'occupant à observer le lever et le coucher des astres, mais celui qui scrute les révolutions des sept planètes, de la connaissance desquelles tout le génie de l'homme est à peine capable ».

Or celui qui se propose de préparer les esprits des hommes à ces études, lesquelles supposent beaucoup de connaissances préliminaires, doit s'être rendu les sciences mathématiques familières dès son enfance et pendant toute sa jeunesse, et, parmi ces sciences, la meilleure, la principale, est la science des nombres abstraits et séparés de toute matière, celle aussi de la génération et de la vertu du pair et de l'impair, en tant qu'elle contribue à faire connaître la nature des choses. Après cette science, il en est une, dit-il, à laquelle on a donné le nom parfaitement ridicule de géométrie, car elle comprend une assimilation de nombres qui ne sont pas semblables entre eux par nature, assimilation que met en évidence la condition des surfaces. Il fait ensuite mention d'une autre science qu'il appelle sté" réométrie : si quelqu'un, dit-il, multipliant trois nombres, rend le produit semblable (à un autre) de dissemblable qu'il était, il fera une œuvre vraiment divine et merveilleuse.

Dans les Lois, parlant de l'harmonie musicale, il dit que

14 Épinomis, p. 990 A. — 22 id., p. 990 C. — 30 Platon fait sans doute allusion à ce problème « construire un parallélépipède rectangle semblable à un parallélépipède rectangle donné et qui soit à ce solide dans un rapport donné si problème dont celui de la duplication du cube n'est qu'un cas particulier.
καλλίστη καί μεγίστη τῶν περὶ τόλμων συμφωνιῶν ἐστιν ἡ σοφία, ής ὁ μὲν κατὰ λόγουν ζωὴν μέτοχος, ὁ δὲ ἀπολεπιστέμονος οἰκορθός καὶ περὶ τόλμων οὐδαμὴ σωτήριος, ὅτε τὰ μέγιστα ἰμαθαίνων.

 καὶ ἐν τῷ τρίτῳ δὲ τῆς Πολιτείας, διδάσκων δὴ μόνος μου-
5 σικὸς ὁ φιλόσοφος, θαυμ. ἐὰν ὄντων ὄντως ὄντες μου-
σικοὶ πρότερον ἐσόμεθα, ὄντες αὐτοί ὄντες ὄντες φαμεν ἡμεῖς παι-
δευτέον εἶναι τοὺς φύλακκας, πρὶν ἀν ἄπαντα τὰ τῆς σωφροσύνης
εἶδος καὶ ἀνθρείας καὶ μεγαλεύστητος καὶ μεγαλοπρεπεῖας καὶ ὅτα
tούτων ἀδελφὰ καὶ τὰ τούτων ὑπεναντὶ παντοκαθ. περιφερέομενα
10 γορίζωμεν καὶ ἐνόντα ἐν οἷς ἐστὶν αἰσθανόμεα καὶ αὐτὰ καὶ
eικόνας αὐτῶν καὶ μῆτε ἐν μικρὸις μῆτε ἐν μεγάλοις ἀτιμάζω-
μεν, ἀλλὰ τῆς κατοίκις οἰκομεθα τέγνης εἴναι καὶ μελέτης; ὦ καὶ
gὰρ τούτων καὶ τῶν πρὸ αὐτῶν τὸ ὀφελὸς ἐκ μοιστήριης
δηλοὶ, καὶ ὧτι μόνος ὄντως μουσικὸς ὁ φιλόσοφος, ἱμουσίος δὲ
15 ὁ κακὸς. τῇ μὲν γὰρ εὐθείᾳ ὄντως, ἤτις ἔστιν ἁρετὴ τὸ εὐ
tὰ ἡ κατασκευασμένα ἐγχειν, ἐπεστὶ φησιν εὐλογίαν, του-
tέτοι τὸ ἐγ λόγω γρηθεῖα, τῇ δὲ εὐλογία τὴν εὐσχημοσύνην
cαὶ εὐρυμείαν καὶ εὐφροσύνην. εὐσχημοσύνη γὰρ περὶ μέλος,
eὐφροσύνην δὲ περὶ ἀρμονίαν, εὐρυμείαν δὲ περὶ ὑμῖν.

20 τῇ δὲ κακογειέσκε τουτέστι τῷ κακῷ θείει, φησὶν ἐπεσθαί κακο-
λογίαν, τουτέστι κακοῦ λόγου γρηθεῖα τῇ δὲ κακολογία ἄσχη-
μοσύνη καὶ ἀρρυμείαν καὶ ἀναφροσύνῃ περὶ πάντα τὰ γενόμενα
καὶ μιμοῦμενα ὡστε μόνος ὃν εὔξης μουσικὸς ὁ κυρίως εὐθύτης,
ὥστε εὐθύ ὃν ὁ φιλόσοφος. δηλοὶ δὲ καὶ τὰ εἰρήμενα.

« la plus grande et la plus belle harmonie politique est la sagesse. On ne la possède qu’autant qu’on vit selon la droite raison ; quant à celui à qui elle fait défaut, il est le corrupteur de sa propre maison, c’est un citoyen inutile au salut et à la prospérité de l’État, puisqu’il vit dans une extrême ignorance * ».

Et dans le troisième livre de la République, voulant prouver que le philosophe est seul musicien, il dit : « Par les dieux immortels, nous ne serons jamais musiciens, ni nous ni ceux dont nous devons faire l’éducation comme gardiens, tant que nous ne connaîtrons pas toutes les formes de la tempérance, du courage, de la générosité et de la grandeur et tant que nous n’aurons pas compris tout ce qui, dans le monde, est conforme ou contraire à ces vertus, tant que nous ne saurons pas les reconnaître et en reconnaître les images dans ceux qui les possèdent, sans en négliger une seule, grande ou petite, les regardant comme faisant partie du même art et de la même étude ».

Par ces paroles et par celles qui précèdent, il prouve l’utilité de la musique, et il montre que le seul philosophe est réellement musicien, tandis que celui qui est vicieux et méchant est étranger aux Muses. Car, dit-il, la vraie et sincère probité des mœurs, cette vertu qui consiste dans le bon et honnête règlement de notre vie, suit la droite raison, c’est-à-dire l’usage conforme à la raison. Il ajoute que les compagnons de la droite raison sont la décence, la cadence et l’accord, la décence dans le chant, l’accord dans l’harmonie, la cadence dans le rythme. Par contre, l’improbité ou la corruption des mœurs est essentiellement liée à la perversion de la raison, c’est-à-dire à l’usage corrompu de la raison, et ses compagnons sont l’indécence, la confusion et le désaccord dans tout ce qu’on fait, de soi-même ou par imitation, de sorte que celui-là seul est musicien qui a de bonnes mœurs et, comme on le voit par ce qui précède, il est aussi le

6 Lois, III, p. 689 D. — 18 République, III, p. 402 B.
καὶ οἱ Πυθαγορικοὶ δὲ, ὡς πολλαχῇ ἔπεται Πλάτων, τὴν 15 μουσικὴν ψατὶν ἑνακτίων συναρμογὴν καὶ τῶν πολλῶν ἔως τιν καὶ τῶν δέχα φρονοῦντων συμφρόνησιν οὐ γὰρ ὑμιν ὁμονὸν καὶ μέλους συντακτικὴν, ἀλλ' ἀπλῶς παντὸς συστήματος· τέλος γὰρ αὐτῆς τὸ ἐνοῦν τε καὶ συναρμόζειν. καὶ γὰρ ὁ θεὸς συναρμοστης τῶν διαφοροῦντων, καὶ τούτο μέγιστον ἔργον θεοῦ κατὰ 20 μουσικὴν τε καὶ κατὰ ιατρικὴν τὰ ἐγχύμα ποιεῖν. ἐν μουσικῇ, ψατὶν ἡ ὁμονοία τῶν πραγμάτων, ἐτι καὶ ἀριστοκρατία τοῦ παντὸς· καὶ γὰρ αὕτη ἐν κόσμῳ μὲν ἀρμονία, ἐν πάλιν δὲ εὐνοία, ἐν οἷς δὲ συσφρόνησθι γίνεσθαι πέρικε συστατικὴ γὰρ ἐστι καὶ ἑνωτικὴ τῶν πολλῶν· ὡς ἐνέργεια καὶ ἡ γρηγορίας, ψησί, τῆς ἐπιστήμης ταύτης ἐπὶ τεσσάρων γίνεται τῶν ἀνθρωπίνων, ψυχῆς, σώματος, οἴκου, πάλιν· τερατεύεται γὰρ ταύτα τὰ τεσσάρα συναρμογῆς καὶ συντάξεως.

vrai philosophe, si toutefois, dès les premières années de son adolescence, quand on lui eut appris la musique, il prit des habitudes de décence et d'ordre, car la musique joint un plaisir innocent à l'utilité. Il est impossible, dit Platon, que celui-là devienne musicien parfait, qui n'a pas en tout des habitudes de bonne éducation, qui n'a pas les idées de décence, de noblesse d'âme et de tempérance. Il doit reconnaître que ces idées se retrouvent partout et ne les mépriser ni dans les petites choses ni dans les grandes. Car c'est au philosophe qu'il appartient de connaître les idées, et personne ne connaîtra la modestie, la tempérance et la décence, s'il est lui-même immodeste et intemperant. Mais les choses qui font l'ornement de la vie humaine, le beau, l'harmonieux, l'honnête, tout cela est l'image de cette beauté, de cet accord, de ce bel ordre éternel et qui a une existence véritable, c'est-à-dire que ces choses sensibles sont les caractères et l'expression des choses intelligibles ou des idées.

Les Pythagoriciens dont Platon adopte souvent les sentiments, définissent aussi la musique une union parfaite de choses contraires, l'unité dans la multiplicité, enfin l'accord dans la discordance. Car la musique ne coordonne pas seulement le rythme et la modulation, elle met l'ordre dans tout le système ; sa fin est d'unir et de coordonner, et Dieu aussi est l'ordonnateur des choses discordantes, et sa plus grande œuvre est de concilier entre elles, par les lois de la musique et de la médecine, les choses qui sont ennemies les unes des autres. C'est aussi par la musique que l'harmonie des choses et le gouvernement de l'univers se maintiennent ; car ce que l'harmonie est dans le monde, la bonne législation l'est dans l'État, et la tempérance l'est dans la famille. Elle a, en effet, la puissance de mettre l'ordre et l'union dans la multitude. Or, l'efficacité et l'usage de cette science, dit Platon, se voient dans quatre des choses qui appartiennent à l'humanité : l'esprit, le corps, la famille et l'État. En effet, ces quatre choses ont besoin d'être bien ordonnées et constituées.
ἐν δὲ τῇ Πολιτείᾳ Πλάτων ὑπὲρ τῶν μαθημάτων καὶ τάδε ἔφη ἀγαθός δὲ ἁνήρ ὅστις δισεούσει τὴν ἁρμήν δόξαν τῶν ἐκ παιδείας κύτῳ ἐγγενομένων ἐν τε λύπας καὶ ἡδοναῖς καὶ ἐπιθυμιάς καὶ φόβοις καὶ μὴ ἐκβάλλειν· ὥσπερ μοι δοκεῖ ὅμοιον εἶναι, ἥθελο ἀπεικάσται. οἱ νῦν βαφεῖς, ἐπειδὴν βουληθῶσι βάφαι ἔρια ὡστ' εἶναι ἁλωργά, πρῶτον μὲν ἐκλέγονται ἐκ τοσοῦτον γρωμάτων μίαν φύσιν τὴν τῶν λευκῶν, ἐπεὶ τα προκατασκευάζουσιν οὐκ ἀληθῶς παρασκεύης ἐπεραπεύσαντες, ὡσπερ δέξηται ὃ τι μάλιστα τὸ ἄνθος, καὶ οὕτως βάπτουσι—καὶ ὃ μὲν τὸ τοῦτῳ τῷ τρόπῳ βαρή, ὁμοῦ τι τὸ βαφέν καὶ ἡ φύσις. καὶ οὕτω οὔκεν ρομμάτων οὔτε μετὰ ρομμάτων δύναται αὐτῶν τὸ ἄνθος ἀφαφεῖσθαι· ἦ δὲ ἢ ἡ μη, οὐδενῶς ἢ ἡ γίνεσθαι, ἢ μὴ προβαπευστες βάπτης, ἐκπλωτα καὶ ἐξίτηλα καὶ οὐ δευστοπά.
Voici encore ce que Platon dit des mathématiques dans les livres de la République : « L’homme de bien est celui qui, éprouvé par la peine ou le plaisir, agité par le désir ou par la crainte, conserve toujours, sans jamais les rejeter, les idées droites qu’on lui a données en faisant son éducation. 5 « Je vais vous dire à qui il me paraît semblable. Quand nos teinturiers veulent teindre la laine en pourpre, ils commencent par choisir, parmi les laines de diverses couleurs, celle qui est blanche. Ils font ensuite leur préparation, et il ne faut pas peu de soin pour que la laine prenne la fleur de la couleur. C’est ainsi qu’ils opèrent, et grâce à cette méthode, les couleurs s’incorporent à la laine et leur éclat ne peut être enlevé ni à l’aide de lessive, ni autrement. Que si, au contraire, le teinturier ne prend pas ces précautions, on sait ce qui arrive, et comment les laines conservent peu la couleur qui s’efface et disparaît. Il faut opérer de même pour nos facultés * ». Nous apprenons aux enfants la musique, la gymnastique, les lettres, la géométrie et l’arithmétique, ne négligeant rien pour qu’ils reçoivent, comme une teinture, les raisons de toutes les vertus que nous leur enseignons ; après leur avoir administré préalablement des détersis, et d’autres préparations, consistant dans ces sciences, qui sont comme autant de médicaments astringents, leurs sentiments resteront indélébiles, leur caractère aura été formé par l’éducation. Cette couleur et cette teinture que nous leur aurons données, ne pourront être effacées par aucune lessive, — je veux dire par la volupté plus dangereuse que toute perversité et que toute habitude, — ni par la douleur, ni par la crainte et la cupidité, plus corrosives que toutes les lessives.

Nous pouvons encore comparer la philosophie à l’initiation aux choses vraiment saintes et à la révélation des mystères qui ne sont pas des impostures *. Il y a cinq parties dans l’initiation : la première est la purification préalable, car on ne

οὐς αὐτῶν εἰργασθαί προσκορεύεται, οὖν τοῦς γείρας μὴ καθαρὰς καὶ φωνῆν ἀξίωσιν ἐγγοντάς, καὶ αὐτοὺς δὲ τοὺς μὴ εἰργομένους ἀνάγκη καθαρμοῦ τινος πρότερον τυχεῖν. μετὰ δὲ τὴν καθαρσίν δευτέρα ἔστιν ἡ τῆς τελετῆς παράδοσις· τρίτη δὲ <ἡ> ἔπονοι

5 μαζική ἐποπτεία· τετάρτη δὲ, ὅ ὅλος καὶ τέλος τῆς ἐποπτείας, ἀνάδεσις καὶ στεμμάτων ἐπίθεσις, ὡστε καὶ ἐτέρως, ἃς τις παρέλαβε τελετάς, παραδόθηκαν δύνασθαι, ὁρθομίας τυγόντα ἡ ἱεροφαντία ἡ τινος ἀλλής ἱερωσύνης· πέμπτη δὲ ἢ ἢ ἢ αὐτῶν περιγενομένη κατὰ τὸ θεοφιλεῖς καὶ θεοίς συνόδιον εὐδαιμονία.

κατὰ ταῦτα δὴ καὶ ἡ τῶν Πλατωνικῶν λόγων παράδοσις τὸ μὲν

10 πρῶτον ἔχει καθαρμόν τινα, οὖν τὴν ἐν τοῖς προστήκουσι μαθηματικῶν ἐκ παιδῶν συγγυμνασίαν. ὁ μὲν γὰρ Ἑμπεδοκλῆς κρηνάων ἀπὸ πέντε ἁνυμώντα φησίν ἀντείρῃ γαλακτὶ δεῖν ἀποφύγεσθαι· ὁ δὲ Πλάτων ἀπὸ πέντε μαθημάτων δεῖν φησὶ ποιεῖν τὴν καθαρσίν· ταῦτα δ’ ἐστίν ἀριθμητική, γεωμετρία, στερεομετρία,

15 μουσική, ἀστρονομία. τῇ δὲ τελετῇ ἔσκινῃ ἢ τῶν κατὰ φιλοσοφίαν ἱεροφαμάτων παράδοσις, τῶν τοιοῦτων καὶ πολιτικῶν καὶ φυσικῶν. ἐποπτείαν δὲ ὀνομάζει τὴν περὶ τὰ νοητὰ καὶ τὰ ὄντως ὄντα καὶ τὰ τῶν ἱερῶν πραγματείαν. ἀνάδεσιν δὲ καὶ κατάστεψιν ἡγησίων τὸ ἢ ἢ ἢ αὐτῶς τις κατέμαθεν οὖν τε γενέσθαι καὶ ἐτέρως εἰς τὴν αὐτὴν θεωριὰν καταστῆσαι. πέμπτον δ’ ἢ ἢ ἢ καὶ τελεστατόν ἢ ἢ τοῦτων περιγενομένη εὐδαιμονία καὶ κατ’ αὐτὸν τὸν Πλάτωνα ὁμοίωσις θεῷ κατὰ τὸ δυνατόν.
doit pas faire participer aux mystères indistinctement tous ceux qui le désirent, mais il y a des aspirants que la voix du héraut écarte, tels sont ceux qui ont les mains impures, ou dont la parole manque de prudence; et ceux-là mêmes qui ne sont pas repoussés doivent être soumis à certaines purifications. Après cette purification, vient la tradition des choses sacrées (qui est proprement l'initiation). Vient en troisième lieu la cérémonie qu'on appelle la pleine vision (degré supérieur de l'initiation). La quatrième, qui est la fin et le but de la pleine vision, est la ligature de la tête et l'imposition des couronnes, ainsi que celui qui a reçu les choses sacrées devient capable d'en transmettre à son tour la tradition à d'autres, soit par la dadouchie (port des flambeaux), soit par l'hérophantie (interprétation des choses sacrées), soit par quelque autre sacerdoce. Enfin la cinquième, qui est le couronnement de toutes celles qui précèdent, est d'être ami de Dieu et de jouir de la félicité qui consiste à vivre dans un commerce familier avec lui.

C'est absolument de la même manière que se fait la tradition des raisons platoniques. On commence, en effet, dès l'enfance par une certaine purification consistant dans l'étude de théories mathématiques convenables. Selon Empédocle * "il faut que celui qui veut puiser dans l'onde pure des cinq fontaines commence par se purifier de ses souillures." Et Platon dit aussi qu'il faut chercher la purification dans les cinq sciences mathématiques, qui sont l'arithmétique, la géométrie, la stéréométrie, la musique et l'astronomie. La tradition des principes philosophiques, logiques, politiques et naturels répond à l'initiation. Il appelle pleine vision * l'occupation de l'esprit aux choses intelligibles, aux existences vraies et aux idées. Enfin il dit que par la ligature et le couronnement de la tête, on doit entendre la faculté qui est donnée à l'adepte, par ceux qui l'ont enseigné, de conduire les autres à la même

22 Empédocle, vs. 452, édition Mullach. — 29 Cf. Phèdre, p. 250 C.
πολλά μὲν οὖν καὶ ἄλλα ἔχοι τις ἂν λάγειν παραδεικνυόντες τὸ τῶν μαθημάτων χρήσιμον καὶ ἀναγκαῖον. τοῦ δὲ μὴ δοξαίν ἀπειροχάλως διατριβεῖν <ἐν> τῷ τῶν μαθημάτων ἐπαίνῳ τρεπτέον ἢδή πρὸς τὴν παράδοσιν τῶν ἀναγκαίων κατὰ τὰ μαθήματα ἃ θεωρημάτων, οὐχ ὅτα δύνατο ἂν τὸν ἐντυγχάνοντα ἢ ἀριθμητικῶν τελείως ἢ γεωμετρήην ἢ μουσικῆν ἢ ἀστρονομῶν ἀποφήγησιν ὁδὸν ἔρχεται γὰρ ἐστὶ τούτο προηγούμενον ἢ προκείμενον ἢπειρο τούς Πλάτωνι ἐντυγχάνουσι· μόνα δὲ ταύτα παραδώσομεν, ὅτα ἐξαρκεῖ πρὸς τὸ δυνατόν συνείναι τῶν συγγραμμάτων αὐτῶν.

οδὸν γὰρ αὐτὸς ἄξιον εἰς ἐστιν τοῦτον γῆρας ἀριστεῖσθαι διαγράμματα γράφοντα καὶ μελωδίαν, ἄλλα παραδίκα οἶκατα ταύτα τὰ μαθηματα, προπαρακευματικά καὶ καθαρικά ὡς πρὸς ἑντυγχάνουσι· τὸν μέλλοντα γὰρ τὸ ἠμεῖς παραδώσομεν ὡς τοις τοῖς συνέπεις γραφὲν ἐντυγχάνονται διὰ γοῦν τῆς πρώτης γραμμικῆς γονεῖσεως κεχωρικέναι· τὸν γὰρ ἢπειρο τὸν ἁμωτος αὐτοί παραδώσομεν. ἔσται δὲ ἤμως τοιαύτη καὶ τα παρὰ ἠμῶν, ὡς καὶ τῶν παραδώσαν ἀμυντικοῖ τῶν μαθημάτων γνώριμα γενέσθαι.

Περὶ Ἀριθμητικῆς

< Περὶ τῆς ἐν τοῖς μαθήμασι φυσικῆς τάξεως >

β. πρῶτον δὲ μην μονομενούσομεν τῶν ἀριθμητικῶν θεωρημάτων, οἷς συνεξεκαίνεται καὶ τὰ τῆς ἐν ἀριθμώις μουσικῆς· τῆς μὲν γὰρ ἢπειρο ὁ ὀργάνωσ εἰς παντοτέκτους προσαρμομένην, καθὰ καὶ αὐτὸς ὁ Πλάτων ἠφηγεῖται λέγοντι ὡς ὀμ γὰρ ὁπερ ἐκ γειτόνων φωνῆν θηρευο-

24 ὁπερ ἐκ γειτόνων φωνῆν θηρευομένου] il y a dans Platon καὶ παραβάλλοντες
contemplation. La cinquième est cette félicité consommée dont ils commencent à jouir et qui, selon Platon, « les assimile à Dieu, autant que cela est possible ».

Celui qui voudrait démontrer l'utilité et la nécessité des sciences mathématiques pourrait en dire beaucoup plus long. Mais de crainte que je ne paraisse m'arrêter plus que de raison à louer ces sciences, je vais commencer l'explication des théorèmes nécessaires, non pas de tous ceux qui seraient nécessaires aux lecteurs pour devenir de parfaits arithméticiens, géomètres, musiciens ou astronomes, car ce n'est pas le but que se proposent tous ceux qui veulent lire les écrits de Platon; mais j'expliquerai les théorèmes qui suffisent pour comprendre le sens de ses écrits. En effet, Platon lui-même ne veut pas que l'on continue jusque dans l'extrême vieillesse à tracer des figures géométriques ou à chanter des chansons, choses qui conviennent aux enfants et qui sont destinées à préparer et à purifier leur esprit, pour le rendre capable de comprendre la philosophie. Il suffit que celui qui veut aborder nos écrits, ou les livres de Platon, ait parcouru les premiers éléments de la géométrie, pour qu'il comprenne facilement nos explications. Toutefois ce que nous dirons sera tel, que nous pourrons être compris même de celui qui ignore complètement les mathématiques.

ARITHMÉTIQUE

De l'ordre dans lequel on doit étudier les mathématiques

II. Nous allons commencer par les théorèmes arithmétiques auxquels se rattachent de très près les théorèmes musicaux qui se traduisent par des nombres. Nous n'avons nul besoin de musique instrumentale, ainsi que l'explique Platon lui-même, lorsqu'il dit qu'il ne faut pas tourmenter les cordes

3. *Cf. Théétète*, p. 176 B.
μένους πράγματα παρέχειν ταῖς χορδαῖς· ὅρεγόμεθα δὲ τὴν ἐν κόσμῳ ἁρμονίαν καὶ τὴν ἐν τούτῳ μουσικὴν κατανοήσαι·

ταῦτην δὲ οὕγα οἴδαν τε κατάδειχν μὴ τῆς ἐν ἁρμονίας πρότερον

θεωρητικοῖς γεγομένοις· όδοι καὶ πέμπτην ὁ Πλάτων φησίν

ἔννοι τὴν μουσικὴν, τὴν ἐν κόσμῳ λέγων, ἤτις ἐστὶν ἐν τῇ

κινήσει καὶ τάξει καὶ συμμορφώσα τῶν ἐν αὐτῷ κινουμένων ἀστρῶν.

ἡμῖν δ’ ἀναγκαίον ὑστερεῖν αὐτήν τάσσειν μετὰ ἁρμονι-

τικήν καὶ κατ’ αὐτόν τὸν Πλάτωνα, ἐπειδὴ οὐκ ἢ ἐν κόσμῳ

μουσικὴ λιπτῇ ἀνευ τῆς ἐξαιρέσθαις καὶ νοσομένης μουσικῆς.

ὅτετε εἰ μὲν συνεξεχθαι τῷ περὶ ψιλοῦν ἁρμονίας θεωρία ἢ ἐν ἁρμονίας μουσικῆ, ὑστερεῖ ἐν ταχύτερο ἐν τῇ τῆς ἠμετέρας

θεωρίας εὐμάρειαν.

πρὸς δὲ τὴν ψυκηκὴν τάξιν πρῶτη μὲν ἂν εἰκὴ ἢ περὶ ἁρμονίας θεωρία, καλουμένη ἁρμονική· ὑστερεῖ δὲ ἢ περὶ

13 τὰ ἐπίπεδα, καλουμένη γεωμετρία· τρίτη δὲ ἢ περὶ τὰ

στερεά, ἡτὶς ἐστὶ στερεομετρία· τετάρτη <ὅπερ> ἢ περὶ τὰ

κινουμένα στερεά, ἡτὶς ἐστὶν ἄστρονομία. ἢ δὲ τῆς τῶν κινή-

σεων καὶ διαστημάτων πολύ σχέσις ἐστὶ μουσικῆ, ἡτὶς οὐγῖ οὐχ

τε ἐστὶ λυθῆναι μὴ πρότερον ἡμῶν αὐτὴν ἐν ἁρμονίας κατα-

20 νοσθάντων· ὁδὸ πρὸς τὴν ἠμετέραν θεωρίαν μετὶ ἁρμονικῆς

τετάρτης ἢ ἐν ἁρμονίας μουσικῆς, ὡς δὲ πρὸς τὴν ψυκῆν πέμπτη

<ἡ> τῆς τῶν κόσμου ἁρμονίας θεωρητικῆς μουσικῆς· κατὰ δὴ

τοὺς Πυθαγορίκους προσθετέα τὰ τῶν ἁρμονίων ὡς ἁρχὴ καὶ

πληγή καὶ βίκα τῶν πάντων.

τὰ ὅτα, οἷον ἐκ γειτῶν φανῆν θηρεύμενοι, λέοντος «τὰ ότα»

(tendant l'oreille), nécessaires à l'intelligence de la phrase, sont omis dans la

des instruments, (l’oreille tendue) comme des curieux qui sont aux écoutes. Ce que nous désirons c’est de comprendre l’harmonie et la musique célestes; cette harmonie, nous ne pouvons l’examiner qu’après avoir étudié les lois numériques des sons. Quand Platon dit que la musique occupe le cinquième rang * (dans l’étude des mathématiques), il parle de la musique céleste, laquelle résulte du mouvement, de l’ordre et du concert des astres qui cheminent dans l’espace. Mais nous devons donner à la musique mathématique la seconde place (c’est-à-dire la mettre) après l’arithmétique, comme le veut Platon, puisqu’on ne peut rien comprendre à la musique céleste, si l’on ne connaît celle qui a son fondement dans les nombres et dans la raison. Puis donc que les principes numériques de la musique se rattachent à la théorie des nombres abstraits, nous leur donnerons le second rang pour la facilité de notre étude.

Selon l’ordre naturel, la première science serait celle des nombres, qu’on appelle arithmétique. La seconde serait celle qui a pour objet les surfaces, et qu’on appelle géométrie. La troisième est celle qui a pour objet les solides, et qu’on appelle stéréométrie. La quatrième traite des solides en mouvement, c’est l’astronomie. Quant à cette musique dont l’objet est de considérer les relations mutuelles des mouvements et des intervalles, quelles que soient ces relations, il n’est pas possible de la comprendre avant d’avoir saisi celle qui est basée sur les nombres. Ainsi, dans notre plan, les lois numériques de la musique viendront immédiatement après l’arithmétique; mais, d’après l’ordre naturel, la cinquième place doit être donnée à cette musique qui consiste dans l’étude de l’harmonie des mondes. Or, selon la doctrine des Pythagoriciens, les nombres sont pour ainsi dire le principe, la source et la racine de toutes choses.

6 Platon place la musique après l’astronomie (Hp. VII, p. 530 D), après avoir assigné à l’astronomie le quatrième rang (id. p. 528 E).
Περὶ ἕνος καὶ μονάδος

γ. ἄριθμός ἐστὶ σύστημα μονάδων, ἢ προποδισμὸς πλήθους ἀπὸ μονάδος ἀρχόμενος καὶ ἀναποδισμὸς εἰς μονάδα καταλήγων. μονάς δὲ ἐστὶ περαινοῦσα ποσότης [ἄρχη καὶ στοιχεῖον τῶν ἀριθμῶν], ὃς μειουμένου τοῦ πλήθους κατὰ τὴν ὑφαινοῦν [τοῦ] παντὸς ἄριθμοῦ στερηθεῖσα μονήν τε καὶ στάσιν λαμβάνειν. οὐ γὰρ οὖν τε περαινέω γενέσθαι τὴν τομήν· καὶ γὰρ ἐὰν εἰς μόρια διαιροῦμεν τὸ ἐν ἐν αἰσθήτοις, ἐμπαλιν πλῆθος γενήσεται τὸ ἐν καὶ πολλά, καὶ καταλήξει εἰς ἐν κατὰ τὴν ὑφαινοῦν ἐκάστου τῶν μορίων· κἂν ἔχειν πάλιν εἰς μόρια διαιροῦμεν, πλῆθος τε τὰ μόρια γενήσεται καὶ ἡ καταλήξεις καὶ τῇ ὑφαινοῦν ἐκάστου τῶν μορίων εἰς ἐν. ὡστε ἀμέριστον καὶ ἀδιαίρετον τὸ ἐν ὦς ἐν.

καὶ γὰρ ὁ μὲν ἄλλος ἄριθμός διαιροῦμενος ἑλάττουται καὶ διαιρεῖται εἰς ἐλάττονα αὐτοῦ μόρια, οἷον τὰ ε' εἰς τὰ γ' καὶ γ' ἢ ὃς καὶ β' ἢ ε' καὶ α'. τὸ δὲ ἐν ἐν μὲν ἐν αἰσθήτοις διαιρηθεῖ, ὥς μὲν σώμα ἑλάττουται καὶ διαιρεῖται εἰς ἐλάττονα αὐτοῦ μόρια τῆς τομῆς γνυμένης, ὡς δὲ ἄριθμός αὐξεῖται· ἀντὶ γὰρ ἐνός γίνεται πολλά. ὡστε καὶ κατὰ τούτο ἁμερέως τὸ ἐν. οὐδὲν γὰρ διαιροῦμενον εἰς μείζονα ἐκτυχοῦ μόρια διαιρεῖται· τὸ δὲ τὸν ἄριθμον καὶ εἰς μείζονα τοῦ ὀλοῦ μόρια ὡς ἐν ἄριθμοις διαιρεῖται καὶ τὸν ὀλὸν ὡς γὰρ ἐν ἀισθήτοις ἐν εἰς ἐξ διαιρῆθη, εἰς ἐκατέρτιν τὸ γὰρ ἐκατέρτιν ἀριθμὸς διαιρεθεῖται, α' α' α' α' α'· εἰς μείζονα δὲ τὸν ὀλὸν ὡς ἄριθμος εἰς δ' καὶ β'· τὰ γὰρ β' καὶ δ' ὡς ἄριθμοι πλείονα τοῦ ἐνός. ἀδιαίρετος ἢ μονὰς ὡς ἄριθμός. καλεῖται δὲ μονὰς ήτοι ἀπὸ τοῦ μένειν ἄριστος καὶ μὴ ἔξεσθησθαι τῆς ἑκατέρτις φύσεως· ὡσχεῖς γὰρ ἐν ἐφ' ἐκατέρτιν πολλαπλασιάσωμεν τὴν μονάδα, μένει μόνας· καὶ γὰρ ἀπεξ ἐν ἐν, καὶ μέγρις ἀπείρου ἐνού πολλαπλασιάσωμεν τὴν μονάδα, μένει μονάς. ἢ ἀπὸ τοῦ διακεκριθαι καὶ μεμονωθηκαὶ ἀπὸ τοῦ λοιποῦ πλήθους τῶν ἀριθμῶν καλεῖται μονάς.
De l'Un et de la monade

III. Le nombre est une collection de monades, ou une progression de la multitude commençant et revenant à la monade (par l'addition ou la soustraction successive d'une unité). Quant à la monade, c'est la quantité terminante — principe et élément des nombres — qui, une fois débarrassée de la multitude par soustraction, et privée de tout nombre, demeure ferme et fixe : il est impossible de pousser plus loin la division. Si nous divisons en plusieurs parties un corps sensible, ce qui était un devient plusieurs, et si l'on soustrait chacune des parties, il se terminera à un ; et si cet un, nous le divisons de nouveau en plusieurs parties, il en sortira la multitude, et en enlevant chacune de ces parties, on reviendra à un, de sorte que ce qui est un, en tant qu'un, est sans parties et indivisible. Tout autre nombre étant divisé est diminué et réduit en parties plus petites que lui, comme 6 en 3 et 3, ou en 4 et 2, ou en 5 et 1. Ce qui est un, dans les choses sensibles, si on le divise, est diminué à la manière des corps, et par le partage qu'on en fait, il est divisé en parties plus petites que lui ; mais il augmente comme nombre ; car, à la place de ce qui était un, il y a plusieurs. C'est d'après cela que ce qui est un est indivisible. Nulle chose, en effet, ne peut être divisée en parties plus grandes qu'elle-même. Mais ce qui est un, divisé en parties plus grandes que l'entier, se divise à la manière des nombres en parties égales (en somme) à l'entier. Par exemple, si un corps, unité sensible, est divisé en six parties, 1, 1, 1, 1, 1, 1, ces parties sont égales à l'unité ; mais, si on le divise en 4 et 2, les parties sont plus grandes que l'unité ; en effet, 4 et 2, comme nombres, surpassent un. La monade donc, en tant que nombre, est indivisible. Si elle est appelée monade, c'est, ou bien parce qu'elle demeure immuable et ne s'orit pas des limites de sa nature ; en multipliant, en effet, la

15 Voyez la note II après la traduction.
ὑδὲ διενήνωξέν ἀρίθμος καὶ ἀριθμητόν, ταύτη καὶ μονάς καὶ ἐν. ἀρίθμος μὲν γάρ ἔστι τὸ ἐν νοητῷ ποσῷ, οἷον αὐτὰ ε' καὶ αὐτά ι', οὐ δόματα τινα οὔδε αἰσθήτα, ἀλλὰ νοητό· ἀριθμητόν δὲ τὸ ἐν αἰσθητοῖς ποσῷ, ὡς ἔποιοι ε', βόσες ε', ἄνθρωποι ε'. 8 καὶ μονᾶς τόλμων ἐστὶν ἡ τοῦ ἐνός ἴδεα ἡ νοητή, ἡ ἐστίν ἄτομος· ἐν δὲ τὸ ἐν αἰσθητοῖς καθ' ἐκείτο λέγομεν, οἷον εἰς ἔποιο, εἰς ἄνθρωπος.

δ. ὡστ' εἰκ ἂν ἀρχη τῶν μὲν ἀριθμῶν ἡ μονάς, τῶν δὲ ἀριθμητῶν τὸ ἐν· καὶ τὸ ἐν ὡς ἐν αἰσθητοῖς τέμνονται φασίν εἰς ἄπειρον, 10 οὐκ ὡς ἀριθμὸν οὐδὲ ὡς ἀρχήν ἀριθμοῦ, ἀλλ' ὡς αἰσθητον. ὡστε ἡ μὲν μονάς νοητή οὕτα ἀδιαλέπτως, τὸ δὲ ἐν ὡς αἰσθητὸν εἰς ἄπειρον τριτόν, καὶ τὰ ἀριθμητὰ τῶν ἀριθμῶν εἰκ ἂν διαφέροντα τὸ τὰ μὲν σώματα εἶναι, τὰ δὲ ἀτόματα. ἀπλῶς δὲ ἀρχής ἀριθμῶν οἱ μὲν ωστερόν φασὶ τὴν τε μονάδα καὶ τὴν ὀυσία.

13 οἶ δὲ ἀπὸ Πυθαγόρου πάσας κατὰ τὸ ἐξῆς τὰς τῶν ὀρῶν ἐκθέσεις, ὃν ἢν ἄρτοι τε καὶ περιτοι νοοῦνται, οἷον τῶν ἐν αἰσθητοῖς τριῶν ἀρχῆν τὴν τριάδα καὶ τῶν ἐν αἰσθητοῖς τεσσάρων πάντων ἀρχῆν τὴν τετράδα καὶ ἐπὶ τῶν ἄλλων ἀριθμῶν κατὰ ταύτα. οἶ δὲ καὶ κύτων τούτων ἀρχῆν τὴν μονάδα φασι καὶ τὸ ἐν πάσης 20 ἀπελευθερώμενοι διαφοράς ὡς ἐν ἀριθμοῖς, μόνον αὐτό ἐν, οὐ τὸ ἐν, ταύτας τινὰς τοῦ ποιοῦ καὶ διαφορὰ τινάς πρὸς ἐστερον ἐν προσειδυκρίνει, ἀλλ' αὐτὸ καὶ αὐτὸ ἐν. οὕτω γὰρ ἂν ἀρχή τε καὶ

monade par elle-même, nous aurons toujours la monade : une fois un donne toujours un ; et, si nous multiplierons la monade jusqu’à l’infini, elle restera toujours monade. Ou bien encore, elle est appelée monade, parce qu’elle est séparée et mise seule en dehors de la multitude des autres nombres. Comme le nombre diffère de ce qui est nombré, de même la monade diffère de ce qui est un. Le nombre, en effet, est une quantité intelligible, comme la quantité 5 et la quantité 10, qui ne sont pas composées de corps sensibles, mais de choses intelligibles. Quant à la quantité nombrable, elle se trouve dans les choses sensibles telles que 5 chevaux, 5 bœufs, 5 hommes. Donc la monade est l’idée d’un un intelligible, lequel un est indivisible. Quant à l’un qui se rencontre dans les choses sensibles, on le dit un en soi, comme un cheval, un homme.

IV. La monade sera donc le principe des nombres ; et l’un le principe des choses nombrées. Ce qui est un, en tant que sensible, peut, à ce qu’on assure, être divisé à l’infini, non en tant qu’il est nombre ou principe du nombre, mais en tant qu’il est sensible, en sorte que la monade qui est intelligible, n’admet pas de division, mais que ce qui est un, étant sensible, peut être divisé à l’infini. Les choses nombrées diffèrent encore des nombres, en ce qu’elles sont corporelles, tandis que les nombres sont incorporels. Mais, sans faire cette distinction, « les modernes considèrent la monade et la dyade comme principes des nombres ; quant aux Pythagoriciens, ils font consister les principes des nombres dans les séries des termes successifs par lesquels se conçoivent les pairs et les impairs » ; ils disent, par exemple, que le principe de trois dans les choses sensibles est la triade, que le principe de tout ce qui est quatre, parmi les choses sensibles, est la tétrade, et ainsi de même pour tous les autres nombres. Ils prétendent en outre que la monade est le principe de tous ces nombres et que l’un est libre de toute variété, l’un qui se trouve

45 Ainsi, d’après Théon, la monade est abstraite, l’un est concret.
τὰ ἴδεα τῶν ὑπ’ ἐκείνου ὄντων, καθὸ ἔκαθον τῶν ὄντων ἐν λέγεται, μετασχοῦν τῆς πρώτης τοῦ ἐνός οὕσις τε καὶ ἴδεας.

Ἀρχύτας δὲ καὶ Φιλόλαος ἀδιαφόρως τὸ ἐν καὶ μονάδα καλοῦσι καὶ τὴν μονάδα ἐν. οἳ δὲ πλείστοι προστίθεσιν τῷ μονάδι αὐτῇ τὴν πρώτην μονάδα, ὡς οὕσις τινὸς οὐ πρώτης μονάδος, ἢ ἔστι κοινότερον καὶ αὐτῇ μονάδας καὶ ἐν — λέγουσι δὴ καὶ τὸ ἐν —, τούτεστιν ἡ πρώτῃ καὶ νοητῇ οὕσια τοῦ ἐνός, ἐκάστος τῶν πραγμάτων παρέχουσα ἐν ἐμακρουχθὲν μεταφορικῶς ἐν καλεῖται. διὸ καὶ τούτοις κατ’ αὐτοῦ οὕσιν παρεμφάνει τί ἐν καὶ τίνος γένος, κατὰ πάντων δὲ κατηγορεῖται, [ἂν τε καὶ ἡ μονάς καὶ ἐν ἐστὶν]

κὰν τὰ μὲν νοητὰ καὶ παραδείγματα μηδὲν ἄλλη/λων διαφέροντα, τὰ δὲ αἰσθητὰ. ἐνιοῦ δὲ ἐστὲ τῶν διαφορῶν τῆς μονάδος καὶ τοῦ ἐνός παρέσχων, τὸ μὲν γὰρ ἐν οὕτως κατ’ οὕσιν ἀλλοιοῦται, οὕτω τῆς μονάδος καὶ τοῖς περιττοῖς αὐτίκου ἐστὶ τοῦ μη ἀλλοιοῦσακαὶ οὕσιν, οὕτω κατὰ ποιότητα, κατὸ γὰρ μονάς ἐστὶ καὶ οὕς, ὡσπερ αἱ μονάδες πολλαὶ, οὕτω κατὰ τὸ ποσὸν-οὐδὲ γὰρ συντίθεται ὡσπερ αἱ μονάδες ἄλλη μονάδοι· ἐν γὰρ ἐστὶ καὶ οὐ μονάς, διὸ καὶ ἐνικὼς καλεῖται ἐν καὶ γὰρ εἰ παρὰ Πλάτωνι ἐνάδες εἰρήνηται ἐν Φιλόλαο, οὐ παρὰ τὸ ἐν ἔλεγχους ἀλλὰ παρὰ τὴν ἐνάδα, ὡς ἐστὶ μονάς μετοχῆ τοῦ ἐνός. κατὰ πάντα δὴ ἀμετάκλητον τὸ ἐν τὸ ἀριστομένῳ τούτῳ ἐν τῇ μονάδι. ὡστε διαφέροι δὲ τὸ ἐν τῆς μονάδος, ὡς τὸ μὲν ἐστὶν ἀριστομένον καὶ πέρας, καὶ δὲ μονάδες ἀπειροῦ καὶ ἀόριστον.
dans les nombres n'étant pas tel ou tel un, c'est-à-dire n'étant pas une certaine quantité et une diversité à l'égard d'un autre un, mais étant l'un considéré en lui-même. Car c'est par là qu'il devient le principe et la mesure des choses qui lui sont soumises, de même que chacune des choses qui existent est dite un, comme étant participante de la première essence et de l'idée de ce qui est un. Archytas et Philolaüs se servent indifféremment des mots un et monade, et ils disent que la monade est l'un. La plupart ajoutent au nom de monade l'épithète « première », comme s'il y avait une monade qui ne fut pas première, et comme si celle qu'ils appelaient première était plus universelle, et qu'elle fut la monade et l'un, — car ils l'appellent aussi l'un — et comme si elle était l'essence première et intelligible qui fait que toutes les choses qui sont un, soient telles. C'est en vertu d'une participation à cette essence que toutes choses sont appelées un. C'est pourquoi le nom même un ne dit pas de quelle chose il s'agit, ni quelle en est l'espèce, mais il s'applique à toutes choses. Ainsi, la monade et l'un étant tout à la fois intelligibles et sensibles, ces deux choses ne diffèrent en rien l'une de l'autre. Quelques-uns mettent une autre différence entre l'un et la monade : l'un ne change pas selon la substance, et ce n'est pas lui qui fait que la monade ou les impairs changent selon l'essence. Il ne change pas non plus selon la qualité, car c'est lui-même qui est monade, et non comme les monades qui sont plusieurs. Il ne change pas non plus selon la quantité, car il n'est pas composé, comme les monades auxquelles s'ajoute une autre monade. Il est un et non plusieurs ; c'est pour cela qu'on l'appelle lui seul un. Et quoique Platon, dans le Philèbe*, se soit servi de l'expression « les unités », il ne les a pas appelées ainsi d'après l'un, mais d'après la monade qui est une participation de l'un. Cet un, qui se distingue de la monade dont il est l'essence, est quel-

30 Le Philèbe, p. 45 A.
Περί ἀρτίου καὶ Περιττοῦ

ε. τῶν δὲ ἄρτιμῶν ποιοῦνται τὴν πρώτην τομήν εἰς δύο· τοὺς μὲν γὰρ αὐτῶν ἀρτίους, τοὺς δὲ περιττοὺς φασι. καὶ ἄρτιοι μὲν εἰσὶν οἱ ἐπιδεχόμενοι τὴν εἰς ἕκαστα διαίρεσιν, ός ἡ δυάς, ἡ τετράς·
εις δὲ οἱ εἰς ἄντα συναρρούμενοι, οὐκ ὁ ε', ο ὁ ζ'. πρώτην δὲ τῶν περιττῶν ἔνιοι ἔφασαν τὴν μονάδα. τὸ γὰρ ἄρτιον τῷ περιττῷ ἑναντίον· ἢ δὲ μονᾶς ἦτοι περιττὸν ἐστὶν ἡ ἄρτιον· καὶ ἄρτιοι μὲν οὐκ ἐν εἴῃ· οὐ γὰρ ὡς ὅπως εἰς ἕκαστα ἀλλὰ οὔδε ὅλως διαφέρεται· περιττῇ ἁρα·
μονᾶς. καὶ ἄρτιοι δὲ ἄρτιον προστιθῆκεν, τὸ πᾶν γίνεται ἀρτιον·
μονᾶς δὲ ἄρτιον προστιθεμένη τὸ πᾶν περιττὸν ποιεῖ· οὕτω ἁρα· ἄρτιον·
μονᾶς ἀλλὰ περιττῶν.

Ἀριστοτέλης δὲ ἐν τῷ Πυθαγόρικῷ τὸ ἐν φησιν ἀμφότεροι
μετέχειν τῆς φύσεως· ἄρτιοι μὲν γὰρ προστεθέν περιττῶν ποιεῖ,
περιττῷ δὲ ἄρτιον, ὁ οὐκ ἐν ἡδύνατο, εἰ μὴ ἄμφοι ταῖς φυσέοιν
μετείχε· διὸ καὶ ἄρτιοπεριττῶν καλεῖται τὸ ἐν. συμφέρεται
τοῦτος καὶ Ἀρχύτας. περιττῶν μὲν οὖν πρώτη ἱδέα ἐστὶν ἡ
μονᾶς, καθὰ περὶ ἐν κόσμῳ τῷ ὁριστέα καὶ τεταγμένῳ τῷ
περιττῶν προσαρμόζουσιν· ἄρτιοι δὲ πρώτη ἱδέα ἡ ἁριστος
δυάς, καθ' ἐν κόσμῳ τῷ ἁριστῷ καὶ ἀγνωστῷ καὶ ἀτάκτῳ
τὸ ἁρτιον προσαρμόττουσι. διὸ καὶ ἁριστός καλεῖται·
ὅδε οὖσ' ἐστιν ὅστερ ἡ μονᾶς ὁρισμένη. οἱ δὲ ἔξεσ ἐπόμενοι
τούτος ἑαυτῷ ἀπὸ μονάδος ἐκτιθεμένοι τὰ αὐτὰ αὐξομενοὶ μὲν τῇ
ὑποχρή· μονᾶς γὰρ ἑκατος αὐτῶν τοῦ προτέρου πλεο-
νάζει· αὐξόμενοι δὲ τοὺς λόγους τῆς πρὸς ἀλλήλους σχέσεως
αὐτῶν μειοῦσιν.
que chose de tout à fait immuable. L'\emph{un} diffère donc de la
monade, en tant qu'il est défini et terme, tandis que les mo-
nades sont indéfinies et indéterminées.

\textbf{Du nombre pair et du nombre impair}

V. Une première division partage les nombres en deux espèces : les uns sont appelés pairs, les autres impairs. Les pairs sont les nombres qui peuvent se diviser en deux parties égales, comme deux et quatre, les impairs au contraire sont les nombres qui ne peuvent se diviser qu'en parties inégales, comme cinq et sept. Quelques-uns ont dit que le premier des impairs est l'unité. Car pair est le contraire d'impair, et l'unité est nécessairement paire ou impaire ; or elle ne peut pas être paire, puisque, non seulement elle ne se divise pas en parties égales, mais elle ne se divise même pas du tout ; donc l'unité est impaire. Que si vous ajoutez un nombre pair à un autre nombre pair, le tout sera pair ; or, l'unité, ajoutée à un nombre pair, donne un tout impair; donc, encore une fois, l'unité n'est pas paire, elle est impaire. Cependant, Aristote dit, dans le \textit{Pythagoricien} \footnote{L'un des ouvrages perdus d'Aristote.}, que l'\emph{un} participe des deux natures. En effet, ajouté à un nombre pair, il donne un nombre impair ; mais, ajouté à un nombre impair, il donne un nombre pair, ce qu'il ne pourrait faire s'il ne participait des deux natures. C'est pourquoi on l'appelle \textit{pair-impair}. Archytas paraît avoir été aussi de ce sentiment. La première idée de l'impair est donc l'unité, comme aussi dans le monde, on attribue la qualité d'impair à ce qui est défini et bien ordonné. Au contraire, la première idée du pair est le binaire indéfini, ce qui fait que, dans le monde aussi, on attribue la qualité de pair à tout ce qui est indéfini, inconnu et désordonné. C'est pourquoi le binaire est appelé indéfini, parce qu'il n'est pas défini comme l'unité. Quant aux termes qui se sui-
οίνον ἐκτεθέντων ἄριθμων ᾧ’ β’ γ’ δ’ ε’ ε’, ο μέν τῆς δυάδος λόγος πρὸς τὴν μονάδα ἐστὶ δυσπλάσιος, ο δὲ τῆς τριάδος πρὸς τὴν δυάδα ἡμιόλιος, ο δὲ τῆς τετράδος πρὸς τὴν τριάδα ἑπτάρτιος, ο δὲ τῆς πεντάδος πρὸς τὴν τετράδα ἑπτάτετρας, ο δὲ τῆς ἕξιάδος πρὸς τὴν πεντάδα ἑπτάπεμπτος. ἔστι δ’ ἐλάττων λόγος ο μέν ἑπτάπεμπτος τοῦ ἑπτάτετρας, ο δὲ ἑπτάτετρας τοῦ ἑπταρτίου, ο δὲ ἑπταρτίος τοῦ ἡμιόλιου, ο δὲ ἡμιόλιος τοῦ διπλασίου; καὶ ἐπὶ τῶν λοιπῶν δὲ ἄριθμῶν ο αὐτὸς λόγος. ἐναλλάξεις δ’ εἰσὶν ἄλληλοι οἱ τε ἄρτιοι καὶ οἱ περίττοι παρ’ ἐνα θεο-10 ροῦμενοι.

Περὶ πρῶτου καὶ ἀπυνθέτου

5. τῶν δὲ ἄριθμῶν οἱ μέν πρῶτοι καλοῦνται ἄπλως καὶ ἀσύνθετοι, οἱ δὲ πρῶτα ἄλληλους πρῶτοι καὶ οὐχ ἄπλως, οἱ δὲ σύνθετοι ἄπλως, οἱ δὲ πρῶτα αὐτοὺς σύνθετοι. πρῶτοι μὲν ἄπλως 15 καὶ ἀπυνθέτοι οἱ ὑπὸ μηδενὸς μὲν ἄριθμον, ὑπὸ μόνης δὲ μονάδος μετρόμενοι, ὡς ο γ’ ε’ ζ’ ι’ ι’ ι’ καὶ οἱ τοῦτοι όμοιοι. λέγονται δὲ οἱ αὐτοὶ οὐτοὶ γραμμικοὶ καὶ εὐθυμετρικοὶ διὰ τοῦ τα μήκη καὶ τὰς γραμμὰς κατὰ μίαν διάστασιν θεωρεῖσθαι καλοῦνται δὲ καὶ περισσάκης περιστοί · ὡστε ὀνομάζεσθαι αὐτοὺς 20 πενταχώς, πρῶτος, ἀπυνθέτους, γραμμικούς, εὐθυμετρικούς, περισσάκης περιστούς. μόνοι δὲ οὐτοὺς καταμετροῦνται. τὰ γὰρ τρία οὐκ ἂν ὑπ’ ἄλλου καταμετρηθείν ἄριθμοῖ ὡστε γεννηθῆναι ἐκ τοῦ πολλαπλασιασμοῦ αὐτῶν, ἢ ὑπὸ μόνης μονάδος ἢ ἀπαξ γὰρ τρία τρία, ὡμοιώς· δὲ καὶ ἀπαξ ε’ ε’, καὶ ἀπαξ ζ’ 25 ζ’, καὶ ἀπαξ ι’ ι’· διὸ καὶ περισσάκης περιστοί κέκληται · οἱ τα γὰρ καταμετρούμενοι περιστοί ἢ τα καταμετροῦσα αὐτοὺς μονὰς περιστή. διὸ καὶ πρῶτοι καὶ ἀπυνθέτοι μόνοι οἱ περιστοί.
vent par une série continue, en commençant par l'unité, ils augmentent toujours d'une quantité égale, chacun surpassant d'une unité celui qui le précède ; mais, à mesure que les termes augmentent, leur rapport mutuel diminue. Soient, par exemple, les termes 1, 2, 3, 4, 5, 6, la raison du nombre 2 à l'unité est double ; celle du nombre 3 au nombre 2 est ses- quialtère (\(1 + \frac{1}{2}\)) ; celle du nombre 4 au nombre 3 est sesqui- tierce (\(1 + \frac{1}{3}\)) ; celle du nombre 5 au nombre 4 est sesquis- quarte (\(1 + \frac{1}{4}\)) ; enfin celle du nombre 6 au nombre 5 est sesquiquinte (\(1 + \frac{1}{5}\)). Or, le rapport \(1 + \frac{1}{3}\) est plus petit que \(1 + \frac{1}{4}\) ; \(1 + \frac{1}{4}\) est plus petit que \(1 + \frac{1}{3}\) ; \(1 + \frac{1}{3}\) est plus petit que \(1 + \frac{1}{2}\) ; et enfin \(1 + \frac{1}{2}\) est plus petit que 2. Et on trouverait que la raison décroit de même pour les autres nombres. On voit aussi que les nombres successifs sont alternativement pairs et impairs.

Du nombre premier ou incomposite

VI. Parmi les nombres, les uns sont dits premiers absolus ou incomposite; d’autres sont premiers entre eux, mais non absolument; d’autres sont absolument composés; d’autres, composés entre eux. Les nombres absolument premiers et incomposite sont ceux qu’aucun nombre ne peut mesurer, si ce n’est l’unité. Tels sont 3, 5, 7, 11, 13, 17…… et autres semblables. Ces nombres sont aussi appelés linéaires et eu- thymétriques, parce que les longueurs et les lignes ne sont considérées que dans une seule dimension. On les appelle aussi impairement-impairs. On leur donne donc cinq dénominations différentes: premiers, incomposites, linéaires, euthymétriques et impairement-impairs. Ce sont les seuls qui ne soient pas divisibles; ainsi aucun des autres nombres, différents de l’unité, ne peut diviser le nombre 3, de sorte que 3 puisse résulter de leur multiplication. En effet, une fois 3 fait 3. De même, une fois 5 fait 5, une fois 7 fait 7, et une fois 11 fait 11. Et c’est pour cela qu’on appelle ces nombres
Περί συνθέτου ἀριθμοῦ

ζ. σύνθετοι δὲ εἰς τρὸς ἑαυτοὺς οἱ ὑπὸ τινὸς ἐλάττονος ἄριθμοῦ μετρούμενοι, ὡς ὁ ε' ὑπὸ δυάδος καὶ τρίαδος. πρὸς ἅπληλος δὲ σύνθετοι οἱ κοινοὶ ὑποτιμών μέτρον μετρούμενοι. ὡς ὁ η' καὶ ὁ ε' κοινὸν γ' ἑχουσι μέτρων δυάδα. διὸς γ' ἑ' καὶ δ' η' καὶ ὁ ε' καὶ ὁ η' κοινὸν γ' ἑ' αὐτῶν μέτρων ἢ τριάς καὶ γ' τρις β' ε' καὶ τρις γ' θ'. οὔτε δὲ ἡ μονάς ἄριθμος, ἂλλα ἁρκὴ ἄριθμοῦ, οὔτε ἢ ἀριθμοτος δυᾶς, πρώτῃ οὔτα ἑτεροτῆς μονάδος καὶ μηδὲν αὐτῆς ἐν ἄρτοις ἁρχικῶτερον ἑχουσι. τῶν δὲ συνθέτων τοὺς μὲν ὑπὸ δύο ἄριθμον περιεχομένους καλοῦσιν ἐπιπέ-
impairement-impairs ; car ils sont impairs, et l'unité qui
les mesure est également impaire. Aussi les seuls impairs peu-
vent être premiers ou incomposés. En effet, les nombres
pairs ne sont pas premiers et incomposés ; ils n'ont pas la
seule unité pour mesure, d'autres nombres les mesurent : par
exemple, 2 mesure 4, car 2 fois 2 font 4 ; 2 et 3 mesurent 6,
car 2 fois 3 et 3 fois 2 font 6. Tous les autres nombres pairs,
l'exception de 2, sont mesurés de même par des nombres
plus grands que l'unité. Le nombre 2 est le seul, parmi les
pairs, qui soit dans le même cas que plusieurs impairs, de
n'avoir que l'unité pour mesure. En effet une fois 2 est 2.
C'est pour cela qu'on a dit que le nombre 2 a la nature du
nombre impair, parce qu'il a la même propriété que les im-
pairs. On appelle premiers entre eux, mais non absolument,
les nombres qui ont pour commune mesure l'unité, quoique
d'autres nombres les mesurent, si on les considère séparé-
ment, comme 8 que mesurent 2 et 4, 9 que mesure 3, et
10 que mesurent 2 et 5. Ils ont, en effet, l'unité pour
commune mesure, soit entre eux, soit par rapport à leurs
facteurs premiers : on a [une fois 3 égale 3] une fois 8 égale 8,
une fois 9 égale 9, et une fois 10 égale 10.

Du nombre composé

VII. Les nombres composés sont les nombres mesurés par
un nombre moindre qu'eux-mêmes, comme 6 qui est mesuré
par 2 et 3. Les nombres composés entre eux sont ceux qui
ont une mesure commune comme 8 et 6, qui ont 2 pour
commune mesure, car 2 fois 3 font 6 et 2 fois 4 font 8. Tels
sont encore 6 et 9 qui ont 3 pour commune mesure, car 3
fois 2 font 6 et 3 fois 3 font 9. Quant à l'unité, elle n'est pas
un nombre, mais le principe du nombre ; et, quant au nom-

1 Euclide appelle impairement-impairs les nombres de la forme
$(2a + 1) (2b + 1)$, cf. Éléments VII, déf. 10. Les nombres premiers sont com-
pris dans cette formule en supposant $2b + 1 = 1$, c'est-à-dire $b = 0$.
δοὺς, ὡς κατὰ δύο διαστάσεις θεωρουμένους καὶ οἷον ὑπὸ μήκος καὶ πλάτους περιεχομένους, τοὺς δὲ ὑπὸ τριών στε-
ροὺς, ὡς καὶ τὴν τρίτην διάστασιν προσειληφότας. περιοχήν
δὲ καλοῦσιν ἄριθμον τὸν δὶ ἀλλήλων αὐτῶν πολυπλασιασμὸν.

5 Περὶ τῆς τῶν ἄρτιων διαφορᾶς

η. τῶν δὲ ἄρτιων οἱ μὲν εἶσιν ἄρτικαι ἄρτιοι, οἱ δὲ
περιττάκις ἄρτιοι, οἱ δὲ ἄρτιοπέριττοι. ἄρτικαι μὲν ἄρτιοι [τὸ
σημεῖον τοῦτο ἔστιν] οἷς τρία συμβεβεβαίως, ἐὰν τὸ ὑπὸ δύο
ἄρτιων ἐπ’ ἀλλήλως πολυπλασιασθέντων γεγενήσθαι, δεύτερον
10 τὸ πάντα ἄρτια ἔχειν τὰ μέρη μέγιστα τῆς εἰς μονάδα κατα-

λήξεως, τρίτον τὸ μηδὲν αὐτῶν μέρος ὁμόνυμον εἶναι
περιττῷ· ὅποιοι εἶσιν ὁ λβ’ ξο’ ρνη’ καὶ οἱ ἀπὸ τούτων
ἐξής κατὰ τὸ διπλάσιον λαμβανόμενοι. τὰ γὰρ λβ’ γέγονε μὲν
ἐὰν τε δ’ καὶ η’, δὲ ἔστιν ἄρτια· μέρη δὲ αὐτῶν πάντα
15 ἄρτια, ήμισυ ι’, τέταρτον ὁ η’, ὤγδον ὁ ο’· αὐτὰ τε τὰ
μόρια ὁμόνυμα ἄρτιας, τὸ τε ἡμισυ ώς ἐν δυάδι θεσπο-

μενον καὶ τέταρτον καὶ ὤγδον. ὃ δὲ αὐτὸς λόγος καὶ ἐπὶ τῶν
λοιπῶν ὁμολιὰς ἄριθμοι.

0. ἄρτιοπέριττοι δὲ εἶσιν οἵ ὑπὸ δυάδος καὶ περιττοῦ οὔτι-

10 νοσοῦν μετροῦμενοι, οὕτως εἰκ οἰκτός περιττὰ μέρη ἔχουσιν
τὰ ἡμίσεα κατὰ τὴν εἰς ὑπὸ διαίρεσιν· ὡς τὰ δίς ζ’ ἑό.
ἀρτικαὶ μὲν γὰρ οὕτως καλοῦνται περιττοῖς, ἐπει ὑπὸ τῆς
δυάδος ἄρτιας οὕτης μετροῦμενοι καὶ περιστοῦ τινος, ὃ μὲν

19 Titre dans quelques mss.: perì ἄρτιοπερίττων (des nombres pairement-

impairs).
bre 2, il n'est pas indéfini, il est le premier nombre différent de l'unité et, quoique pair, il n'a pas de diviseur plus grand que l'unité. Les nombres composés qui sont le produit de deux nombres sont appelés plans; on les considère comme ayant deux dimensions, longueur et largeur. Ceux qui sont le produit des trois nombres sont appelés solides, comme possédant la troisième dimension. Enfin, on appelle circuit le résultat de la multiplication de nombres les uns par les autres.

Des diverses sortes de nombres pairs

VIII. Parmi les nombres pairs, les uns sont pairement-pairs, d'autres impairement-pairs, d'autres enfin pairement-impairs. On reconnait qu'un nombre est pairement-pair quand il réunit ces trois conditions : 1° qu'il soit engendré par deux pairs multipliés entre eux; 2° que toutes les parties en soient paires jusqu'à la réduction à l'unité; 3° qu'aucune de ses parties n'ait le même nom qu'un nombre impair. Tels sont 32, 64, 128, et ainsi de suite en procédant par une progression double. En effet, 32 est le produit des nombres 4 et 8 qui sont pairs. Toutes les parties en sont paires, savoir : la moitié 16, le quart 8, le huitième 4, les parties sont de même nom que les nombres pairs, la moitié est considérée comme le nombre binaire, il en est de même du quart, du huitième (qui sont considérés comme les nombres 4, 8). Il en est de même des autres nombres.

IX. On appelle nombres pairement impairs les nombres mesurés par le nombre 2 et par un nombre impair quelconque et qui ont, par conséquent, des moitiés impaires quand on fait la division par 2. Tel est 2 fois 7 ou 14. On les appelle pairement impairs, parce qu'ils ont pour mesure le nombre 2.

25 Ainsi, suivant Théon, le nombre pairement-pair est une puissance de 2. Suivant Euclide, c'est un produit de deux nombres pairs; cf. Éléments, VII, déf. 8.
τα περι ἀριθμητικῆς

τὸ τοῦ ἑνός, ὁ δὲ ζ' τοῦ γ', ὁ δὲ ι' τοῦ ξ', ὁ δὲ ι' τοῦ ζ'. διαφράνται δὲ οὕτω τὴν πρώτην διαφράσειν εἰς περιστών, μετὰ δὲ τὴν πρώτην εἰς ἥν διαφράσειν οὐκ ἔτι διαφράνται. τῶν γὰρ ζ' τὰ μὲν γ' ἡμισυ, τὰ δὲ γ' οὐκ ἔτι εἰς ἥν· διαφεῖται· μονάς γὰρ ἀδιαφράτος.

περιστάχως δὲ ἄρτιοι εἰσὶν ὅπο τὸ πολλαπλασιασμὸς ἐκ δυεῖν ὄντων περιστών καὶ ἄρτιον γίνεται, καὶ πολλαπλασιασθέντες εἰς ἥν μὲν ἄρτια μέρη δίχα διαφράνται, κατὰ δὲ τὰς πλεούς διαφέρεις καὶ μὲν ἄρτια μέρη, καὶ δὲ περιστά ἐγγυν. ὦς ὁ ι' καὶ ξ' τρις γάρ δ' ι' ι' δ', καὶ πεντάκες ζ' καὶ τὰ μὲν ι' διχῇ διαφεῖται <εἰς> ζ' καὶ ζ', τριγῇ δὲ εἰς δ' καὶ δ' τετραγῇ δὲ εἰς τετράκες γ' τὸ δὲ ξ' διχῇ καὶ ζ' τετραγῇ δὲ εἰς ε', πενταχῇ δὲ εἰς δ'.

Περὶ ἵσαχις ἵσων καὶ ἑπερομηνῶν καὶ παραλήλογομμῶν ἁριθμῶν
15

ι. ἔτι τῶν συνήθεων ἁριθμῶν οἱ μὲν ἵσαχις ἵσοι εἰσὶν καὶ τετράγωνοι καὶ ἑπίπεδοι, ἐπειδὲ έστιν ήσος ἐπὶ ἴσων πολλαπλασιασθεὶς γεννηθής τινὰ ἁριθμῶν, [ὁ γεννηθεὶς ἵσαχις τε ἴσος καὶ τετράγωνος ἐστίν] ὡς ὁ ζ', ἐστὶ γάρ δ' εἰς β', καὶ ὁ θ', δι' ἐστὶ γάρ τρις γ'·
20 ἴβ. οἱ δὲ ἄντισικες ἄντισι, ἐπειδὲ ἄντισι ἁριθμοί ἐπὶ ἄλλη ἡ λοις πολλαπλασιασθῶσιν, ὡς ὁ ζ' ἐστὶ γάρ δ' εἰς γ' ζ'.

γ. τούτων δὲ ἑπερομήκεις μὲν εἰσὶν οἱ τὴν ἐτέραν πλευρὰν τῆς ἐτέρας μονάδοι μείζονα ἐγγυνοῦσιν. ἐστὶ δὲ ὁ τοῦ περιστοῦ

6 Title: perι περιστάχως ἁρτίων (des nombres impairement pairs).
qui est pair et, en outre, un nombre impair; 2 a l'unité; 6 a le nombre 3; 10 à le nombre 5; 14 a 7. Ces nombres, une fois faite la division par 2, sont partagés en deux parties impaires, et, après la première division, ils n'en admettent plus d'autre en deux parties égales. En effet, la moitié de 6 est 3, mais 3 ne peut se diviser en parties égales, car l'unité (qui reste après la division par 2) est indivisible *.

X. Les nombres impairement pairs sont ceux qui résultent de la multiplication de deux nombres quelconques, l'un impair, l'autre pair, lesquels, multipliés l'un par l'autre, sont 10 divisés par le nombre 2 en deux parties paires; mais, si l'on emploie de plus grands diviseurs, les quotients sont tantôt pairs, tantôt impairs. Tels sont les nombres 12 et 20, qui valent respectivement 3 fois 4, et 5 fois 4. Or, en divi-
sant 12 successivement par 2, 3 et 4, on a 12 $= 2 \times 6 = 3 \times 4$ 15 $= 4 \times 3$. On a de même 20 $= 2 \times 10 = 4 \times 5 = 5 \times 4$.*

Des nombres carrés, hétéromèques, parallélogrammes

XI. Parmi les nombres composés les uns sont également égaux, c'est-à-dire carrés et plans, quand ils résultent de la multiplication de deux nombres égaux [le résultat est également égal ou carré]. Tels sont les nombres 4 et 9, car 2 fois 2 font 4 et 3 fois 3 font 9.

XII. Au contraire, les nombres composés sont inégalement inégaux, quand ils résultent de la multiplication de deux 25 nombres inégaux. Tel est 6, car 2 fois 3 font 6.

XIII. Parmi ces nombres, on nomme hétéromèques, ceux qui ont un côté (facteur) plus long que l'autre d'une unité.

7 Les nombres pairement impairs sont donc, d'après Théon, les nombres de la forme 2(2a + 1). C'est la même définition que celle d'Euclide, Cf. Élé-
ments, VII, déf. 9. — 16 Les nombres impairement pairs, que Théon distin-
gue des nombres pairement impairs, seraient donc les nombres de la forme (2a + 1) 4 b.
γνώνταί δὲ κατ᾿ ἐπιτυώθεσιν β’ καὶ δ’ ε’, ε’ καὶ ε’ υβ’, υβ’ καὶ η’ κ’, κ’ καὶ ι’ λ’· ὥστε εἰπὲν ἐν οἱ γεγεννημένοι ἐτερομηχεῖς ε’ υβ’ κ’ λ’. οὐ δὲ αὐτὸς λόγος καὶ ἐπὶ τῶν ἐξῆς. 15 κατὰ δὲ πολλαπλασιασμὸν οἱ αὐτοὶ ἐτερομηχεῖς γεγονότα τῶν ἐφεξῆς ἀρτίων τε καὶ περιττῶν τοῦ πρῶτου ἐπὶ τῶν ἐξῆς πολλαπλασιαζομένου· οὖν

α’ β’ γ’ δ’ ε’ ε’ ζ’ η’ θ’ ι’ ἀπαξ μὲν γὰρ β’ β’, δις δὲ γ’ ε’, τρις δὲ δ’ υβ’, τετράκις δὲ ε’ 20 κ’, πεντάκις δὲ ε’ λ’· καὶ ἐπὶ τῶν ἐξῆς οὐ αὐτὸς λόγος. ἐτερομηχεῖς δὲ οἱ τοιοῦτοι κέκληται, ἐπειδὴ πρώτην ἐτερότητα τῶν πλευρῶν η προσθήκη τῇ ἐτέρᾳ πλευρᾷ τῆς μονάδος ποιεῖ. ὦδ. παρακληλόγραμμοι δὲ εἰσὶν ἁριμοὶ οἱ διάκοι. [Ἡ καὶ μείζονι ἁριμῳ] τῇ ἐτέρᾳ πλευρᾷ τῆς ἐτέρας ὑπερέχουσιν

23 ἡ καὶ μείζονι ἁριμῳ] ces quatre mots doivent être supprimés ; si les côtés du nombre parallélogramme pouvaient différer de plus de deux unités, la définition de ce nombre serait la même que celle du nombre proméque ; voy. I. xvii. D’ailleurs, dans les quatre exemples de nombres parallélogrammes donnés par Théon (2 × 4, 4 × 6, 6 × 8, et 8 × 10) la différence des deux facteurs est égale à 2. Il paraît donc évident que Théon définit d’abord le nombre carré a × a, puis le nombre hétéroméque a (a + 4) et le nombre parallélogramme a (a + 2), avant de définir le nombre proméque a (a + b) la différence b des deux facteurs étant un nombre entier quelconque.
Or, le nombre qui surpasse le nombre impair d'une unité est pair, donc les hétéromèques ne comprennent que des nombres pairs. En effet, l'unité, principe de tous les nombres, étant impaire et tendant à la production des autres, a fait, en se doublant elle-même, le nombre 2 qui est hétéromèque. C'est pourquoi le nombre 2, étant hétéromèque et surpassant l'unité d'une unité, rend hétéromèques les nombres pairs qui surpassent les impairs d'une unité. Or, les nombres dont il s'agit s'engendrent de deux manières, par la multiplication et par l'addition. Par l'addition, les nombres pairs ajoutés aux nombres pairs qui les précèdent, produisent les nombres hétéromèques. Soient, en effet, les nombres pairs successifs

\[2, 4, 6, 8, 10, 12, 14, 16, 18.\]

Par l'addition, on a \(2 + 4 = 6\); \(6 + 6 = 12\); \(12 + 8 = 20\); \(20 + 10 = 30\); en sorte que les sommes sont les nombres hétéromèques 6, 12, 20, 30 et ainsi des suivants *. Les mêmes nombres hétéromèques sont également obtenus par la multiplication des pairs et des impairs successifs, le premier nombre étant multiplié par le suivant. Soit, en effet,

\[1, 2, 3, 4, 5, 6, 7, 8, 9, 10.\]

On a 1 fois 2 = 2; 2 fois 3 = 6; 3 fois 4 = 12; 4 fois 5 = 20; 5 fois 6 = 30; et ainsi de suite. Les nombres hétéromèques sont ainsi appelés, parce que c'est l'addition de l'unité à l'un des côtés qui fait la première diversité des côtés.

\[\text{XIV. Les nombres parallélogrammes sont ceux qui ont un côté plus grand que l'autre de 2 unités, comme 2 fois 4, 4 fois 6, 6 fois 8, 8 fois 10, qui valent 8, 24, 48, 80.}\]

\[\text{17 La somme des termes de la progression formée par la suite naturelle des nombres pairs}\]

\[2, 4, 6, 8, 10, 12, 14, 16, \ldots, 2n\]

\[\text{est, en effet, } n(n + 1), \text{ donc c'est un nombre hétéromèque d'après la définition.}\]

Théon ne donne jamais la démonstration des théorèmes arithmétiques qu'il énonce; il les vérifie sur quelques exemples.
ΤΑ ΠΕΡΙ ΑΡΙΘΜΗΤΙΚΗΣ

46

ἐγοντες, ὡς ὦ δις θ' καὶ ὦ τετράχις ε' καὶ ὦ ἑξάχις η' καὶ ὦ ὀκτάχις ι', οὔτε εἰσίν ὦ η' καὶ ι' μη' π'.

ιε. τετράγωνοι εἰσίν οἱ ἐκ τῶν κατὰ τὸ ἔξης περισσῶν ἐπισυντιθεμένων ἀλλὰ ἤγοσαν γεννώμενοι. οἷον ἐκείσθωσαν ἐφεξῆς

5 περισσοὶ α' γ' ε' ζ' θ' ἵνα ἐν καὶ γ' θ', διὰ ἐστὶ τετράγωνοι, ἵστατε γάρ ἐστίν ἵστος, τοῦτοτε δις τ' δ' καὶ ε' θ',

δι καὶ αὐτὸς τετράγωνος. ἐστὶ γάρ τρίς γ' θ' ἓ θ' καὶ ζ' ι', δι καὶ αὐτὸς τετράγωνος ἐστὶ τετράχις γάρ δ' ι' ἓ ι'

καὶ θ' καὶ οὐ καὶ αὐτὸς τετράγωνος ἐστὶ καὶ ἱστακες ι' ὡς.

10 ἐστὶ γάρ πεντάχις ε' κ' καὶ μέγ᾽ ἂπειροι οἱ αὐτοὶ λόγοι. κατὰ μὲν οὖν ἐπισυνθήσεται αὐτῶς γεννώμενα ὦ τετράγωνοι,

τῶν ἐφεξῆς περισσῶν τῷ γεννομένῳ ἀπὸ μονάδος τετραγώνῳ προστιθεμένων κατὰ πολλαπλασιασμόν δὲ, ἐπεδόκοι

ὑστισῶν ἀριθμὸς ἑρ' ἕσωτον πολλαπλασιασθῇ, οἷον δις β' δ',

13 τρίς γ' θ', τετράχις δ' ι'.

ιε. οἱ μὲν οὖν τετράγωνοι πάντες τοὺς ἑτερομῆκες περιλαμβάνονται κατὰ τὴν γεωμετρικὴν ἀναλογίαν καὶ μέσους

αὐτοὺς ποιοῦσι τοῦτοι τοὺς μονάδι μειζόνα τὴν ἑτέραν πλευρὰν τῆς ἑτέρας ἐγοντες οἳ δὲ ἑτερομῆκες οὐκ ἔτι τοὺς

20 τετραγώνους περιλαμβάνοντων ὡς μέσους εἰσίν κατὰ ἀναλογίαν.

οἷον α' β' γ' δ' ε'. οὕτω τοῦ μὲν ἵδιον πλήθει πολλαπλασιαστικόμενοι ποιοῦσι τετραγώνους ἀπαξ τε γάρ α' α' καὶ δις

β' δ' καὶ τρίς γ' θ' καὶ τετράχις δ' ι' καὶ πεντάχις ε' κε' καὶ οὐκ ἐκβάλονται τῶν ἑδιῶν ὡρων ἤ τε γάρ ὑπὲρ

25 ἑαυτὴν ἑκούσε καὶ ἤ τριάς ἑαυτὴν ἑτράκεν, ὡστε εἰνὲν ἐν τετράγωνοι οἱ ἑξῆς α' δ' θ' ι' κε' μέσους δὲ ἐγουσί τοὺς ἑτερομῆκες οὕτως. τετράγωνοι δύο ἑφεξῆς δ' τε α' καὶ δ' τούτων μέσος ἑτερομῆκες ὡ β' καὶ εἰσθωσαν δὴ α' β' δ' μέσος γίνεται ὦ β', τοῦ αὐτοῦ λόγῳ τῶν ἄκρων τοῦ μὲν

XV. Les nombres engendrés par l'addition des nombres impairs successifs sont carrés. Soit, en effet, la série des impairs 1, 3, 5, 7, 9, 11 ; 1 et 3 font 4 qui est carré, car il est également égal, 2 fois 2 font 4 ; 4 et 5 font 9, qui est aussi carré, car 3 fois 3 font 9 ; 9 et 7 font 16, qui est carré, car 4 fois 4 font 16 ; 16 et 9 font 25, c'est encore un nombre carré, car il est également égal, 5 fois 5 font 25. On continuera ainsi à l'infini. Telle est donc la génération des nombres carrés par l'addition, chaque impair étant successivement ajouté au carré obtenu en sommant les impairs précédents à partir de l'unité *. La génération a lieu aussi par la multiplication, en multipliant un nombre quelconque par lui-même, comme 2 fois 2 font 4, 3 fois 3 font 9, 4 fois 4 font 16.

XVI. Les carrés consécutifs ont pour moyens, en proportion géométrique, des hétéromèques, c'est-à-dire des nombres dont un côté est plus long que l'autre d'une unité ; mais les hétéromèques consécutifs n'ont pas des carrés pour moyens proportionnels.

Ainsi, soient les nombres 1, 2, 3, 4, 5 ; chacun d'eux multiplié par lui-même donne un carré : 1 × 1 = 1 ; 2 × 2 = 4 ; 3 × 3 = 9 ; 4 × 4 = 16 ; 5 × 5 = 25 ; aucun des facteurs ne sort de ses propres limites, car le nombre 2 ne fait que se doubler lui-même, 3 ne fait que se tripler,... Les carrés successifs sont donc 1, 4, 9, 16, 25. Je dis qu'ils ont pour moyens les hétéromèques. Prenons, en effet, les carrés successifs 1 et 4, le moyen entre eux est le nombre hétéromèque 2 ; si nous posons la série 1, 2, 4, le moyen 2 contient l'extrême 1, autant de fois qu'il est contenu dans l'autre extrême 4 ; 2 est, en effet, le double de 1, et 4 le double de 2. Soient encore les car-

* En effet, le n\° nombre impair à partir de l'unité est 2n — 1 et la somme des termes de la progression 1, 3, 5, 7, 9, ... est n².
ὑπερέχον, ύφ' οὗ δὲ ὑπερεχόμενος τοῦ μὲν γὰρ ἐνός τὰ β' ὑπελάσια, τῶν δὲ β' τὰ δ', πάλιν τετράγωνοι μὲν ὁ δ' καὶ θ' μέσος δὲ αὐτῶν ἐτερομηνίκης ὁ ε'· καίσθωσαν δὴ δ' ε' θ'· μέσος δὲ ε', τῷ αὐτῷ λόγῳ τῶν ἀκρῶν τοῦ μὲν [γάρ] ὑπερέχον, ὡρ' οὗ δὲ ὑπερεχόμενος τῶν μὲν γὰρ δ' τὰ ε' ἡμιόλια, τῶν δὲ ε' τὰ θ'. οὗ δὲ αὐτὸς λόγος καὶ ἐπὶ τῶν ἔξης.

οὶ δὲ ἐτερομηνίκες, ὡσ τὸν τῇ μονάδα υπερεχόντων πολλαπλασιαζόμενοι, οὕτε μένουσιν ἐν τοῖς ἱδίοις ὅροις οὕτε περιέχοντων γραμματών τοὺς τετραγώνους. οἷον τὰ δὲ γ' γεννᾶ τὸν ζ' καὶ τὰ τρία δ' γεννᾶ τὸν ἦβ' καὶ τὰ τετράχως ἐ γεννᾶ τὸν θ', καὶ οὕδεις αὐτῶν μένει ἐν τῷ ἑαυτῷ ὅρῳ, ἀλλὰ μεταπλησσὴ ἐν τῷ πολλαπλασιασμῷ, οἷον δωὰς ἑπὶ τριάδα καὶ τριάδα ἑπὶ τετράδα καὶ τετράδα ἑπὶ πεντάδα·

οἱ τε γεννώμενοι οὐ περιλαμβάνουσι τοὺς τετραγώνους ἀριθμοὺς· οἷον ἐφεξῆς ἐτερομηνίκες β' ε', μεταξὺ δὲ αὐτῶν ἐστὶ τῇ τάξει τετράγωνος ὁ δ'· ἀλλὰ κατ' οὐδεμίαν ἀναλογιὰν περιλαμβάνεται ὑπ' αὐτῶν ὡστε ἐν τῷ αὐτῷ λόγῳ πρὸς τὰ ἄκρα εἶναι. ἐκχεισθῶ γὰρ β' δ' ε'· η τετράς ἐν διαφόροις λόγοις πρὸς τὰ ἄκρα γεννῆσεται· τῶν μὲν γὰρ β' τὰ δ', ὑπελάσια, τῶν δὲ δ' τὰ ε' ἡμιόλια. ίνα δὲ ἀναλόγως μέσον ἦ, δεῖ αὐτὸς οὕτως μέσον εἶναι, ὡστε δὲν ἔγει λόγον τὸ πρῶτον πρὸς τὸ μέσον, τοῦτον τὸ μέσον πρὸς τὸ τρίτον. πάλιν τῶν ε' καὶ θ' ἐτερομηνίκων μέσος τῇ τάξει τετράγωνος ὁ θ', ἀλλ' οὕχει εὐφημίσθησεν ἐν τῷ αὐτῷ λόγῳ πρὸς τὰ ἄκρα· ε' θ'· τῶν μὲν γὰρ ε' τὰ θ' ἡμιόλια, τῶν δὲ θ' τὰ θ' ἑπτάδα, ὃ δὲ αὐτὸς καὶ ἐπὶ τῶν ἔξης λόγος.
rés 4 et 9, leur moyen est le nombre hétéromèque 6. Si nous mettons en ligne 4, 6, 9, le rapport du moyen 6 au premier extrême est égal au rapport du deuxième extrême à 6, car le rapport de 6 à 4 est sesquialtère \((1 + 1/2)\), comme le rapport de 9 à 6. Il en est de même des carrés suivants.

Les hétéromèques, au contraire, produits de facteurs qui diffèrent d'une unité, ne restent pas dans leurs propres limites et ne comprennent pas les carrés. Ainsi \(2 \times 3 = 6\); \(3 \times 4 = 12\); et \(4 \times 5 = 20\). Or, aucun des (premiers) facteurs ne demeure dans ses propres limites, il change dans la multiplication, le nombre 2 se multipliant par 3, le nombre 3 par 4, et 4 par 5.

De plus, les nombres hétéromèques engendrés ne comprennent pas les nombres carrés. Ainsi 2 et 6 sont des hétéromèques successifs entre lesquels se trouve le carré 4; mais celui-ci n'est pas compris entre eux d'après la proportion géométrique continue, en sorte qu'il ait le même rapport avec les extrêmes. Si nous disposons en ligne 2, 4, 6; 4 aura un rapport différent avec les extrêmes, car le rapport de 4 à 2 est double et celui de 6 à 4 est sesquialtère \((1 + 1/2)\). Or, pour que 4 fut moyen proportionnel, il faudrait que le rapport du premier terme au moyen fût égal au rapport du moyen au troisième terme. Pareillement 9, nombre carré, est compris entre les hétéromèques successifs 6 et 12, mais il n'a pas le même rapport avec les extrêmes, car le rapport de 9 à 6 est sesquialtère \((1 + 1/2)\), tandis que celui de 12 à 9 est sesquitierce \((1 + 1/3)\). Il en est de même des hétéromèques suivants *.

28 Voy. note III.
Περὶ προμήχων ἀριθμῶν

ις. προμήχης δὲ ἔστιν ἀριθμὸς ὃ ὑπὸ δύο ἀντίτων ἀριθμῶν ἀποτελούμενος ὄντωνον, ἣ μονάδι ἡ δυάδι ἡ καὶ πλείονι τοῦ ἐτέρου τῶν ἐτερον ὑπερέχοντος, ὡς ὁ κ' ἢ ἕστι γὰρ ἢ ἕξις ὁ', καὶ οἱ τούτοι. ἔστι δὲ τρία μέρη τῶν προμήχων. καὶ γὰρ πᾶς ἐτερομήχης προμήχης, καθὼς μείζονα τὴν ἐτέραν πλευρὰν τῆς ἐτέρας ἔχει. ὡστε εἰ μὲν τις ἐτερομήχης, οὕτως καὶ προμήχης. οὐ μὴν ἀνάπαυλιν ὁ γὰρ μείζονα πλέον ἡ μονάδι τὴν ἐτέραν ἐχθρόν πλευρὰν προμήχης μὲν, οὐ μὴν ἐτερομήχης. ἦν γὰρ ἐτερομήχης οὐ μονάδι μείζονα τὴν ἐτέραν ἐχθρόν πλευρὰν, ὡς ὁ ' ἢ ἕστι φάρ δις γ' 'ε'.

ἐτὶ προμήχης καὶ ὁ κατὰ διαφορὰν πολλαπλασιασμῷ ποτέ μὲν μονάδι μείζονα τὴν ἐτέραν πλευρὰν <ἐχθρόν>, ποτὲ δὲ πλέον ἡ μονάδι. ὡς ὁ γ' ἢ ἕστι γὰρ καὶ τρίς δ' καὶ δίς ε', ὡστε κατὰ μὲν τὸ τρὶς δ' εἰς ἄν ἐτερομήχης, κατὰ δὲ τὸ δίς ε' προμήχης. ἐτὶ προμήχης ἐστὶν ὁ κατὰ πάσας τῆς σχέσεις τῶν πολλαπλασιασμῶν πλέον ἡ μονάδι μείζονα τὴν ἐτέραν ἐχθρόν πλευρὰν ὡς ὁ μ' καὶ γὰρ τετράκες ε' καὶ πεντάκες γ' καὶ δίς ε' ὡστε καὶ μόνος ἄν εἴῃ προμήχης. ἐτερομήχης. γὰρ ἔστιν ὁ ἐκ τῶν ἔσχων ἀριθμῶν τὴν πρώτην λαμβάνον ἐτερότητα. ἢ δὲ τῆς μονάδος τῷ ἐτέρῳ ἀριθμῷ προσθήκη πρώτην ποιεῖ ἐτερότητα. διὸ οἱ ἐκ τοῦτον χωρίως ἀπὸ τῆς πρώτης τῶν πλευρῶν ἐτερότητος ἐτερομήχης. οἱ δὲ πλέον ή μονάδι τὴν ἐτέραν πλευράν μείζονα ἐχθρότες διὰ τῶν ἐπὶ πλέον προσθήκην τοῦ μήκους προμήχης κέκληται.

η. εἰς δὲ τῶν ἀριθμῶν οἱ μὲν ἐπίπεδοι, θεοὶ ὁπὸ δύο ἀριθμῶν πολλαπλασιάζονται, οὗν μήκους καὶ πλάτους, τούτων
Des nombres promèques

XVII. Un nombre promèque est un nombre formé de facteurs inégaux quelconques dont l'un surpasse l'autre, soit d'une unité, soit de deux, soit d'un plus grand nombre. Tel est 24 qui vaut 6 fois 4, et autres nombres semblables. Il y a trois classes de nombres promèques. En effet, tout nombre hétéromèque est en même temps promèque, en tant qu'il a un côté plus grand que l'autre; mais, si tout nombre hétéromèque est par la même promèque, la réciproque n'est pas vraie, car le nombre qui a un côté plus long que l'autre de plus d'une unité, est promèque; mais il n'est pas hétéromèque, puisque celui-ci se définit : un nombre dont un côté surpasse l'autre d'une unité, comme 6, puisque $2 \times 3 = 6$.

Un nombre est encore promèque quand, suivant les multiplications diverses, il a un des côtés tantôt plus long d'une unité, tantôt plus long de plus d'une unité. Tel est 12 qui résulte de 3×4 et de 2×6, en sorte qu'à raison des côtés 3 et 4, le nombre 12 est hétéromèque, et qu'à raison des côtés 2 et 6, il est promèque. Enfin, un nombre est encore promèque, si, résultant de toute espèce de multiplication, il a un côté plus long que l'autre de plus d'une unité. Tel est 40, qui est le produit de 10 par 4, de 8 par 5 et de 20 par 2. Les nombres de cette espèce ne peuvent être que promèques. Le nombre hétéromèque est celui qui reçoit la première altération après le nombre formé de facteurs égaux, l'addition d'une unité faite à l'un des deux côtés égaux étant la première altération. C'est pourquoi les nombres qui résultent de cette première altération des côtés ont été appelés, avec raison, hétéromèques; mais ceux qui ont un côté plus grand que l'autre d'une quantité supérieure à l'unité ont été appelés promèques, à cause de la plus grande différence de longueur entre les côtés.

XVIII. Les nombres plans sont les nombres produits par la multiplication de deux nombres représentant la longueur
Περὶ τριγώνων ἀριθμῶν, πῶς γεννώνται, καὶ περὶ τῶν ἔξῆς πολυγώνων

5 ὅ. γεννώνται ὃ οἱ τρίγωνοι τῶν τρόπων τούτων. [ἂν] ἄσπερ οἱ ἐφεξῆς ἄρτοι άλληλοις ἐπισυντιθέμενοι κατὰ τὸ ἔξης ἐτερομηχήσεις ἀριθμοὺς ποιοῦσιν, οἷον ὁ β' πρῶτος ἄρτος καὶ ἔστιν ἐτερομηχήσεις ἐστὶ γάρ ἢπαξ β'. εἶτα τοὺς β' ἀν προσθήσες δ', γίνεται ε', δ' καὶ αὐτὸς ἐτερομηχήσεις ἐστὶ γάρ δις γ' καὶ μέγερις ἀπείρου ὁ αὐτὸς λόγος, ἠναργήσετον δὲ, ὡστε πᾶσιν εὐσύνοιτον εἶναι τὸ λεγόμενον, δεικνυται καὶ τῇδε.

prasithe evhez esti alpha ekkheimen evvo tado.

α α

to sghma autou estai eteromichesei kath mevan gar to muikos estin eti vno katho de to platoes er' evn meta tis duo estin

αρτους o β' kai ean prosthonein tois prwtouis duo alfa [α' α'] kai periwhomen ta δ' tois β', ginetai eteromichesei tois toin e' sghma kath mevan gar to muikos ginetai eti tria katho de to platoes eti β'. egezis estin artois meta δ' o e' ean prosthisei tauta tois prwtouis e', ginetai o iβ', kath peri-

θης αὐτὰ τοῖς πρῶτοις, ἐστιν σχήμα ἐτερομήκεις ὡς ἔχειν ταύτα κατὰ τὸ μῆκος μὲν δ', κατὰ πλάτος δὲ γ', καὶ μέγερις ἀπείρου ὁ αὐτὸς λόγος κατὰ τὴν τῶν ἄρτων ἐπισυνθέσθην.

α α α α α α α α α α

πάλιν δὲ οἱ ἔξης περιστολ άλληλοις ἐπισυντιθέμενοι τετραγώνοις ποιοῦσιν ἀριθμοὺς. εἰτὶ δὲ οἱ ἐφεξῆς περιστοτοι α' γ' ὡς ε' ζ' θ' κα'. ταύτα δὲ ἐφεξῆς συντιθεῖσις ποιῆσεις τετραγώνους
et la largeur. Parmi ces nombres, il y en a qui sont triangulaires, d'autres sont quadrangulaires, pentagones et en général polygones.

Des nombres triangulaires, de la manière dont ils s'obtiennent, et des autres nombres polygones

XIX. Les nombres triangulaires s'obtiennent de la manière que nous allons indiquer. Et d'abord les pairs successifs ajoutés les uns aux autres produisent les hétéromèques. Ainsi le premier pair 2 est en même temps hétéromèque, car il vaut 1×2. Si maintenant à 2 on ajoute 4, la somme sera 6 qui est encore un hétéromèque, puisqu'il vaut 2×3 et il en est de même des suivants à l'infini. Mais, afin que ce que nous venons de dire soit plus clair, nous allons le montrer ainsi.

Supposons que le premier pair 2 soit représenté par les deux unités 1 1, la figure qu'elles forment est hétéromèque, car elle a 2 en longueur et 1 en largeur. Après le nombre 2 vient le nombre pair 4; si nous ajoutons les quatre unités aux deux premières, en les plaçant autour (à angle droit), nous aurons la figure du nombre hétéromèque 6, car sa longueur est 3 et sa largeur 2. Après le nombre 4 vient le nombre pair 6. Si nous ajoutons les 6 unités aux 6 premières en les plaçant autour (à angle droit), la somme sera 12 et la figure sera hétéromèque, comme ayant 4 en longueur et 3 en largeur, et ainsi de suite à l'infini par l'addition des nombres pairs

\[
\begin{array}{c|c|c}
1 & 1 & 1 \\
\hline
1 & 1 & 1 \\
\end{array}
\quad \begin{array}{c|c|c|c}
1 & 1 & 1 & 1 \\
\hline
1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 \\
\end{array}
\]

A leur tour, les impairs ajoutés ensemble donnent les nombres carrés. Or, les impairs successifs sont 1, 3, 5, 7, 9, 11. En les additionnant d'une manière continue, on obtient les
ΤΑ ΠΕΡΙ ΑΡΙΘΜΗΤΙΚΗΣ

αριθμοὺς. οὖν τὸ ἐν πρῶτον τετράγωνον· ἔστι γὰρ ἄπαξ ἐν ἐν. εἰτὰ περισσὸς ὁ γ'· τούτον ἀν προσβῆς τὸν γνῶμον τῷ ἐνι. τοὺς τετράγωνων ἱσάκες ἢ τὸν· ἔσται γὰρ κατὰ μῆκος β' καὶ κατὰ πλάτος β'. ἐφεξῆς περισσὸς ὁ ε'· τούτον ἀν περιφέρει τὸν γνώμον τῷ δ' τετράγωνῳ, γενήσεται πάλιν τετράγωνος ὁ β', καὶ κατὰ μῆκος ἐξαν γ' καὶ κατὰ πλάτος γ'. ἐφεξῆς περισσὸς ὁ ζ'. τοῦτον ἀν προσβῆς τῷ β', ποιεῖς τὸν ι', καὶ κατὰ μῆκος δ' καὶ κατὰ πλάτος δ'. ὁ δὲ αὐτὸς λόγος μέγρις ἀπειροῦ.

α α α α α α α α α

κατὰ ταύτα δὲ ἂν μὴ μονὸν τοὺς ἐφεξῆς ἄρτιος μηδὲ μόνον τοὺς ἐφεξῆς περισσοῦς, ἀλλὰ καὶ ἄρτιος καὶ περισσός ἀλλὰ ζώον ἐπισυνθημένον, τρίγωνοι ἡμῖν ἀριθμοὶ γενήσονται. ἐκεῖσθεισαν γὰρ ἐφεξῆς περισσός καὶ ἄρτιοι, α' β' γ' δ' ε' ε' ζ' γ' δ' ι'. γίνονται κατὰ τὴν τούτων σύνθεσιν οἱ τρίγωνοι.

πρώτῃ μὲν ἢ μονάς· αὕτη γὰρ, εἰ καὶ μὴ ἑντελεχεία, ὑπάρχει μει πάντα ἐστὶν, ἄγρη πάντων ἀριθμοῖο ὀυκα. τῆς δὲ ἐξιδος αὐτῇ δυάδος προστεθείσης γίνεται τρίγωνος ὁ γ'· εἰτὰ πρόσθες γ', γίνεται ε'· εἰτὰ πρόσθες δ', γίνονται ι'· εἰτὰ πρόσθες ε', γίνονται ιε'· εἰτὰ πρόσθες ε', γίνονται κα'· εἰτὰ πρόσθες ζ', γίνονται κη'· εἰτὰ πρόσθες η', γίνονται λζ'· εἰτὰ πρόσθες θ', γίνονται με'· εἰτὰ πρόσθες ι', γίνονται νε'· καὶ μέχρις ἀπειρού ὁ αὐτὸς λόγος. δὴ ἦν δὲ ὅτι τρίγωνοι οὐκ οἱ ἀριθμοὶ κατὰ τὸν σχηματισμὸν, τοὺς πρῶτος ἀριθμοὺς τοῦ ἐφεξῆς γνῶμον προστεθεμένου· καὶ εἰσεν ἂν ὁ οὗ ἐκ τῆς

ἐπισυνθημένως ἀπογεννημένως τρίγωνοι οὐδὲ·

γ' ε' ι' ιε' κα' κη' λζ' με' νε'.

καὶ οὕτως ἐπὶ τῶν ἐξης [τῶν με' καὶ νε'].
nombres carrés. Ainsi l'unité est le premier nombre carré, car $1 \times 1 = 1$. Vient ensuite le nombre impair 3. Si on ajoute ce gnomon à l'unité, on obtient un carré également égal, car il a 2 tant en longueur qu'en largeur. L'impair qui vient ensuite est 5. Si on ajoute ce gnomon au carré 4, on obtient un nouveau carré 9, qui a 3 en longueur comme en largeur. Vient ensuite l'impair 7 qui, ajouté au carré 9, donne le carré 16, dont la longueur et la largeur valent 4, et ainsi de suite à l'infini.

$$
\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 \\
\end{array}
\quad
\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 \\
1 & 1 \\
\end{array}
\quad
\begin{array}{ccc}
1 & 1 & 1 \\
1 & 1 \\
1 & 1 \\
1 & 1 \\
\end{array}
$$

De même, en additionnant non plus seulement les pairs seuls ou les impairs seuls, mais les pairs et les impairs, nous obtiendrons les nombres triangulaires. La suite des pairs et des impairs est 1, 2, 3, 4, 5, 6, 7, 8, 9, 10; c'est en les additionnant que nous formerons les nombres triangulaires. Le premier est l'unité, car si elle n'est pas tel en acte, elle est tout en puissance, étant le principe de tous les nombres. Si on lui ajoute le nombre 2, on a le nombre triangulaire 3. Si à ce nombre on ajoute 3, on obtient 6, et, en ajoutant 4 à celui-ci, on a 10. Si à ce dernier on ajoute 5, la somme est 15. Ajoutez 6, vous aurez 21. Ajoutez 7 à ce dernier, vous aurez 28 qui, augmenté de 8, deviendra 36. Et celui-ci augmenté de 9 deviendra 45. Ajoutez 10, vous aurez 55. Et ainsi de suite à l'infini. Or, il est évident que ces nombres sont triangulaires, d'après la figure obtenue en ajoutant aux premiers nombres les gnomons successifs. Les nombres triangulaires obtenus par addition seront donc

3, 6, 10, 15, 21, 28, 36, 45, 55.

et ainsi de suite.

καὶ, οἳ δὲ τετράγωνοι γεννώνται μὲν, ὡς προείρηται, ἐκ τῶν ἐφεξῆς ἀπὸ μονάδος περιττῶν ἀλληλοὺς ἑπταεξικεφαλῶν· ἢ συμβέβηκε δὲ αὐτοῖς ὡστε ἑνεκάλλεξ παρ’ ἓνα ἄρτιός εἶναι καὶ περιττοῖς, ὡσπερ ὅ πάς ἄριθμός παρ’ ἓνα ἄρτιός ἐστιν ἡ περιττὸς· οὖν
α’ δὲ θ’ ἦν ἐκ’ λέ’ μή’ ἕδ’ π’ ρ’.

τῇ δὲ ἀπὸ μονάδος κατὰ τὸ ἐξῆς ἔκθετε τῶν ἄρτιῶν τε καὶ
10 περιττῶν ἄριθμῶν συμβέβηκε, τοὺς γνώμονας τοὺς δυάδι ἄλληλων ὑπερεχθόντας ἐν τῇ συνθέτει τετραγώνως ἀποτελεῖν, ὡς ἔποιη ἀποδείκται· ὑπερέχοντες γὰρ δυᾶ διὰ ἀλλήλων ἀπὸ μονάδος ἀρχόμενοι <οῖ> περιττοῖ, ὅμοιος δὲ οἱ τριάδι ἄλληλων ὑπερέχοντες ἐν τῇ συνθέτει ἀπὸ μονάδος πενταγώνους
13 ἀποτελοῦσιν, ἐξαιρόμενος δὲ οἱ τετράδι, οἷον τῇ ἑνεκάλλεξ τῶν γνωμῶν ἐξ ὧν ἀποτελοῦσιν οἱ πολύγωνοι δυᾶ διὰ λειτουργεῖ τοῦ πλήθους τῶν ἀποτελουμένων γωνίων.

ἐτέρα δὲ πάλιν ἐστὶν τάξις ἐν τοῖς πολυγώνοις τῶν ἀπὸ
μονάδος πολλαπλασίων ἄριθμῶν. τῶν γὰρ ἀπὸ μονάδος πολλαπλασίων, λέγω δὲ διπλασίων τριπλασίων καὶ τῶν ἐξῆς, οἱ μὲν
XX. Les carrés sont produits, comme nous l’avons dit, par l’addition des impairs successifs, en commençant par l’unité. Ils ont cela de particulier, qu’ils sont alternativement pairs et impairs, tout comme les nombres simples sont alternativement pairs et impairs, c’est ce qu’on peut voir dans la série

1, 4, 9, 16, 25, 36, 49, 64, 81, 100.

Si maintenant on dispose les nombres pairs et impairs par ordre, en commençant par l’unité, on verra que les gnomons qui se surpassent de 2 étant additionnés ensemble, forment les carrés, comme nous l’avons montré ci-dessus : les impairs, en commençant par l’unité, se surpassent en effet de 2 les uns les autres. De même, les nombres qui se surpassent de 3 étant additionnés, toujours en commençant par l’unité, forment les pentagones. Ceux qui se surpassent de 4 donnent les exagones; en sorte que la raison des gnomons, qui donnent un polygone, est toujours moindre de 2 unités que le nombre des angles de la figure.

Il y a un autre ordre de nombres polygones, donné par les nombres multiples à partir de l’unité. En effet, parmi les nombres multiples à partir de l’unité, comme les doubles,
ἐνα παρ’ ἑνα διαλείποντες ἀριθμοὶ τετράγωνοι πάντες εἰσίν, οἱ δὲ δύο διαλείποντες κύβοι πάντες, οἱ δὲ πέντε διαλείποντες κύβοι ἀμα καὶ τετράγωνοι εἰσί καὶ τὰς μὲν πλευράς ἔχουσι τετραγώνους ἀριθμοὺς κύβοι ὄντες, τετράγωνοι δὲ ὄντες ἀριθμοὶ κυβικὰς ἔχουσι τὰς πλευρὰς. ὅτι δὲ τῶν πολλαπλασίων ἀριθμῶν οἱ μὲν παρ’ ἑνα ἀπὸ μονάδος τετράγωνοι εἰσίν, οἱ δὲ παρὰ β’ κύβοι, οἱ δὲ παρὰ ε’ κύβοι ἀμα καὶ τετράγωνοι εἰσί, ὁδήγον ὀὕτως, ἐν μὲν τοῖς διαλείποσι, κειμένων πλειόνων ἀριθμοῦ οἶον

\[
\alpha' \beta' \delta' \eta' \iota' \lambda' \xi' \rho' \chi' \varsigma'.
\]

πρῶτος διαλείποσι ο’ β’ εἰστά ο’ δ’, ο’ γεστὶ τετράγωνος εἰστά ο’ η’, ο’ γετὶ κύβος εἰστα ι’, ο’ γετὶ τετράγωνος εἰστά ο’ λβ’ μεθ’ ο’ εζ’, ο’ γετὶ τετράγωνος ἀμα καὶ κύβος εἰστα ρκη’ μεθ’ ο’ συ’ ο’ γετὶ τετράγωνος καὶ μέχρις

ἀπείρου ο’ αὐτός λόγος.

καὶ ἐν τῷ τριπλασίῳ εὑρεθήσονται οἱ παρ’ ἑνα τετράγωνοι καὶ ἐν τῷ πενταπλασίῳ καὶ κατὰ τοὺς ἔξης πολλαπλασίους. ὅμοιοι δὲ εὑρεθήσονται καὶ οἱ δὺ διαλείποντες ἐν τοῖς πολλαπλασίοις κύβοι πάντες καὶ οἱ ε’ διαλείποντες κύβοι ἀμα καὶ τετράγωνοι.

\[
\alpha' \beta' \delta' \eta' \iota' \lambda' \xi' \rho' \chi' \varsigma' \text{...} \text{συ} \text{...} \text{de Gelder} \text{...} \text{α’ β’ γ’ δ’ ε’ ζ’ η’ θ’ ι’ τα’...} \text{χε’ Hiller}. –
\]

23 <ἀρτιόν> conj. J D.
les triples et ainsi de suite, les termes sont carrés de deux en deux, et cubiques de trois en trois. De plus, ceux qui se suivent de 6 en 6 sont à la fois carrés et cubiques ; comme cubiques, leurs côtés sont des nombres carrés, et comme carrés, leurs côtés sont des nombres cubiques. Voici comment nous montrons que les nombres multiples, commençant par l’unité, sont carrés de deux en deux, cubiques de trois en trois, et à la fois carrés et cubiques de six en six. Disposons plusieurs nombres en progression double

\[1, 2, 4, 8, 16, 32, 64, 128, 256.\]

Le premier double est 2. Vient ensuite 4 qui est carré, puis 8 qui est cubique, puis de nouveau 16 qui est carré. Celui-ci est suivi de 32, après lequel vient 64, tout à la fois carré et cubique. On a ensuite 128 suivi de 256 qui est carré ; et l’on pourrait continuer de même jusqu’à l’infini.

Dans la progression triple on trouvera parcellément les carrés alternes. De même dans la progression quintuple et dans les autres progressions multiples. Si on omet alternativement deux termes, on trouvera que les termes restants sont des cubes ; et si on en omet cinq, on trouvera que ceux qui restent sont à la fois carrés et cubiques ².

Les carrés ont cette propriété d’être exactement divisibles par 3, ou de le devenir étant diminués d’une unité. Ils sont aussi exactement divisibles par 4, ou le deviennent après la soustraction d’une unité.

Le carré (pair), qui devient divisible par 3 après avoir été diminué d’une unité, est divisible par 4, ce qui est le cas de 4. Le carré, qui devient divisible par 4 après avoir été dimi-

2 La notation de l’exposant rend évidentes toutes ces vérités. Soit la progression 1, 2, 2², 2³, 2⁴, 2⁵, 2⁶, 2⁷, 2⁸, 2⁹, 2¹⁰, 2¹¹, 2¹²,... les termes 2², 2⁴, 2⁶,... pris de deux en deux, sont des carrés, puisque les exposants sont pairs ; les termes 2³, 2⁵, 2⁹,... pris de trois en trois, sont cubiques, puisque l’exposant est un multiple de 3 ; et les termes 2⁶, 2¹²,..., pris de six en six, sont à la fois carrés et cubiques. Comme carrés, leurs racines 2³, 2⁴,... sont des cubes, et comme cubiques, leurs racines 2³, 2⁴,... sont des carrés.
κα. ἐτὶ τῶν ἄριθμῶν οἱ μὲν ἴσαις ἐστὶν τετράγωνοι εἰσίν, οἱ δὲ ἁμάσεις ἀνίσοι ἑτερομῆνες καὶ προμῆνες, καὶ ἀπλῶς.

5 οἱ δυχῶς πολλαπλασιαζόμενοι ἐπίπεδοι, οἱ δὲ τριγώνιοι στερεοὶ. λέγονται δὲ ἐπίπεδοι ἄριθμοι καὶ τρίγωνοι καὶ τετράγωνοι καὶ στερεοὶ καὶ τάλλα οὐ κυρίως ἄλλα καθ' ὁμοτιτικά τῶν γεωρίων ἃ καταμετροῦσιν· ὁ γὰρ δ', ἐπεὶ τετράγωνον γεωρίαν καταμετρεῖ, ὀπ' αὐτοῦ καλεῖται τετράγωνος, καὶ ὁ σ' διὰ τὰ αὐτὰ ἐτερομῆναι.

κβ. ὁμοιοὶ δ' εἰσίν ἄριθμοὶ ἐν μὲν ἐπίπεδοις τετράγωνοι· οἱ πάντες πάσιν, ἑτερομῆνες δὲ ὅταν αἱ πλευραὶ, τοῦτον ἴσον τοῖς παράλληλοις αὐτοῖς ἄριθμοι, ἄνάλογον εἰσίν. οὐδὲν ἑτερομῆνη ἡν τὰ σ' πλευραὶ δὲ αὐτοῦ μήκος γ', πλάτος β' ἔτερος πάλιν ἑπίπεδος ὁ κ'· πλευραὶ δὲ αὐτοῦ μήκος μὲν σ', πλάτος δὲ δ'. καθ' ἐστὶν ὡς τὸ μήκος πρὸς τὸ μήκος, οὕτως τὸ πλάτος πρὸς τὸ πλάτος· ὡς γ' πρὸς γ', οὕτως δ' πρὸς β'. ὁμοιοὶ οὖν ἄριθμοὶ ἑπίπεδοι δ' τε σ' καὶ ὁ κ'. σχηματιζόμενοι δὲ οἱ αὐτοὶ ἄριθμοι ὅτε μὲν εἰς πλευρὰς ὡς μήκη καὶ πρὸς ἓτερων 15 σύστασιν λαμβανόμενοι, ὅτε δὲ εἰς ἑπίπεδους, ὅταν ἐν πολλαπλασιασμῷ δύο ἄριθμων γεγονότως, ὅτε δὲ εἰς στερεοῦς, ὅταν ἐν πολλαπλασιασμῷ τριών λαμβάνον ἁριθμόν.
nué d’une unité, est divisible par 3, ce qui est le cas de 9 *. Un carré peut être à la fois divisible par 3 et par 4, comme 36. Enfin, le carré qui n’est divisible ni par 3 ni par 4, comme 25, admet ces deux diviseurs après la soustraction d’une unité *.

XXI. Parmi les nombres, les uns également égaux sont carrés, les autres inégalement inégaux sont hétéromèques ou promèques. Et, pour tout dire, les produits de deux facteurs sont plans et ceux de trois facteurs sont solides. On leur donne les noms de nombres plans triangulaires ou carrés, ou de nombres solides, et d’autres noms semblables, non au sens propre, mais par comparaison avec les espaces qu’ils semblent mesurer. Ainsi 4 est appelé nombre carré, parce qu’il mesure un espace carré; et c’est pour une raison fondée sur une analogie semblable que 6 est appelé hétéromèque.

XXII. Parmi les nombres plans, les carrés sont tous semblables entre eux. Parmi les nombres plans qui ont les côtés inégaux, ceux-là sont semblables, dont les côtés, c’est-à-dire les nombres qui les comprennent, sont entre eux dans le même rapport. Prenons l’hétéromèque 6 dont les côtés, longueur et largeur, sont 3 et 2, et un autre nombre plan 24 dont les côtés, longueur et largeur, sont 6 et 4. La longueur de l’un est à la longueur de l’autre comme la largeur de l’un est à la largeur de l’autre, car on a 6 : 3 = 4 : 2. Donc les nombres plans 6 et 24 sont semblables. Tantôt les mêmes nombres représentent des longueurs, quand ils sont pris, comme côtés, pour la formation d’autres nombres; tantôt ils représentent des nombres plans, quand on les considère comme produits par la multiplication de deux nombres; tantôt enfin ils représentent des solides, quand ils sont produits par la multiplication de trois nombres.

1 On bien, c’est le carré diminué d’une unité qui est aussi divisible par 3, tels sont les carrés 25 et 49. — 5 Voyez la note IV.
ΤΑ ΠΕΡΙ ΑΡΙΘΜΗΤΙΚΗΣ

ἐν δὲ τοῖς στερεοῖς τάλων οἳ μὲν κύδων πάντες πάσιν ἐστίν ὁμοίως, τοῖς δὲ ἄλλοις οἳ τὰς πλευρὰς ἐχοντες ἀνάλογον ὥς ἢ τοῦ μήκους πρὸς τὴν τοῦ μήκους, οὕτως ἢ τοῦ πλάτους πρὸς τὴν τοῦ πλάτους καὶ \(<\) τοῦ ὅψους πρὸς τὴν τοῦ ὅψους.

χυ. τοῖς δὲ ἐπιπέδων καὶ πολυγώνων ἀρίθμῳ πρῶτος ὁ τρίγωνος, ὡς καὶ τοῖς ἐπιπέδων εὐθυγράμμων σχημάτων πρῶτον ἐστὶ τὸ τρίγωνον, πάσι δὲ γεννώνται προείρηται, ὅτι τῷ πρῶτῳ ἀρίθμῳ τοῦ ἔξης ἀρτιόν καὶ περιττοῦ προστιθεμένου.

πάντες δὲ οἱ ἐφεξῆς ἀρίθμοι, ἀπογεννώντες τριγώνους ἢ τετραγώνους ἢ πολυγώνους, γνώμονες καλοῦνται. τοσοῦτοι δὲ μονάδων ἔκαστον τριγώνον ἔχει πλευρὰς πάντως, ὅταν καὶ μόνος ἐστὶν ὁ προσλαμβάνομενος γνώμων. οἷον ἐπτεί πρῶτον ἢ μονάς, λεγομένη τρίγωνον οὐ κατ’ ἐντελέχεια, ὡς προερήκαμεν, ἀλλὰ κατὰ δύναμιν. ἐπεὶ γὰρ αὕτη οἷον στέρμα πάντων ἐστὶν ἀρίθμῳ, ἔχει ἐν αὐτῇ καὶ τριγωνοειδῇ δύναμιν.

προσλαμβάνουσα γοῦν τὴν δυσάδα ἀποτελεῖ τρίγωνον, ἔχον πλευρὰς τοσοῦτον μονάδων, ὅταν ἐστὶν ὁ προσλαμβάνεις γνώμων τῆς δυσάδος. τὸ δὲ ἄλοιπον τρίγωνον τοσοῦτον ἐστὶ μονάδων, ὅτων καὶ οἱ συνειδέντες γνώμονες. ὁ τε γὰρ τοῦ ἐνός καὶ \(<\delta> \) τῶν διεῖν γνώμων τὰ \(γ^\prime \) ἐποιήσαν, ὅτε καὶ τὸ τρίγωνον ἔστηκε μὲν τριῶν μονάδων, ἔξει \(\delta^\prime \) ἐκάστην πλευρὰν τῶν διεῖν, ὅταν καὶ οἱ γνώμονες συνειδηθένταν.

ἐάτα τὸ \(γ^\prime \) τρίγωνον προσλαμβάνει τῶν τῶν \(γ^\prime \) γνώμων, ὡς \(\alpha \) μονάδι υπερέχει τῆς δυσάδος, καὶ γίνεται τὸ μὲν ἄλοιπον \(\zeta \) τρίγωνον \(\delta^\prime \) ἔξει τοσοῦτον μονάδων καὶ τοῦτο τὸ τρίγωνον, ὅταν γνώμονες συνειδέντες ἐν γὰρ τοῦ ἐνός καὶ β' καὶ \(\gamma^\prime \) συνειδηθή ὁ \(\zeta \).
Tous les cubes sont semblables, ainsi que les autres solides (parallélépipèdes rectangles) qui ont les côtés proportionnels, en sorte qu'il y ait le même rapport entre la longueur de l'un et la longueur de l'autre, la largeur de l'un et la largeur de l'autre, et enfin la hauteur de l'un et la hauteur de l'autre. 5

XXIII. De tous les nombres plans et polygones, le premier est le nombre triangulaire, comme parmi les figures rectilignes planes la première est le triangle. Nous avons exposé précédemment la génération des triangulaires, et nous avons vu qu'elle consiste à ajouter au nombre 1 la suite naturelle des nombres pairs et des nombres impairs. Or, tous les nombres successifs qui servent à former les triangulaires, les quadrangulaires et les nombres polygones quelconques, sont appelés gnomons; et les côtés d'un triangle quelconque ont toujours autant d'unités qu'en contient le dernier gnomon ajouté. Prenons d'abord l'unité, qui n'est pas un triangle en acte, comme nous l'avons déjà dit, mais en puissance; car étant comme la semence de tous les nombres, l'unité possède aussi la faculté d'engendrer le triangle.

Quand elle s'adjoint le nombre 2, elle donne naissance au triangle dont les trois côtés contiennent autant d'unités qu'en a le gnomon ajouté 2, et tout le triangle contient autant d'unités qu'en contiennent les gnomons ajoutés ensemble. Car la somme du gnomon 1 et du gnomon 2 égale 3, en sorte que tout le triangle se compose de trois unités et qu'il y a deux unités à chacun de ses côtés, c'est-à-dire autant d'unités qu'il y a de gnomons ajoutés ensemble.

Le triangle 3 s'adjoint ensuite le gnomon 3, qui surpasse le nombre 2 d'une unité, et le triangle entier devient 6. Ses côtés ont chacun autant d'unités qu'il y a de gnomons ajoutés, et le triangle vaut autant d'unités que les gnomons ajoutés en contiennent, car en ajoutant à l'unité 2 et 3, on a le nombre 6.

9 Voy. I, xix.
εἰτα ὁ ς' προσλαμβάνει τὸν ὅ' · γίνεται τὸ τοῦ ὅ' τρίγωνον, ἐκάστην πλευρὰν ἔχον δ' μονάδων · ὁ ς' προσλαμβάνει γνώμων ἦν ὁ δ', καὶ ἐκ δ' δὲ γνωμόνων ἦν τὸ ὅλον, τοῦ τε ἐνός καὶ β' καὶ γ' καὶ δ'. ἔτι ὁ ς' προσλαμβάνει τὸν ε', καὶ γίνεται 8 < τὸ τοῦ ἕ' τρίγωνον, πλευρὰν ἔχον ἐκάστην μονάδων ε', καὶ ἐκ τῶν ε' γνωμόνων συνέστη. ὁμοίως καὶ οἱ ἐξ ἕξ' γνώμονες τοὺς γνωμονικοὺς ἀριθμοὺς ἀποτελοῦσι.

κα. λέγονταί δὲ τινες καὶ κυκλοειδεῖς καὶ σφαιροειδεῖς καὶ ἀποκαταστατικοὶ ἀριθμοὶ · οὕτω τί' εἰταν οὕτινες ἐν τῷ πολλα-
πλιστέριττι ς' ἐπιτέδεις ὁ στερεώς, τουτεστί κατὰ ὅμοιο διαστά-
σεις ς' κατά τρεῖς, ἀρ' οὕτως καὶ ἀρ' οὗ ἂν ἄρξονται ἀριθμοῦ ἐπὶ τοῦτον ἀποκαταστάτικον. τοιοῦτον δὲ ἔστι καὶ ὁ κύκλος · ἄρ' οὗ ἂν ἄρξηται σημείου, ἐπὶ τούτῳ ἀποκαταστάτατα πλῆθος γὰρ μίας γραμμῆς περιεχόμενος ἀπὸ τοῦ αὐτοῦ ἄρχεται καὶ εἰς τοῦτο καταλήγει. τοιοῦτο δὲ καὶ ἐν στερεῷς ς' σφάιρα κόκλου γὰρ κατὰ πλευρὰν περιγομένου ἂν ἀπὸ τοῦ αὐτοῦ ἐπὶ τὸ αὐτὸ ἀπο-
καταστατικής σφάιραν γράφει. καὶ ἀριθμοὶ δὴ οἱ ἐν τῷ πολλα-
πλιστήμῳ ἄρ' ἐκείνους καταλήγοντες κυκλικοὶ τε καλοῦνται καὶ σφαιροειδεῖς ὁν ἔστιν ὁ τε ε' καὶ ὁ ε' · πεντάκις γὰρ ε' κε',

πεντάκις κε' ρκε', ἐξάκις ς' λε', καὶ ἐξάκις λε' τις'.

κα. τῶν δὲ τετραγώνων ἴ μὲν γένεσις, ως εἰτεν, ἐκ τῶν περιστοί ἀλλη'κος ἐπισυνταξιμένων, τουτεστί τῶν ἀπὸ μονάδος
δυάδι, ἀλλήλων ὑπερεχούντων ἐν γάρ καὶ ς' δ', καὶ δ' καὶ ε' ἕ', καὶ β' καὶ ε' ἕ', καὶ ε' καὶ β' κε'.

a' b' c' d' e' x e

8 Τίττα: Ἱερά κυκλοειδῶν καὶ σφαιροειδῶν καὶ ἀποκαταστατικῶν ἀριθμῶν (des
nombres circulaires, sphériques ou récurrents). — 21 Τίττα: Ἱερά τετραγώνων
ἀριθμῶν (des nombres carrés).
Le nombre 6 augmenté du gnomon 4 donne le triangle de 10 unités dont les côtés ont chacun 4 unités. En effet, le gnomon qu'on vient d'ajouter est 4 et tout le triangle se compose des unités des 4 gnomons, savoir 1 + 2 + 3 + 4. Le nombre 10 étant augmenté du gnomon 5 on a le triangle 15 dont chaque côté a 5 unités, étant composé de 5 gnomons, et c'est de la même manière que les gnomons suivants forment les nombres triangulaires correspondants.

XXIV. Quelques nombres sont appelés circulaires, sphériques ou récurrents. Ce sont ceux qui multipliés carrément ou cubiquement, c'est-à-dire selon deux ou selon trois dimensions, reviennent au nombre qui a été leur point de départ. Tel est aussi le cercle qui revient au point où il a commencé, car il consiste en une seule ligne et il commence et se termine au même point. Parmi les solides, la sphère a la même propriété, car elle est décrite par la révolution d'un cercle autour d'un diamètre, le cercle revenant à la position d’où il est parti. De même les nombres qui par la multiplication finissent par eux-mêmes, sont appelés circulaires ou sphériques. Ces nombres sont 5 et 6. En effet 5 × 5 = 25; 25 × 5 = 125; 6 × 6 = 36; et 36 × 6 = 216.

XXV. Ainsi que nous l’avons dit, les nombres carrés s’engendrent par l’addition des impairs, c’est-à-dire de ceux qui, en parlant de l’unité, se surpassent de 2 les uns les autres. C’est ainsi que 1 + 3 = 4; 4 + 5 = 9; 9 + 7 = 16; 16 + 9 = 25.

\[
\begin{array}{cccc}
1 & 4 & 9 & 16 & 25 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
1 & 1 & 1 & 1 & 1 \\
\end{array}
\]

22 Voy. 1, xix.
καὶ πεντάγωνοι δὲ εἰσίν ἄριθμοι οἱ ἐκ τῶν ἀπὸ μονάδος κατὰ τὸ ἔξης τριάδι <ἀλλήλουν> ὑπερεχθέντων συντιθέμενοι. ὃν εἰσίν οἱ μὲν γνώμονες α', δ', ζ', η', ι', κ', λ' - αὐτοὶ δὲ οἱ πεντάγωνοι α' ε', ιβ', κβ', λε' να' καὶ ἔξης ὁμοίως. σχηματιζόνται δὲ πενταγωνικάς οὕτως:

<table>
<thead>
<tr>
<th>α'</th>
<th>ε'</th>
<th>ιβ'</th>
<th>κβ'</th>
<th>λε'</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>α</td>
<td>α</td>
<td>α</td>
<td>α</td>
</tr>
<tr>
<td>α</td>
<td>αα</td>
<td>αα</td>
<td>αα</td>
<td>αα</td>
</tr>
<tr>
<td>α</td>
<td>αα</td>
<td>ααα</td>
<td>ααα</td>
<td>ααα</td>
</tr>
</tbody>
</table>

καὶ ἔξαγωνοι δὲ εἰσίν ἄριθμοι οἱ ἐκ τῶν κατὰ τὸ ἔξης ἀπὸ μονάδος τετράδι ἀλλήλων ὑπερεχθέντων συντιθέμενοι. ὃν οἱ γνώμονες εἰσίν α', ε', θ', ι', ιζ', κα', κε'- οἱ δὲ ἐκ τούτων ἔξα-10 γωνοί οὕτως: α' ε' εν', κη', με', εξ', λα'. σχηματιζόνται δὲ οὕτως:

<table>
<thead>
<tr>
<th>α'</th>
<th>ε'</th>
<th>ιε'</th>
<th>κη'</th>
<th>με'</th>
</tr>
</thead>
<tbody>
<tr>
<td>α</td>
<td>α</td>
<td>α</td>
<td>α</td>
<td>α</td>
</tr>
<tr>
<td>α</td>
<td>αα</td>
<td>αα</td>
<td>αα</td>
<td>αα</td>
</tr>
<tr>
<td>α</td>
<td>αα</td>
<td>ααα</td>
<td>ααα</td>
<td>ααα</td>
</tr>
</tbody>
</table>

1 Τίτκε: Περί πενταγώνων ἄριθμῶν (des nombres pentagones). — 7 Τίτκε: Περί ἔξαγων ἄριθμῶν (des nombres hexagones).
XXVI. — Les nombres pentagones sont ceux qui se forment par l'addition des nombres se surpassant de 3 les uns les autres, à partir de l'unité. Leurs gnomons sont donc

\[1, 4, 7, 10, 13, 16, 19 \]

et les polygones eux-mêmes sont

\[1, 5, 12, 22, 35, 51, 70 \]

et ainsi de suite. Voici la figure des nombres pentagones :

<table>
<thead>
<tr>
<th>1</th>
<th>5</th>
<th>12</th>
<th>22</th>
<th>35</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td></td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
<td>1</td>
</tr>
</tbody>
</table>

XXVII. Les nombres hexagonaux sont ceux qui se forment par l'addition de nombres se surpassant de 4 les uns les autres, à partir de l'unité. Les gnomons sont

\[4, 5, 9, 13, 17, 21, 25 \]

d'où résultent les hexagones

\[4, 6, 15, 28, 45, 66, 91 \]

Voici leur figure :

<table>
<thead>
<tr>
<th>1</th>
<th>6</th>
<th>15</th>
<th>28</th>
<th>45</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
| 1 | | | | | etc.
όμοια δὲ ἢ σύνθεσις καὶ ἑπὶ τῶν λοιπῶν πολυγώνων.

ἐπτάγωνοι δὲ εἶσιν οἱ ἀπὸ μονάδος πεντάδι άλληλων ὑπερε-
χόντων συνιστάμενοι· ὃν γνώμονας μὲν α" ἐκ, ἐκ, καὶ κα" ὁ ὑπὲ-
δὲ ἐκ τοῦτοι συνισταμένοι α" καὶ τὰ ὑπὸ. ὁμοίως δὲ καὶ ὑπέ-
ταγόνωι <οἱ> ἀπὸ μονάδος ἐξαῦθι ἀλληλών ὑπερεχοῦντων
συνιστάμενοι, ἐνεάγωνοι δὲ οἱ ἀπὸ μονάδος ἐδομακαῖ ἀλληλών
ὑπερεχοῦτοι συνιστάμενοι, ὑπέταγόνοι δὲ οἱ ἀπὸ μονάδος ὕγραῖς
ἀλληλῶν ὑπερεχοῦντων συνιστάμενοι. ἐπὶ πάντων δὲ τῶν πολυ-
γώνων καθόλου ὑπέταγον ἢ λέγηται ἄριθμος, οὔσιν δευτάρων

καὶ πλῆθους τῶν γονίων ὢ ὑπεροχή τῶν ἄριθμῶν
λαμβάνεται. ἐξ ὑπὸ πολυγόνωι συνιστάμενα.

καὶ. ἐκ δύο τριγώνων ἀποτελεῖται τετράγωνον. ἀ" καὶ γ" δ",
γ" καὶ ε" θ", ἕ" καὶ. ἓ" τ", ἑ" καὶ τ" χ", τ" καὶ κα" λ" κα"
καὶ κα" μ" καὶ κα" λ" ζ", κα" μ" καὶ κα" μ" μ" καὶ κα" μ" μ" μ" καὶ κα" μ" μ" μ" μ" μ" μ"

ὁμοίως συνιστάμενοι τρίγωνοι τετραγώνους ἀποτελεοῦσιν, ὡς καὶ
ἐπὶ τῶν γραμμικῶν τριγώνων σύνθεσις τετράγωνον σχήμα ποιεῖ.

καὶ. ἐπὶ τῶν στερεῶν ἄριθμῶν οἱ μὲν ἱσας πλευράς ἐγχύσων,
[ὅς ἄριθμος τρεῖς ἱσας ἐπὶ ἱσας πολλαπλασιάζεται.] οἱ δὲ ἀνίσους,
τοῦτοι δ" οἱ μὲν πάσας ἀνίσους ἐγχύσων, οἱ δὲ τὰς

δύο ἱσας καὶ τὴν μίαν ἑττονα. πάλιν τε τῶν τὰς δύο ἱσας
ἐγχύστων οἱ μὲν μείζονα τὴν τρίτην ἐγχύσων, οἱ δὲ ἐλάττων.

Les autres nombres polygones se composent de la même manière. Les heptagones sont ceux qui se forment par l’addition de nombres se surpassant les uns les autres de 5, à partir de l’unité. Les gnomons sont

\[1, 6, 11, 16, 21, 26 \]

d’où résultent les heptagones

\[1, 7, 18, 34, 55, 81. \]

Les octogones sont pareillement composés de nombres qui se surpassent de 6 à partir de l’unité, les ennéagones, de nombres se surpassant de 7, à partir de l’unité, les décagones de nombres se surpassant de 8. Ainsi généralement, dans tous les polygones, en ôtant deux unités du nombre des angles, on aura la quantité dont les nombres servant à former le polygone doivent se surpasser les uns les autres*.

XXVIII. La somme de deux triangles successifs donne un carré. Ainsi, 1 et 3 font 4 ; 3 et 6 font 9 ; 6 et 10 font 16 ; 10 et 15 font 25 ; 15 et 21 font 36 ; 21 et 28 font 49 ; 28 et 36 font 64 ; 36 et 43 font 81. Les nombres triangulaires qui suivent, combinés ensemble, forment aussi des carrés, de même que la réunion de deux triangles linéaires présente la figure d’un quadrangle*.

XXIX. Parmi les nombres solides, les uns ont leurs côtés égaux [comme quand on multiplie entre eux trois nombres égaux] ; les autres ont les côtés inégaux. Parmi ces derniers, les uns ont tous les côtés inégaux ; d’autres ont deux côtés égaux et un autre inégal. Parmi ceux qui ont deux côtés égaux, les uns ont le troisième côté plus grand, les autres l’ont plus petit.

15 Voyez la note V. — 21 Un nombre carré \(n^2 \) se décompose en deux nombres triangulaires, le \(n^2 \) et le \((n - 1)^2\), on a effet

\[
\frac{n(n+1)}{2} + \frac{(n-1)n}{2} = n^2
\]

Ainsi le nombre carré 25 se décompose en deux nombres triangulaires, le 5e égal à 1 + 2 + 3 + 4 + 5 et le 4e égal à 1 + 2 + 3 + 4, comme l’indique d’ailleurs la figure :
οί μέν οὖν ἴσης ἔγοντες πλευρᾶς, ἴσας ἦσσοι ἴσας ἄντες, κύδων καλούνται· οί δὲ πάσαι ἁνίστους τὰς πλευρὰς, ἁνιστάσις ἂνισι· ἰσάκες οὖσι, βιωμένοι καλούνται· οί δὲ ὅσοι μὲν ἴσας, τήν δὲ τρίτην ἐκκέτρες τῶν ὑεύον ἐλάσσονα, ἴσας ἦσσοι ἐλασσονάκες, πλινθίδες ἐκλήθησαν· οἱ δὲ οὖσι μὲν ἴσας, τήν δὲ τρίτην ἐκκέτρας τῶν ὑεύον μείζονα, ἴσας ἦσσοι μειονάκες, δοξίδες καλούνται.

Περὶ πυραμοειδῶν ἀριθμῶν

λ. εἰσὶ δὲ καὶ πυραμοειδεῖς ἄριθμοι πυραμίδας καταμετροῦν·

Περὶ πλευρικῶν καὶ διαμετρικῶν ἀριθμῶν

λα. ὃσπερ δὲ τριγωνικοὺς καὶ τετραγωνικοὺς καὶ πενταγωνικοὺς καὶ κατὰ τὰ λοιπὰ σχήματα λόγους ἐξουσία δυνάμει οἱ ἄριθμοι, οὕτως καὶ πλευρικοὺς καὶ διαμετρικοὺς λόγους οὕρουμεν ἐὰν κατὰ τοὺς στερματικοὺς λόγους ἐφερουσίζομεν τοῖς ἄριθμοίς.

οὗν ἐκτίθενται οὕσω μονάδες, ὅν τὴν μὲν θώμαιν εἶναι διάμετρον, τὴν δὲ πλευράν, ἐπειδὴ τὴν μονάδα, πάντως οὕσων ἀρχὴν, δεῖ δυνάμει καὶ πλευρὰν εἶναι καὶ διάμετρον. καὶ προστίθεται.
Ceux qui ont les côtés égaux [étant également égaux également], sont appelés cubes. Ceux au contraire qui ont tous les côtés inégaux, et qui sont inégalement inégaux inégalement, sont appelés bomisques (petits autels). Ceux qui ont deux côtés égaux et le troisième plus petit que les deux autres, étant également égaux déficients, ont été appelés plinthes ou carreaux. Enfin, ceux qui ont deux côtés égaux et le troisième plus grand que les deux autres, étant également égaux excédants, sont appelés docides ou poutrelles.

Des nombres pyramidaux

XXX. Les nombres pyramidaux sont ceux qui mesurent les pyramides et les pyramides tronquées. Or, une pyramide tronquée est (ce qui reste d')une pyramide dont la partie supérieure a été enlevée. Quelques-uns ont donné à une telle figure tronquée le nom de trapèze (solide), par analogie avec les trapèzes plans; car on appelle ainsi (ce qui reste d')un triangle dont une ligne droite parallèle à la base a retranché la partie supérieure.

Des nombres latéraux et des nombres diagonaux

XXXI. De même que les nombres ont en puissance les rapports des triangulaires, des tétragones; des pentagones et des autres figures, de même nous trouverons que les rapports des nombres latéraux et des nombres diagonaux se manifestent dans les nombres selon des raisons génératrices, car ce sont les nombres qui harmonisent les figures. Donc comme l'unité est le principe de toutes les figures, selon la raison suprême et génératrice, de même aussi le rapport de la diagonale et du côté se trouve dans l'unité.

Supposons par exemple deux unités dont l'une soit la diagonale et l'autre le côté, car il faut que l'unité qui est le prin-

18 Voy. la note VI.
τῇ μὲν πλευρᾷ διάμετρος, τῇ δὲ διαμέτρῳ ὑπὸ πλευρᾶς, ἐπειδὴ ὅσον ἦ πλευρὰ δὶς δύναται, ἡ διαμέτρος ἀπαξ. ἐγένετο ὧν μείζον μὲν ἡ διάμετρος, ἐλάττων δὲ ἡ πλευρά· καὶ ἐπὶ μὲν τῆς πρώτης πλευρᾶς τε καὶ διαμέτρου εἰς ἄν ὁ ἀπὸ τῆς μονά-
δος διαμέτρου τετράγωνον μονάδι μιᾷ ἐλάττων ἡ διπλάσιον τοῦ ἀπὸ τῆς μονάδος πλευρᾶς τετράγωνον · ἐν ίσότητι γὰρ αἱ μονά-
δος · τὸ δ᾽ ἐν τοῦ ἐνός μονάδος ἐλάττων ἡ διπλάσιον, προσθῆκος ὅτι τῇ μὲν πλευρᾷ διαμέτρου, τούτῳ τῇ μονάδι μονάδα · ἔσται ἡ πλευρὰ ἄρα ὑπὸ μονάδων τῇ δὲ διαμέτρῳ προσθῆκος ὑπὸ πλευρᾶς, τούτῳ τῇ μονάδι δύο μονάδος ἔσται ἡ διάμετρος μονάδων τριῶν καὶ τῷ μὲν ἀπὸ τῆς δυάδος πλευρᾶς τετρά-
γωνον δ᾽, τὸ δ᾽ ἀπὸ τῆς τριάδος διαμέτρου τετράγωνον θ᾽ · τῷ θ᾽ ἄρα μονάδι μείζον ἡ διπλάσιον τοῦ ἀπὸ τῆς β΄ πλευρᾶς.

πάλιν προσθῆκος τῇ μὲν β΄ πλευρᾷ διάμετρον τῆς τρίαδας ἔσται ἡ πλευρά ε΄ τῇ δὲ τριάδι διαμέτρῳ β΄ πλευράς, τού-
τῳ τῇ μὲν β΄ ἔσται. ζ΄ ἔσται τῷ ἀπὸ τῆς <ε'> πλευρᾶς τετράγωνον κε', τῷ δὲ ἀπὸ τῆς ζ′ <διαμέτρου> µθ′ ·
μονάδι ἐλάττων ἡ διπλάσιον τοῦ κε' ἄρα τὸ µθ′. πάλιν ἐν τῇ <ε'> πλευρά προσθήκης τῆς ζ′ διαμέτρου, ἔσται ἵβ′ καὶ τῇ ζ′
διαμέτρῳ προσθήκης δις τῆν ε' πλευράν, ἔσται ιζ′ καὶ τοῦ ἀπὸ τῆς ιζ′ τετράγωνον τῷ ἀπὸ τῆς ιζ′ μονάδοι πλέον ἡ διπλάσιον.
καὶ κατὰ τὸ ζἐς τῆς προσθήκης ὅμοιος γεγομένης, ἔσται τῷ ἀνάλογον ἐναλλάξεις · ποτὲ μὲν μονάδι ἐλάττων, ποτὲ δὲ µονάδι
πλέον ἡ διπλάσιον τῷ ἀπὸ τῆς διαμέτρου τετράγωνον τοῦ ἀπὸ τῆς πλευρᾶς καὶ ἔσται ιζ′ μονάδοι εἰς τὰς ὁμαλάς τιθεμένη ἱσότητα
ποιοῦντος εἰς τὸ µῆτε ἐλλεῖπειν µῆτε ὑπερβάλλειν εἰς ἀπάστις.
cipe de tout soit en puissance le côté et la diagonale; ajoutons au côté la diagonale et à la diagonale ajoutons deux côtés, car ce que le côté peut deux fois, la diagonale le peut une fois 5. Dès lors la diagonale est devenue plus grande et le côté plus petit. Or, pour le premier côté et la première 5 diagonale, le carré de la diagonale unité sera moindre d'une unité que le double carré du côté unité, car les unités sont en égalité, mais un est moindre d'une unité que le double de l'unité. Ajoutons maintenant la diagonale au côté, c'est-à-dire une unité à l'unité, le côté vaudra alors 2 unités; mais, si nous ajoutons deux côtés à la diagonale, c'est-à-dire 2 unités à l'unité, la diagonale vaudra 3 unités; le carré construit sur le côté 2 est 4, et le carré de la diagonale est 9 qui est plus grand d'une unité que le double carré de 2.

De même ajoutons au côté 2 la diagonale 3, le côté deviendra 5. Si à la diagonale 3 nous ajoutons deux côtés, c'est-à-dire 2 fois 2, nous aurons 7 unités. Le carré construit sur le côté 5 est 25, et celui qui est construit sur la diagonale 7 est 49, qui est moindre d'une unité que le double (50) du carré 25. De nouveau, si au côté 5 on ajoute la diagonale 7, on obtient 12 unités; et si à la diagonale 7 on ajoute 2 fois le côté 5, on aura 17 dont le carré (289) est plus grand d'une unité que le double (288) du carré de 12. Et ainsi de suite en continuant l'addition. La proportion alterne : le carré construit sur la diagonale sera tantôt plus petit, tantôt plus grand, d'une unité, que le double carré construit sur le côté, en sorte que ces diagonales et ces côtés seront toujours exprimables.

Inversement les diagonales comparées aux côtés, en puissance, sont tantôt plus grandes d'une unité que les doubles, tantôt plus petites d'une unité. Toutes les diagonales sont donc, par rapport aux carrés des côtés, doubles alternative-

4 C'est-à-dire que deux fois le carré du côté égale une fois le carré de la diagonale.
Περὶ τελείων καὶ ύπερτελείων καὶ ἐλλιπτῶν ἀριθμῶν

λβ. ἐτι τὸν ἀριθμὸν οἱ μὲν τινες τέλειοι λέγονται, οἱ δ᾿ ύπερτελείοι, οἱ δ´ ἐλλιπτεῖς. καὶ τέλειοι μὲν εἰσίν οἱ τοῖς αὐτῶν μέρεσιν ἔσο, ός ὁ τῶν σ´· μέρη γὰρ αὐτοῦ ἤμισυ γ´, τρίτον β´, ἔκτον α´, ἀτινα συντιθέμενα ποιεῖ τὸν σ´.

γεννῶνται δε οἱ τέλειοι τούτον τὸν τρόπον. ἐὰν ἐκθλώμεθα τοὺς ἀπὸ μονάδος διπλασίους καὶ συντιθόμεν αὐτοὺς, μέγιστος οὐ δὲν
10 γένηται πρῶτος καὶ ἀπόνθετος ἀριθμός, καὶ τὸν ἄ τῆς συνθέσεως ἐπὶ τὸν ἑσχατὸν τῶν συντιθεμένων πολλαπλασιάσωμεν, ὁ ἀπογεννηθεὶς ἐσται τέλειος, όν ἐκκεισθωσαν διπλάσιοι α´ β´ δ´ γ´ ις· συνθώμεν οὖν α´ καὶ β´· γίνεται γ´· καὶ τὸν γ´ ἐπὶ τὸν ἑσχατὸν τὸν ἐκ τῆς συνθέσεως πολλαπλασιάσωμεν, τουτέστιν ἐπὶ τὸν β´· γίνεται σ´· ὃς ἐστι πρῶτος τέλειος, ἀν πάλιν τρεῖς τοὺς ἑφεξῆς διπλασίους συνθώμεν, α´· παλι β´ καὶ δ´, ἐσται ζ´· καὶ τοῦτον ἐπὶ τὸν ἑσχατὸν τῶν τῆς συνθέσεως πολλαπλασιάσωμεν, τὸν ζ´ ἐπὶ τὸν δ´· ἐστιν ἀν ετερος τέλειος· σύγχειται ἐκ τοῦ ἡμίσεως τοῦ ι´, τετάρτου τοῦ ι´· τεσσαρακοσιακάκου τοῦ β´· εἰκοστοῦ ἕγχοδον τοῦ α´.

ὑπερτελείοι δε εἰσίν ὃν τὰ μέρη συντιθέντα μειζονὰ ἐστὶ τῶν ὁλῶν, οἷον ὁ τῶν ιβ´· τοῦτον γὰρ ἤμισυ ἐστὶν σ´· τρίτον δ´,

ment par excès et par défaut, la même unité, combinée également avec tous, rétablissant l'égalité, en sorte que le double ne pèche ni par excès, ni par défaut; en effet, ce qui manque dans la diagonale précédente se trouve en excès, en puissance, dans la diagonale qui suit *.

Des nombres parfaits, des nombres abondants et des nombres déficients

XXXII. En outre, parmi les nombres, les uns sont appelés parfaits, d'autres abondants et d'autres déficients. On appelle parfaits ceux qui sont égaux à (la somme de) leurs parties aliquotes, comme 6. Les parties de 6 sont, en effet, la moitié 3, le tiers 2, et le sixième 1, qui additionnées ensemble donnent 6.

Voici comment sont engendrés les nombres parfaits : Si nous disposons les nombres en progression double à partir de l'unité, et que nous les additionnions jusqu'à ce que nous obtenions un nombre premier et non composé, et si nous multiplions cette somme par le dernier terme additionné, le produit sera au nombre parfait *. Disposons donc les nombres en progression double 1, 2, 4, 8, 16. Additionnons 1 et 2, la somme est 3; si nous la multiplions par le dernier nombre additionné qui est 2, nous aurons 6 qui est le premier nombre parfait (car 1 + 2 + 3 = 6). Si nous additionnons maintenant les trois doubles successifs 1, 2, 4, la somme 7, multipliée par le dernier nombre additionné 4, donne 28, qui est le second nombre parfait. Il a, en effet, pour parties aliquotes la moitié qui est 14, le quart qui est 7, le septième qui est 4, le quatorzième qui est 2, et le vingt-huitième qui est 1 (et l'on a 1 + 2 + 4 + 7 + 14 = 28).

Le nombre abondant est le nombre dont les parties aliquotes additionnées ensemble font une somme plus grande que le

τέταρτον γ', ἕκτον β', δωδέκατον α', ἓτινα συντεθέντα γίνεται
ιτ', ὅς ἐστι μείζων τοῦ ἐς ἄρχης, τουτέστι τῶν ἵβ'.

ἔλλυτείς δὲ εἰσὶν ὅν τὰ μέρη συντεθέντα ἐλάττων τὸν ἀριθ-
μὸν ποιεῖ τοῦ ἐς ἄρχης προτεθέντος ἀριθμοῦ, οὗν ὁ τῶν γ' .
τούτου γὰρ ἦμισυ δ', τετάρτον β', ὅγδοον ἐν. τὸ ἀὐτὸ δὲ καὶ τῷ
i' συμβαθηκεν, ὅν καθ' ἔτερον λόγον τέλειον ἔφασαν οἱ Πυθαγο-
ρικοί, περὶ οὗ κατὰ τὴν οἰκείαν γρόναν ἀποδώσωμεν.

λέγεται δὲ καὶ ὁ γ' τέλειος, ἐπειδὴ πρῶτος ἄρχης καὶ μέσα
καὶ πέρας ἔχει· ὁ δ' αὐτὸς καὶ γραμμῆς ἐστι καὶ ἐπίπεδον, τρί-
10 γωνίων γὰρ ἐσόπλευρον ἐκάστην τριγώνον διείον μονάδων ἔχον, καὶ
πρῶτος δεσμὸς καὶ στερεοῦ δύναμις· ἐν γὰρ τρισὶ διαστάσει τὸ
στερεόν νοεῖσθαι.
nombre proposé. Tel est 12, dont la moitié est 6, le tiers 4, le quart 3, le sixième 2 et le douzième 1. Or, toutes ces parties additionnées ensemble donnent la somme 16 plus grande que le nombre proposé 12.

Le nombre déficient est le nombre dont les parties aliquotes additionnées ensemble donnent une somme moindre que le nombre proposé. Tel est 8 dont la moitié est 4, le quart 2 et le huitième 1. Il en est de même du nombre 10 que les Pythagoriciens appellent cependant parfait pour une autre raison dont nous parlerons en son lieu.

On dit aussi que le nombre 3 est parfait, parce qu'il est le premier qui ait un commencement, un milieu et une fin; et il est à la fois ligne et surface, c'est, en effet, un nombre triangulaire équilatéral dont tous les côtés valent deux unités. Enfin le nombre 3 est le premier lieu et la puissance du solide, car l'idée de solide repose sur les trois dimensions.

10 Voyez la note VIII et l'Epilogue.
< ΜΕΡΟΣ Β >

< ΒΙΒΛΙΟΝ ΤΑ ΤΗΣ ΕΝ ΑΡΙΘΜΟΙΣ ΜΟΥΣΙΚΗΣ ΘΕΩΡΗΜΑΤΑ ΠΕΡΙΕΧΟΝ ... >

< Εἰσαγωγή >

α. ἔπει δὲ καὶ συμφώνους τινάς φαν ἄριθμοὺς, καὶ ὁ περὶ συμφωνίας λόγος οὐκ ἦν εὑρεθεὶς ἀνευ άριθμητικῆς ἡτὶς συμφωνία τὴν μεγίστην ἔχει ἱσχυν, ἐν λόγῳ μὲν οὔτε ἀλήθεια, ἐν βίῳ δὲ εὐδοκιμονία, ἐν δὲ τῇ φύσει ἁρμονία. καὶ αὐτῇ δὲ ἡ ἁρμονία ἦτος ἐστὶν ἐν κόσμῳ οὐκ ἦν εὑρεθεὶς μη ἐν ἁριθμοῖς πρότερον ἐξουρεθεῖσα ἢ ἦτος ἐστὶ καὶ νοητῇ, ἢ δὲ νοητῇ ἔριξαν ἀπὸ τῆς αἰσθητῆς κατανοεῖται. νῦν μὲν οὖν περὶ τῶν οὐεῦν ἁρμονιῶν λεκτέον, τῆς τ' αἰσθητῆς ἐν ὁργάνοις καὶ τῆς νοητῆς ἐν ἁριθμοῖς.

10 μετὰ δὲ τὸν περὶ πάντων τῶν μαθηματικῶν λόγων τελευταίον ἐπέξεσαν καὶ τὸν περὶ τῆς ἐν κόσμῳ ἁρμονίας λόγον, οὐκ ἕκαστος ταῦτα ὑπὸ τῶν πρὸ ἡμῶν ἐξουρημένα καὶ αὐτοὶ ἁναγράφοιν, ὡσπερ καὶ τὰ προθέσθην ὑπὸ τῶν Πυθαγορικῶν παραδοθέντα ἐπὶ τὸ γνωριμώτερον ἐξευρηκόντος παραδεδοκιμένον, οὓδεν αὐτοὶ τούτων ἐξευρηκόνται φάσκοντες, παραδεικνύοντες δὲ τινα τῶν ὑπὸ τῶν
SECONDE PARTIE

LIVRE CONTENANT LES LOIS NUMÉRIQUES
DE LA MUSIQUE, ...

INTRODUCTION

I. Puisqu'on dit qu'il y a des nombres consonants, on ne saurait trouver en dehors de l'arithmétique la raison de la consonance, qui a les plus grandes vertus, étant dans l'âme raisonnable la vérité, dans la vie la félicité, dans la nature l'harmonie; et l'harmonie elle-même qui est répandue dans le monde ne s'offrant à ceux qui la cherchent que lorsqu'elle leur est révélée par des nombres. Cette harmonie qui est intelligible se comprend plus facilement quand elle est précédée par l'harmonie sensible. Nous traiterons donc de ces deux harmonies, savoir de celle qui se fait sentir par les instruments, et de l'harmonie intelligible qui consiste dans les nombres.

Et après avoir terminé notre traité sur toutes les mathématiques, nous y ajouterons une dissertation sur l'harmonie du monde, et il ne nous déplaira pas de rapporter ce que nos devanciers ont découvert, non plus que de faire connaître davantage les traditions des Pythagoriciens que nous avons rapportées, sans nous vanter d'en avoir découvert la moindre partie. Désirant donc faire part à ceux qui veulent étudier
Τί ἐστι φθόγγος καὶ τί φωνὴ ἑναρμονίας

β. Ὡράσυλλος τοῖς περὶ τῆς ἐν ὀργάνῳ κισθητῇς λέγων

Τί ἐστι διάστημα καὶ τί ἐστιν ἀρμονία

γ. διάστημα δὲ φησιν εἶναι φθόγγων τὴν πρὸς ἀλλήλους τοῖς σχέσιν, οἷον διὰ τεσσάρων, διὰ πέντε, διὰ πατῶν, σύστημα δὲ

δ. ἀρμονία δὲ ἐστὶ συστημάτων σύνταξις, οἷον Λύδιος, Φρύ-
Platon, de ce qui nous a été transmis par nos prédécesseurs, nous avons jugé nécessaire de composer ce recueil.

Du son et de la voix enharmonique

II. Thrasylle, traitant de l'harmonie sensible des instruments, définit le son une tension de voix enharmonique. Or, le son est dit enharmonique, quand, s'il est aigu, il peut y en avoir un plus aigu encore, et s'il est grave, il peut y en avoir un plus grave encore, en sorte qu'il se trouve intermédiaire. Si donc nous supposons un son qui surpasse toute acuité, il ne saurait être enharmonique, et c'est pour cela que jamais on ne regardera comme un son enharmonique le bruit violent de la foudre dont les blessures sont parfois funestes, comme l'a dit le poète :

Et les coups de la foudre ont fait bien des victimes
Sans blessure sanglante.

De même si le son est tellement grave qu'il ne puisse pas y en avoir de plus grave, ce ne sera plus un son, parce qu'il ne sera plus enharmonique. Ce n'est donc ni toute voix, ni toute tension de voix, qu'on appelle son, mais seulement une voix enharmonique, comme celle qui donne la mèse, la nète ou l'hypate.

Des intervalles et de l'harmonie

III. On définit l'intervalle une certaine disposition des sons, les uns par rapport aux autres, telles sont la quarte, la quinte et l'octave. Et on appelle système d'intervalles un certain ensemble, tels que le tétracorde, le pentacorde, l'octacorde.

IV. L'harmonie est la coordination des systèmes, tels

21 Dans l'octacorde ou lyre à huit cordes, la nète donnait le son le plus aigu, et l'hypate le son le plus grave. Ces deux sons correspondent aux deux mi de la même octave, la mèse correspond au la.
γνός, Δωρίς, καὶ τῶν φθόγγοι σὲ μὲν ὀξεῖς, σὲ δὲ βαρεῖς, καὶ δὲ μέσοι· ὀξεῖς μὲν σὲ τῶν νητῶν, βαρεῖς δὲ σὲ τῶν ὑπατῶν, μέσοι δὲ σὲ τῶν μεταξὺ.

5 σύμφωνα μὲν τὰ τε κατ' ἀντίφωνον, οἷον ἔστι τὸ διὰ τάσων καὶ τὸ δὶς διὰ πατῶν, καὶ τὰ <κατὰ> παράφωνον, οἷον τὸ διὰ τέντα, τὸ διὰ τεττάρων. σύμφωνα δὲ κατὰ συνέχειαν οἷον τόνος, δίστος. τὰ τε γὰρ κατ' ἀντίφωνον σύμφωνα ἔστιν, ἐπειδὴ τὸ ἀντικείμενον τῷ ἀξύτητι βάρος συμφωνή, τὰ τε κατὰ παράφωνον ἐστὶ σύμφωνα, ἐπειδὴ μήτε ὁμότονον φθέγγονται φθόγγος μήτε διάφωνον, ἀλλὰ παρὰ τοῖς γνώριμοι διάστημα ὁμοιον. διάφωνοι δὲ εἰσὶ καὶ οὐ σύμφωνοι φθόγγοι, οὗ ἐστὶ τὸ διάστημα τόνον ἡ διάστεις· ὁ γὰρ τόνος καὶ ἡ διάστεις ἀρχὴ μὲν συμφωνίας, οὕτω δὲ συμφωνία.

10 Περὶ συμφωνίας

5. ὁ δὲ περιπατητικὸς "Ἀδραστος, γνωριμώτερον περὶ τε ἀρμονίας καὶ συμφωνίας διεξόν, φησὶν· καθάπερ τής ἐγγράμματος φωνῆς καὶ παντὸς τοῦ λόγου ὀλοστρεφῆ μὲν καί πρῶτα μέρη τὰ τε ἡμέρας καὶ ἀνόματα, τοῦτον δὲ αἰ συλλαβάζει, αὐταὶ δ᾽ ἐκ γράμματος, τὰ δὲ ἐγγράμματα φωνῆς πρῶτα εἰσὶ καὶ στοιχεῖοι καὶ ἀκολούθουν καὶ ἐκλάγησα — καὶ γὰρ συν- ἵπται ὁ λόγος ἐκ πρῶτων γραμμάτων καὶ εἰς ἐνεργεῖα ταῦτα ἀναλύεται — οὕτως καὶ τῆς ἐμιλοῦς καὶ ἠμοσμένης φωνῆς καὶ παντὸς τοῦ μέλους ὀλοστρεφῆ μὲν μέρη τὰ λεγόμενα συστή-
sont le lydien, le phrygien, le dorien. Quant aux sons, les uns sont aigus, d'autres sont graves et d'autres moyens. Les sons aigus sont ceux que rendent les nuëts, les sons graves ceux que rendent les hypates et les sons moyens ceux que rendent les cordes intermédiaires.

V. Parmi les intervalles, les uns sont consonants, les autres dissonants. Les intervalles consonants sont antiphoniques, tels que l'octave et la double octave, ou paraphones, tels que la quinte et la quarte. Sont au contraire dissonants les intervalles de sons juxtaposés tels que le ton et le dièse (ou demi-ton). Les intervalles antiphoniques ou de sons opposés sont consonants, parce que la gravité opposée à l'acuité produit la consonance ; et les intervalles paraphoniques sont consonants, parce que les sons ne sont ni à l'unisson ni dissonants, mais qu'il y a un intervalle semblable perceptible. Sont dissonants et non consonants les sons dont l'intervalles est d'un ton ou d'un dièse ; car le ton et le dièse sont le principe de la consonance, mais ils ne sont pas la consonance elle-même.

Des consonances

VI. Adraste le péripatéctien, dans son traité connu De l'harmonie et de la consonance, dit : De même que dans le discours soit écrit, soit parlé, les verbes et les noms en sont les parties les plus importantes ; que les parties essentielles des verbes et des noms sont les syllabes composées de lettres ; et que les lettres sont les premiers signes de langage, élémentaires, indivisibles et les plus courts, puisque le discours se compose de lettres et se résout finalement en lettres ; de même ce qui fait la partie principale du chant et de toute mélodie, ce sont les systèmes qu'on appelle tétracordes, pentacordes et octacordes, lesquels se composent d'intervalles qui sont eux-mêmes composés de sons, ces sons étant les éléments premiers et indivisibles dont se compose toute
84

TA PERI MOYSIKEIS

ματα, τετράγωρα καὶ πεντάγωρα καὶ ὄκταγωρα· ταῦτα δὲ ἑστὶν ἐκ διανυσμάτων, τὰ δὲ διανυσματα ἐκ φύξην, οὗτοις τὰλλον φωναί εἰσὶ πρῶται καὶ ἀδιαφρέτακαὶ καὶ στοιχείοδεις, ἐξ ὅν πρῶτων συνήθετα τὸ τῶν μέλος καὶ εἰς ἄγχατα ἀγαλματίζεται. διαφέροντι δὲ ἄλληλοιν οἱ φύόγγοι ταῖς τάσεσιν, ἐπεὶ οἱ μὲν αὐτῶν ὄξυτεροι, οἱ δὲ βαρύτεροι· αἱ δὲ τάσεις αὐτῶν κατὰ τινὰς λόγους εἰς ἄρωσις εἰσίν ἀρωσιμέναι.

φησὶ δὲ καὶ τοὺς Πυθαγορικοὺς περὶ αὐτῶν οὕτω τεχνολογεῖν· ἐπεὶ μέλος μὲν πᾶς καὶ πᾶς φύόγγος φωνῆ τις ἔστιν, ἀπαγορεύεται δὲ φωνὴ φόρος, φόρος δὲ πλῆξις ἀέρος κεκοιμημένου θρόπτεσθαι, φανερῶν ὡς ἠρεμίας μὲν οὕσης περὶ τὸν ἀέρα εἰς ἄν γένοιτο οὕτε φόρος οὕτε φωνή, διὸ οὐδὲ φύόγγος, πλῆξις δὲ καὶ κινήσεως γενομένης περὶ τὸν ἀέρα, ταχείας μὲν ὃς ἀποτελεῖται ὁ φύόγγος, βραδείας δὲ βαρύς, καὶ σφοδρὰς μὲν μείζονον ἄγους, ἤρεμου δὲ μικρός, τὰ δὲ τάχη τῶν κινήσεων καὶ αἱ σφοδρότετες ἢ ἐν λόγοις τισὶν ἀποτελοῦνται ἢ καὶ ἄλογως πρὸς ἄλληλα.

ὑπὸ μὲν οὖν τῶν ἄλλων ἄλογοι καὶ ἐκμελεῖς γίνονται φόροι, οὐχ οὐδὲ φύόγγος γρη καλεῖν κυρίως, ἄγους δὲ μόνον, ὡμοί δὲ τῶν ἐν λόγοις τισὶ πρὸς ἄλληλους πολλαπλασίους ἢ ἐπιμορίους ἢ ἀπλῶς ἀριθμοῦ πρὸς ἀριθμοῦ ἐκμελεῖς καὶ κυρίως καὶ ιδίως φύόγγοι· δὲν οἱ μὲν ἄλλοι μόνοι ἢρμοσμένοι, οἱ δὲ κατὰ τοὺς πρῶτους καὶ γνωριμιώτατους καὶ κυριωτάτους λόγους πολλαπλασίους τε καὶ ἐπιμορίους ἂν καὶ σύμφωνοι.

25 συμφωνοῦσι δὲ φύόγγοι πρὸς ἄλληλοις, ὃν θατέρου κρουθέντος ἐπὶ τινὸς ὀργάκου τῶν ἐντατῶν καὶ ὁ λοιπὸς κατὰ τινὰ σικειότητα καὶ συμπάθειας συνηγεῖ· κατὰ ταῦτα δὲ ἀμφότεροι ἂμα κρουθέντων ἢδεια καὶ προστήρης ἐκ τῆς κράτεως ἐξακούστακα

modulation et dans lesquels elle se résout définitivement. Les sons diffèrent les uns des autres par les tensions, les uns étant plus aigus, les autres plus graves. On a défini ces tensions de différentes manières.

Voici, à cet égard, l’opinion qu’on attribue aux Pythagoriciens. Toute modulation et tout son étant une voix, et toute voix étant un bruit, et le bruit étant une percussion de l’air qui n’en est point brisé, il est évident que dans un air immobile il ne saurait y avoir ni bruit, ni voix, ni son. Au contraire, quand l’air est frappé et mis en mouvement, le son se produit : aigu, si le mouvement est rapide ; grave, si le mouvement est lent ; fort, si le mouvement est violent ; faible, si le mouvement est peu sensible. Les vitesses de ces mouvements s’accomplissent suivant certains rapports, ou n’en ont aucun.

De ces vitesses sans rapports, résultent des sons sans rapports et dissonants, auxquels, à proprement parler, ne convient pas le nom de sons et que l’on appellerait plus justement bruit. Au contraire, on doit regarder comme les vrais sons, propres à la modulation, ceux qui ont entre eux certains rapports, soit multiples, soit superpartiels, ou simplement de nombre à nombre. De ces sons, les uns sont seulement concordants, d’autres sont consonants selon les raisons premières et multiples les plus connues, et selon les raisons superpartielles.

Ils font entre eux une consonance, quand un son étant produit par une des cordes d’un instrument, les autres cordes résonnent par l’effet d’une certaine affinité, d’une sorte

4 La tension d’un son s’appelle maintenant la hauteur. — 21 Le rapport superpartiel ou sesquipartiel est celui dont l’antécédent surpassé d’une unité le conséquent, comme celui de 3 à 2, celui de 4 à 3, et en général celui de $n + 1$ à n.
φωνή, τών δὲ κατὰ τὸ ἕξης ἑρμοσμένων ψιθύγγων πρῶτοι μὲν οἱ τέταρτοι τάξει συμφωνοῦσι πρὸς ἀλλήλους, συμφωνοῦσι δὲ συμφωνίαν τὴν δὲ αὐτὸ τοῦτο διὰ τεσσάρων λεγομένην, ἐπείτα οἱ πέμπτοι τὴν διὰ πέντε.

5 καὶ μετὰ ταῦτα οἱ περιλαμβάνοντες ἀμφοτέρας τὰς συμφωνίας, γνώμενοι δὲ ἀπὸ ἀλλήλων ὁγόνοι, τὴν διὰ πασῶν, οὕτω προσαγορευθεῖσαν ἑπειδή τὸ πρῶτον ἀπὸ τῆς ὀκταχόρδου λύρας ὁ πρῶτος καὶ βαρύτατος ψιθύγγος, καλούμενος ὑπάτη, τῷ τελευταίῳ καὶ ὀξυτάτῳ, τούτους τῇ νήτῃ, τὴν αὐτὴν εὐρέθη συνέγγον τὰς συμφωνίαν κατ’ ἄντιφορων. ἐπηρεασμένης δὲ τῆς μουσικῆς καὶ τολυμήρων καὶ τολυμηθήγγων γεγονότων ὁγάνων τῷ προσκήνηθι νόμοι καὶ ἐπὶ τὸ βαρὺ καὶ ἐπὶ τὸ ὀξύ τοὺς προτάρχουσιν ὀχυρῶς ψιθύγγος ἄλλους πλείους, οἷς τῶν πρῶτων συμφωνίων αἱ προσηγορίας φιλάττονται, διὰ τεσσάρων, διὰ πέντε, διὰ πασῶν.

10 προσαμηνύομεν δὲ ταύτας ἑτεραι πλείους, τῇ γὰρ διὰ πασῶν πάσης ἄλλης προστιθεμένης, καὶ ἐλάττων καὶ μείζων καὶ ἐτης, εὖ ἀμφότερα γίνεται συμφωνία, οἷον ἢ τε διὰ πασῶν καὶ διὰ τεσσάρων, καὶ διὰ πασῶν καὶ διὰ πέντε, καὶ διὰ πασῶν, ἐτη δὲ πάλιν τῇ διὰ πασῶν ἐλ προστεθείᾳ τούτων τις, όποῖον καὶ διὰ πασῶν καὶ διὰ τεσσάρων, καὶ ἐπὶ τῶν ὄξων ὁμοίως μέγρι τού δύνασθαι ψιθυγγεῖσθαι ἢ κρίνειν ἀκούοντες, τότε γὰρ τις καλεῖται τῆς φωνής ὁν διεξέρχεται ἀπὸ βαρύττου τυνὸς ἄρξαμένη ψιθύγγου καὶ κατὰ τὸ ἔξης ἐπὶ τὸ ὀξὺ προϊόντα, ἢ ἀνάπαυσιν. τούτων δὲ οἱ μὲν ἐπὶ πλείους, οἱ δὲ ἐπὶ τῶν ἑλαττόν διατύσσονται.

τὸ μέντοι ἔξης καὶ ἐμμελείας ἐν τούτῳ προκόπτειν οὕτως ὡς

de sympathie; et aussi, quand deux sons étant produits en même temps, il en résulte un son mixte qui a une douceur et un charme tout particuliers. Parmi les sons successifs concordants, les quatrièmes forment avec les premiers une consonance, savoir celle que pour cette raison nous appelons quinte. Les cinquièmes à la suite donnent la quinte.

Viennent ensuite les huitièmes qui comprennent ces deux consonances et que nous appelons diapason (octave). En effet, sur la lyre à huit cordes, on trouve que le premier son qui est le plus grave, et qu'on appelle hypate, s'accorde par opposition avec le dernier et le plus aigu qui est celui de la nède, avec lequel il a la même consonance. Et quand, la musique ayant fait des progrès, les instruments ont reçu un plus grand nombre de cordes et ont rendu des sons plus multipliés, un grand nombre de sons, tant aigus que graves, ayant été ajoutés aux huit anciens, on a néanmoins conservé les dénominations des anciennes consonances : quarte, quinte et octave.

Cependant plusieurs autres consonances ont été trouvées : à la consonance d'octave, on en a ajouté de plus petites, de plus grandes, ou d'égales, et de la somme des deux résulte une consonance nouvelle, telle qu'octave et quarte, octave et quinte, et double octave ; et si l'on ajoute encore à l'octave quelconque des consonances précédentes, on obtient la double octave et quarte et ainsi de suite, tant que le son peut être produit et est perceptible à l'oreille. Il y a, en effet, une certaine étendue que la voix parcourt en commençant par le son le plus grave pour s'élever au plus aigu et inversement, étendue qui est plus grande chez les uns, moins grande chez les autres.

Cette série de modulations n'a pas lieu au hasard, ni sans art et d'après un seul mode, mais d'après certains modes déterminés qu'il faut observer dans les différents genres de mélodie. Car, de même que dans le discours soit parlé, soit écrit, ce n'est pas toute lettre, combinée avec une lettre quel-
περί τόν θινου καὶ ημιτονίου

10 ζ. τοῦ δὲ λεγομένου τόπου τῆς φωνῆς καὶ παντὸς τοῦ ἐν

tou τούτου διαστήματος γνωριμότατον μέρος τε καὶ μέτρον ἐστὶ τὸ

caloýmenou toniaíon διάστημα, καθάπερ ὁ τῆς τοῦ κυρίως

topikou διαστήματος ο ἀφρόμενα τὰ σώματα διέξειν. ἐστὶ δὲ

gnωριμότατον τὸ τονιαίον διάστημα, ἐπειδή τῶν πρῶτον καὶ

15 γνωριμωτάτων συμφωνών ἐστὶ διαφορά · τὸ γὰρ διὰ πέντε τοῦ

diá τεσσάρων ὑπερέχει τόνω.

η. τὸ μέντοι ημιτόνου ὄνῳ, ὡς ημιτόνου λέγεται, ὡσπερ

Ἀριστόδενος ἤγεται, καθά καὶ τὸ ἡμιτήχιον ἡμιτόν ἠχεῖσις,

ἀλλὰ ὡς ἔλατον τοῦ τόνου μελωδήτων διάστημα · καθά καὶ

20 τὸ ἡμιτόνου γράμμα ὄνῳ ὡς ἡμιτόνοι φωνῆς καλούμενον, ἀλλὰ

ὡς μὴ αὐτοτελή καὶ αὐτὸ φωνή. δεῖκνυται γὰρ ὁ τόνος μηδὲ

οἰκος ἐς δὺς ἡ ἡμιτήχια ἐνυξάμενος, ἐν λόγῳ θεωρούμενος

ἐπογόρω, καθάπερ ὃδε ἐν τῷ ἡμιτόνῳ διάστημα. τὰ γὰρ θ' οὖν ὁ

οἷς τὰ διαφορέσχει εἰς ἡσα.
conque, qui produit une syllabe ou un mot; de même, dans la mélodie, ce n'est pas la combinaison de sons quelconques qui produit la voix bien ordonnée, ou qui, à sa place, produit l'intervalle propre à la modulation; mais il faut que cette combinaison ait lieu, comme nous venons de le dire, suivant la loi de modes définis.

Du ton et du demi-ton

VII. La partie la plus facile à apprécier et la mesure de ce qu'on nomme l'étendue de la voix et de tout son intervalle est appelée ton, de même qu'on appelle coudée la mesure principale de l'espace que parcourent les corps en mouvement. L'intervalle de ton est très facile à distinguer, comme différence des consonances premières les plus connues: car la quinte surpasse la quarte de un ton.

VIII. Le demi-ton n'est pas ainsi appelé parce que ce serait la moitié d'un ton, comme le pense Aristoxène, de la même manière que la demi-coudée est la moitié de la coudée; mais parce que c'est un intervalle musical moindre que le ton, de la même manière que nous appelons certaine lettre demi-voyelle, non parce qu'elle fait entendre la moitié d'un son, mais parce qu'elle ne fait pas entendre complètement le même son. On démontre, en effet, que le ton, considéré dans la raison sesquioctave (9/8), ne peut pas plus se partager en deux parties égales que tout autre intervalle sesquipartiel, car 9 n'est pas divisible par 2.
Τι τὸ διάτονον γένος τῆς μελοψίας, τι τὸ χρωματικὸν καὶ τι τὸ ἐναρμονίου

3 μεταθῇ τὸ λεγόμενον ἡμιτονικὸν διάστημα ποιησάμενη κατείπ' ἀπ' αὐτὸ τὸν ὑπὸ τοῦν διαστήσας πρῶτον ἐπὶ ἄλλον παραγενητά φθόγγον, βουλομένη κατὰ τὸ ἐξῆς προσκόπτειν ἐμμελῶς, οὐδὲν ἔτερον εἶναι δύναται διάστημα οὐδὲ προενέγκασθαι φθόγγον ἔτερον ἐμμελῇ καὶ ἡμιοστημένον, ἡ διάστημα μὲν τονικὰν, φθόγγον δὲ τὸν ἐπὶ τὸ ὀξὺ τούτῳ ὀρίζοντα καὶ συμφωνοῦντα τῷ ἐξ ἀρχῆς τὴν διὰ τεσσάρων συμφωνίαν.

καλείται δὲ τὸ οὕτω μελοψηθὲν σύστημα τετράχορον, συνεστικὸς ἐκ διαστημάτων μὲν τριῶν, ἡμιτονικοῦ καὶ τοῦν καὶ τόνου, φθόγγον δὲ τεσσάρων, οὐ δὲ περιέχοντες, τούτα ὁ τε βαρύτατος καὶ ὁξύτατος, συμφωνοῦσιν εὐθὺς ἢ διὰ τεσσάρων ἐφαμέν λέγεσθαι συμφωνίαν δύο τόνων οὕτω καὶ ἡμιτονικοῦ. καλείται δὲ τὸ τούτων γένος τῆς μελοψίας διάτονον, ἦτοι ὁτι διὰ τῶν τόνων τὸ πλεῖστον διοδεύει ἢ ὁτι σεμνὸν τι καὶ ἐρρωμένον καὶ εὐτόνον ἢθος ἐπιφαίνει.

15 ι. ἐὰν μέντοι η̄ φωνὴ, τὸν ἐξ ἀρχῆς πρῶτον ὀρίζοντα φθόγγον καὶ ἡμιτονικὸν ἐπὶ τὸ ὀξὺ μεταβάς, ἐπὶ τὸν αὐτὸν ἐλθών δεύτερον φθόγγον, εἶτα πάλιν ἀπὸ τοῦθε ἡμιτονικὸν διαστήσας τρίτον ὀρίζῃ φθόγγον ἄλλον, ἀπὸ τοῦτο κατὰ συνέχειαν πεντομελῶς προσκόπτειν ἐμμελῶς οὕτω διάστημα δύναται ποιησάσθαι.

ἐλλο πλὴν τὸ λειτόμον τοῦ πρῶτον γενομένου τετράχορδου, τὸ τριημιτονικὸν ἀπόλυτον, οὕτε φθόγγον ἔτερον ὀρίζει ὁ τοῦ ἐπὶ τὸ ὀξὺ περιέχοντα τὸ πρῶτον τετράχορδον, συμφωνοῦντα τῷ βαρυτάτῳ κατὰ τὸ διὰ τεσσάρων, ὧστε γίνεσθαι τὴν συκοῦσιν μελοψίαν κατὰ ἡμιτονικὸν καὶ ἡμιτονικὸν καὶ τριημιτονικὸν ἀπόλυτον, καλείται δὲ πάλιν τὸ γένος τῆς τοικοῦτης μελοψίας
Du genre diatonique de la modulation, du genre chromatique et du genre enharmonique

IX. Quand la voix qui est modulée dans les limites de son étendue passe d'un son plus grave à un plus aigu, en produisant l'intervalle d'un demi-ton, qu'ensuite, franchissant l'intervalle d'un ton, elle passe à un autre son, et qu'elle continue à moduler, il ne peut y avoir d'autre intervalle, que celui d'un ton, qui produise un autre son agréable et apte à la modulation, et ce son aigu consonant donnera avec le premier la consonance de quarte.

Une modulation de ce genre s'appelle système tétracorde, elle se compose de trois intervalles, savoir : d'un demi-ton, d'un ton et d'un autre ton, et de quatre sons, dont les extrêmes, c'est-à-dire le plus grave et le plus aigu, forment une consonance. Cette consonance, que nous avons dit être appelée quarte, se compose donc de deux tons et d'un demi-ton. Ce genre de modulation s'appelle diatonique, soit parce que, d'ordinaire, il s'élève par des tons, soit à cause de la vigueur et de la fermeté qu'il montre.

X. Quand la voix produit un premier son, et que, franchissant un demi-ton, elle s'élève à un son plus aigu, puis passe de là à un troisième, en franchissant encore un demi-ton, et que s'efforçant d'avancer avec modulation, elle en produit encore un autre après celui-ci, elle ne peut observer un autre intervalle qu'un trihémiton incomposé, complément du premier tétracorde, et ne peut produire d'autre son que celui qui limite ce tétracorde en montant vers les sons aigus, et qui avec le plus grave donne la consonance de quarte. Cette modulation se fait donc par un demi-ton, suivi d'un demi-ton et d'un trihémiton incomposé, et ce genre de modulation s'appelle chromatique, parce qu'il s'écarte du premier et qu'il
Τι ἐστι δίεσις

ιβ. δίεσιν δὲ καλοῦσιν ἑλαχίστην οἱ περὶ Ἀριστόξενον τὸ τεταρτημόριον τοῦ τόνου, ἡμιτον δὲ ἡμιτονίον, ὡς ἐλάχιστον μελῳδητόν διάστημα, τῶν Πυθαγορείων δίεσιν καλοῦντων τὸ 10 νῦν λεγόμενον ἡμιτονίον. καλεῖσθαι δὲ φησιν Ἀριστόξενος τοῦτο τὸ προειρημένον γένος ἀρμονίαν διὰ τὸ εἴναι ἄριστον, ἀπενεγκάμενον τοῦ παντὸς ἠρμοσμένον τὴν προσηγορίαν. ἐστὶ δὲ δυσμελῳδητότατον καὶ, ὡς ἐκείνῳ φησὶ, φιλότεχνον καὶ πολλῆς δεόμενον συνηθείς, δὴν οὐδ' εἰς γρήγορα ῥαδίως ἔρχεται, τὸ 15 δὲ διάτονον γένος ἀπλοῦν τι καὶ γενναῖον καὶ μᾶλλον κατὰ φύσιν · διὸ μᾶλλον τούτῳ παραλαμβάνει Πιλάτων.

<table>
<thead>
<tr>
<th>διάτονον</th>
<th>ἡμιτονίον</th>
<th>τόνος</th>
<th>τόνος</th>
</tr>
</thead>
<tbody>
<tr>
<td>χρωματικόν</td>
<td>ἡμιτονίον</td>
<td>ἡμιτονίον</td>
<td>τριτεθμητόνον</td>
</tr>
<tr>
<td>ἀρμονικόν</td>
<td>δίεσις</td>
<td>δίεσις</td>
<td>δίτονον</td>
</tr>
</tbody>
</table>

<Περὶ τῆς εὐφρέσεως τοῦ τῶν συμφωνιῶν ἐν ἀριθμοῖς λόγου>

τοὺς δὲ συμφωνούντας φθόγγους ἐν λόγοις τοῖς πρὸς ἀλλήλων λουσ πρῶτος ἀνευρηκέναι δοκεῖ Πυθαγόρας, τοὺς μὲν διὰ τεσσάρων ἐν ἑπτατείχῳ, τοὺς δὲ διὰ πέντε ἐν ἡμικυκλω, τοὺς δὲ διὰ πεντάδις ἐν ἀπλασίᾳ, καὶ τοὺς μὲν διὰ πτεσῶν καὶ διὰ τεσσάρων.
change de couleur, il exprime les affections lamentables et les passions violentes.

XI. Il y a un troisième genre de modulation qu’on appelle enharmonique. C’est celui où partant du son le plus grave la voix module le tétracorde en progressant par un diésis, puis un autre diésis et un double ton.

Du diésis

XII. Les disciples d’Aristoxène appellent diésis mineur le quart de ton ou moitié du demi-ton qu’ils considèrent comme le plus petit intervalle appréciable. Les Pythagoriciens ap- perlent diésis ce qu’on nomme maintenant demi-ton *. Aristoxène dit que le genre enharmonique s’appelle ainsi parce qu’il est le meilleur, ce qui lui a fait donner le nom qui convient à tout ce qui est bien ordonné. Cette modulation est très difficile, et comme il le dit lui-même, elle demande beaucoup d’art et d’étude et ne s’acquitte que par une longue pratique. Le genre diatonique au contraire est simple, noble et plus naturel, c’est pourquoi Platon le préfère *.

<table>
<thead>
<tr>
<th>Genres</th>
<th>Intervalles</th>
</tr>
</thead>
<tbody>
<tr>
<td>Diatonique</td>
<td>demi-ton</td>
</tr>
<tr>
<td>Chromatique</td>
<td>demi-ton</td>
</tr>
<tr>
<td>Enharmonique</td>
<td>diésis</td>
</tr>
</tbody>
</table>

* De la découverte des lois numériques des consonances

XII (*bis*). C’est Pythagore qui paraît avoir trouvé le premier

μον ἐν λόγῳ τῶν η' πρὸς γ’ ὡς ἐστὶ πολλαπλασιασμερής, διπλάσιος γὰρ καὶ δισεπτριτός ἐστι, τοὺς δὲ διὰ πασῶν καὶ διὰ πέντε ἐν λόγῳ τριπλασίῳ, τοὺς δὲ δὶς διὰ πασῶν ἐν τετραπλασίῳ, καὶ τῶν ἄλλων ἡμισμενών τοὺς μὲν τῶν τόνον περιέχοντας ἐν ἑπογόδῳ λόγῳ, τοὺς δὲ τὸ πῶν λεγομένον ἡμιτόνιον, τότε δὲ δίεισιν, ἐν ἀριθμῷ λόγῳ πρὸς ἀριθμὸν τῷ τῶν σν’ πρὸς σμχ’.

εξετάσας τοὺς λόγους διὰ τε τοῦ μήκους καὶ πάχους τῶν χορδῶν, ἐτι δὲ τῆς τάσεως γνωμένης κατὰ τὴν στρωφήν τῶν κολλάθων ἡ γνωριμώτερον κατὰ τὴν ἑξάρτησιν τῶν βαρῶν, ἐπὶ δὲ τῶν ἐμπνευστῶν καὶ διὰ τῆς εὐρύτητος τῶν κολλάθων ἡ διὰ τῆς ἑπιτάσεως καὶ ἀνέσεως τοῦ πνεύματος, ἢ δ’ ὅγκων καὶ σταθμῶν οἷον δίπλων ἢ ἀγγεῖων. ὃ τι γὰρ ἐν λειψθῇ τούτων κατὰ τινα τῶν εἰρημένων λόγων, τῶν ἄλλων <Ἰων> ὅντων, τὴν κατὰ τῶν λόγων ἀπεργάσεται συμφωνίαν.
que les sons consonants ont entre eux des rapports \^e. Les sons qui produisent la quarte ont entre eux le rapport sesquiterce \((4/3)\); ceux qui produisent la quinte ont la raison sesquialtère \((3/2)\); ceux qui produisent l’octave ont entre eux la raison double; ceux qui donnent octave et quarte sont dans le rapport de 8 à 3 qui est polyépimère, car il est égal à \(2 + 2/3\). Les sons qui donnent octave et quinte sont en raison triple, et ceux qui donnent le double octave sont en raison quadruple. Parmi les autres sons concordants, ceux qui donnent le ton sont dans la raison sesquioctave \((9/8)\), et ceux qui donnent le demi-ton, mais qu’alors on appelait diésis, sont dans le rapport du nombre 256 au nombre 243 \^e.

C’est Pythagore, disons-nous, qui paraît avoir découvert ces rapports, par la longueur et la grosseur des cordes, ainsi que par la tension à laquelle il les soumettait en tournant les chevilles, ou par une méthode plus connue, en y suspendant des poids, et dans les instruments à vent par le diamètre de la cavité, par l’intensité plus ou moins grande du souffle, ou par le poids des disques, ou le niveau dans les vases. Quelle que soit la méthode choisie parmi celles que nous venons de citer, on aura la consonance suivant le rapport indiqué, toutes choses égales d’ailleurs.

Pour le moment, contentons-nous de la démonstration qui, dans ce qu’on appelle le canon harmonique, s’obtient par la longueur des cordes : si nous divisons en quatre parties égales une corde tendue sur le canon harmonique, le son produit par la corde entière formera avec celui qui est produit par trois parties de la corde l’accord de quarte, le rapport est sesquiterce; avec le son produit par deux parties ou la moitié de la corde, il formera l’accord d’octave, le rapport est double; avec le son produit par le quart de la corde, il donnera l’accord de double octave, le rapport est quadruple.

1 Cf. Chalcidius, In Timæum Platonis, XLIV, p. 191, éd. Didot. — 12 Le rapport de 256 à 243 qu’on nomme aussi limma est l’excès de la quarte sur le double ton: on a \(4/3 : (9/8)^2 = 4/3 \times 64/64 = 256/243\).
ο δὲ ἀπὸ τῶν τριῶν μερῶν φθάγγος πρὸς τὸν ἀπὸ τῶν οὗ γενόμενος ἐν ἡμισείρῳ συμφωνήσει διὰ τέντε, πρὸς δὲ τῶν ἀπὸ τοῦ τετάρτου μέρους γενόμενος ἐν λόγῳ τριπλασίῳ συμφωνήσει διὰ πασῶν καὶ διὰ τέντε. ἐὰν δὲ εἰς ἐνέσει διακρισιμὴ ἡ χρονία, ὁ ἀπὸ τῆς ὀλίγης φθάγγος πρὸς τὸν ἀπὸ τῶν ὀκτὼ μερῶν ἐν λόγῳ ἐπογόφῳ τὸ τοιαύτα περιέχει διάστημα.

πάσας δὲ τὰς συμφωνίας περιέχει ἡ τετρακτύς. συνεστησα μὲν γὰρ αὐτὴν α' καὶ β' καὶ γ' καὶ δ'. ἐν δὲ τούτοις τοῖς ἄριθμοῖς ἔστιν ἡ τε διὰ τεσσάρων συμφωνία καὶ ἡ διὰ τέντε 10 καὶ ἡ διὰ πασῶν, <καὶ ἡ διὰ πασῶν καὶ διὰ τέντε, καὶ ἡ διὸς διὰ πασῶν> καὶ ἐπίτριτος λόγος καὶ ἡμιλίας καὶ διπλάσιος καὶ τριπλάσιος καὶ τετραπλάσιος.

tαύτας δὲ τὰς συμφωνίας οἱ μὲν ἀπὸ βαρῶν ξίλοις λαμβάνειν, οἱ δὲ ἀπὸ μεγεθῶν, οἱ δὲ ἀπὸ κυκλάσων [καὶ ἄριθμοῖ], 15 οἱ δὲ ἀπὸ ἀγγείων [καὶ μεγεθῶν], Λάκτος δὲ ὁ Ἐρμίονεύς, ὃς φασί, καὶ οἱ περὶ τὸν Μεταποντίνου Ἰππασον Πολυαγορικόν ἄνδρα συνέπεσαν τῶν κυκλάσων τὰ τέχνη καὶ τὰς βραδυτήτας, δι᾽ ὅν τὰ συμφωνία ἐν ἄριθμοῖς ἡγουμένος λόγους τοιούτους ἐλάμβανεν ἐπὶ ἀγγείων. ἦσον γὰρ ὄντων καὶ ὁμοίων πάντων τῶν ἁγγείων τὸ μὲν κενὸν δάσας, τὸ δὲ ἡμίσι ὑγροῦ <πληρώσας> ἐλύσα ἐκατέρω, καὶ αὐτῷ ἡ διὰ πασῶν ἀπεδίδοτο συμφωνία.

ότερον δὲ πάλιν τῶν ἁγγείων κενὸν ἔσων εἰς θάτερον τῶν τεσσάρων μερῶν τὸ ἐν ἐνέγκε, καὶ κρούσαντι αὐτῷ ἡ διὰ τεσσάρων συμφωνία ἀπεδίδοτο, ἡ δὲ διὰ τέντε, <δεῦ> ἐν μέρος 20 τῶν τριῶν συνεπλήρου, οὕτως τῆς κενάσεως πρὸς τὴν ἔτεραν ἐν μὲν τῇ διὰ πασῶν ὡς β' πρὸς ἐν, ἐν δὲ τῷ διὰ τέντε ὡς γ' πρὸς β', ἐν δὲ τῷ διὰ τεσσάρων ὡς δ' πρὸς γ'.

οἷς ὁμοίως καὶ κατὰ τὰς διαλήψεις τῶν χρονίων θεωρεῖται,

10 <καὶ ἡ διὰ πασῶν....> manque aux mss. — 18 Hiller croit qu’il y a une lacune entre αἱ συμφωνίαι et ἐν ἄριθμοῖς. — 25 κενάσεως κυκλάσω.
De plus le son produit par trois parties de la corde donnera avec le son produit par la moitié de la corde la consonance de quinte, le rapport est sesquialtère, et, à l'égard du son produit par le quart de la corde, il donnera la consonance d'octave et quinte, le rapport est 3. Si nous divisons la corde en 9 parties égales, le son produit par la corde entière donnera avec le son qui est produit par 8 parties l'intervalle d'un ton, le rapport est sesquioctave.

Le quaternaire 1, 2, 3, 4, renferme toutes les consonances, car il contient celles de quarte, de quinte, d'octave, d'octave et quinte et de double octave, savoir les raisons sesquitierce, sesquialtère, double, triple et quadruple (c'est-à-dire 4/3, 3/2, 2, 3 et 4).

Ces consonances, les uns ont voulu les obtenir par des poids, d'autres par des longueurs, d'autres par des mouvements nombrés, d'autres encore par la capacité des vases. On raconte que Lasus d'Hermione et les disciples d'Hippase de Métaponte, ce dernier de la secte de Pythagore, ont observé sur des vases la rapidité et la lenteur des mouvements à l'aide desquels les consonances se calculent en nombres. Prenant plusieurs vases de même capacité et semblables, on a laissé l'un vide et l'on a rempli l'autre à moitié d'un liquide, puis on a frappé chacun d'eux, on a obtenu la consonance d'octave.

Laissant de nouveau un vase vide et remplissant l'autre au quart, on a obtenu, en les frappant, la consonance de quarte; pour l'accord de quinte, on remplissait le tiers d'un vase; le rapport des espaces vides était, pour l'octave celui de 2 à 1, pour la quinte celui de 3 à 2, pour la quarte celui de 4 à 3.

Par la division des cordes, on obtient les mêmes rapports comme nous l'avons vu. Toutefois, on ne se servait pas d'une seule corde, comme dans le canon harmonique, mais de deux
ὑά προείρηται, ἀλλ' οὐχ ἐπὶ μιᾷ χορδῇ, ὡς ἐπὶ τοῦ κανόνος, ἀλλ' ἐπὶ δυοίνι ὀο γάρ ποιήσας ὀμοτόνους οτὲ μὲν τὴν μίαν αὐτῶν διαλάβῃ μέσην πυκνὰς, τὸ ἦμισυ πρὸς τὴν ἐτέραν συμφωνίαν τὴν διὰ πασῶν ἐποίει ὃτε δὲ τὸ τρίτον μέρος ἀπολαμβάνοι, τὰ λοιπὰ μέρη πρὸς τὴν ἐτέραν τὴν διὰ πέντε συμφωνίας ἐποίει ὁμοιας δὲ καὶ ἐπὶ τῆς διὰ τεσσάρων καὶ γάρ ἐπὶ ταύτης μιᾷ τῶν χορδῶν ἀπολαβῶν τὸ τέταρτον μέρος τὰ λοιπὰ μέρη πρὸς τὴν ἐτέραν συνῆπτεν.

ὁ δὲ καὶ ἐπὶ τῆς σύριγγος ἐποίει κατὰ τὸν αὐτὸν λόγον. οἱ δ' ἀπὸ τῶν βαρῶν τὰς συμφωνίας ἐλαμβάνων, ἀπὸ δυοίνι χορδῶν ἐξαρτώντες βάρη κατὰ τοὺς εἰρημένους λόγους, οἱ δ' ἀπὸ τῶν μηκῶν, καὶ τῶν χορδῶν ἐπίστευαν, τὰς συμφωνίας ἐν ταῖς χορδαῖς ἀπορισισμένους.

γν. φθόγγον δὲ εἶναι φωνῆς πτῶσιν ἐπὶ μιᾷ τάσιν. ὁμοιον γάρ φασιν αὐτὸν αὐτῷ δεῖν εἶναι τὸν φθόγγον καὶ ἐλάχιστον κατὰ διαφόραν, οὐχ ἐκ διαφόρων τάσεων οὗν βαρύτητος καὶ ὀξύτητος. τῶν δὲ φωνῶν αἱ μὲν οξεῖαι, αἱ δὲ βαρεῖαι, διὸ καὶ τῶν φθόγγων, <ὅν> ὁ μὲν οξὺς ταχύς ἐστιν, ὁ δὲ βαρύς βραχύς. εἰ γοῦν εἰς δύο ἀσπασθεῖς καὶ ἕσοκλους <αὐλοῖς> τετρακάτευχος εἰς σύριγγος τρόπον, ἃν τοῦ ἐτέρου διπλάσιον ἔστι τὸ μήκος τοῦ ἐτέρου, ἐμφυτῆσαι τῇ, ἀνακλάτε τὸ πνεῦμα τὸ ἐκ τοῦ ἥμισυς μήκους διπλάσιον τάχει γράφεσθαι καὶ <γίνε
tαι> συμφωνία ἡ διὰ πασῶν βαρέως μὲν φθόγγου τοῦ διὰ τοῦ μείζονος, ὧν ἐστὶ τοῦ διὰ τοῦ ἑλάττους.

αἰτιόν δὲ τάχος τοι καὶ βραδυτῆς τῆς φορᾶς καὶ κατὰ τὰ ἀποστῆματα δὲ τῶν ἐν τοῖς αὐλοίς τρημάτων τὰς συμφωνίας ἀπεδίδοσαν καὶ ἐπὶ ἑνός. διὰ μὲν γάρ διηρημένου καὶ τοῦ αὐλοῦ ὀλού ἐμφυτεύσεός ἐκ τοῦ κατὰ τῷ ἦμισυ τρήματος τὸ

13 Hiller croit que les mss. présentent ici une lacune. — 14 Title : τὶ ἐστι φθόγγος (ce que c'est que le son). — 19 <αὐλοῖς> proposé par Hiller; cf. même p., l. 26 et suiv.
cordes à l’unisson également tendues. On interceptait la moitié d’une de ces cordes en pressant le milieu avec le doigt, on obtenait avec la moitié et l’autre corde entière la consonance d’octave; quand on interceptait seulement un tiers, les deux autres tiers et la corde entière donnaient l’accord de quinte. De même pour obtenir la consonance de quarte, on interceptait le quart d’une des deux cordes, en laissant l’autre entière.

On a fait une expérience semblable sur la flûte et on a trouvé les mêmes rapports. Ceux qui ont mesuré les consonances avec des poids, ont suspendu à deux cordes des poids dans les rapports que nous avons dits et qu’on avait obtenus par la longueur des cordes, en déterminant les consonances de ces cordes.

XIII. Le son est le repos de la voix sur une seule intonation, car on dit que le son doit toujours être semblable à lui-même et ne pas admettre la moindre différence ni se composer de différentes tensions de gravité ou d’acuité. Or les voix sont en partie aiguës, en partie graves; c’est pourquoi parmi les sons, l’un, aigu, est rapide, et l’autre, grave, est lent. Si donc on souffle dans deux tuyaux d’une égale grosseur et d’un diamètre égal, percés à la manière d’une flûte, et dont l’un soit deux fois plus long que l’autre, l’air qui s’échappe du tuyau deux fois moins long a une vitesse double et il en résulte la consonance d’octave, le son le plus grave sortant du tuyau le plus long et le son le plus aigu sortant du tuyau le plus court.

La cause en doit être attribuée à la vitesse et à la lenteur du mouvement, et cette cause produit les mêmes consonances dans une seule flûte; à cause de la distance des trous. En effet, si une flûte étant divisée en deux parties égales, on souffle dans la flûte entière, puis jusqu’au trou qui la divise en deux parties, on entendra la consonance d’octave; la flûte étant divisée en trois, et deux tiers étant pris du côté
τά πασῶν σύμφωνον ἀποτελεῖται. τριγῆ δὲ ὄσιρισθέντος καὶ τῶν μὲν δυεῖν μερῶν ὁντων πρὸς τῇ γλωσσίδι, κάτω δὲ τοῦ ἐνός, καὶ τοῦ ὅλου συμφυσθέντος τοῖς δυσι, τὴν δὴ πέντε γενέσθαι συμφωνίαν. τεσσάρων δὲ διαιρέσεων γενομένων, τριῶν 5 μὲν ἄνω, κάτω δὲ μιᾶς, καὶ τῷ ὅλῳ συμφυσθέντων τῶν τριῶν γίνεται ὡς δὶς τεσσάρων.

οἱ δὲ περὶ Εὐδοξον καὶ Ἀρχύσταν τὸν λόγου τῶν συμφωνιῶν ἐν ἀριθμοῖς ἱσοντο εἶναι, ὁμολογοῦντες καὶ αὐτὸλ ἐν κινήσει εἶναι τοὺς λόγους καὶ τὴν μὲν ταχείαν κίνησιν ὁξεῖαν εἶναι ἢ τε 10 πλήθουσαν συνεχεῖς καὶ ὁκύτερον κεντοῦσαν τὸν ἄφρα, τὴν δὲ βραδεῖαν βαρείαν ἢτως τρεῖτον οὐσταν.

ταυτὶ μὲν περὶ τῆς εὐφρέσεως τῶν συμφωνιῶν ὁ ἐπανελθομὲν δὲ ἐπὶ τὰ ὑπὸ τοῦ Ἀράστου παραδεδομένα. χρηί γὰρ ὅτι τούτως τοις εἰς τὴν ἀνεύρεσιν τῶν συμφωνιῶν ὀργάνος κατὰ 15 μὲν τοὺς λόγους προπαρασκευασθεὶσιν ἡ αἰσθησις ἐπιμαρτυρεῖ, τῇ δὲ αἰσθήσει προσκηρυθείση ὁ λόγος ἐφαρμόζει. πῶς δὲ καὶ ὁ τὸ λεγόμενον ἡμιτόνοιο περιέγοντες φθόγγοι πρὸς ἀλλήλους εἰσὶν ἐν λόγῳ τῷ τῶν συς πρὸς συμγ', μικρὸν ὕστερον ἔστιν φανερὸν.

20 Ἡλιον δὲ ὅτι καὶ ἀι συνθεσεῖς καὶ ἀι διαιρέσεις τῶν συμφωνίων ὁμολογοῦν καὶ συνυφόλοι διωροῦνται ταῖς τῶν κατὰ τὰ ταύτας λόγων συνθεσεῖς τε καὶ διαιρέσεις ἢς πρὸςθεν ἐμπνύσαμεν. 25 οὗν ἐπεὶ τὸ διὰ πασῶν ἐκ τοῦ διὰ πέντε καὶ διὰ τεσσάρων συνυφῆται καὶ εἰς τὰ ταύτα διαιρεῖται, λόγος δὲ τοῦ μὲν διὰ πασῶν διπλάσιος, τοῦ δὲ διὰ τεσσάρων ἐπίτριτος, τοῦ δὲ διὰ διὰ πέντε ἡμιόλιος, φαίνεται [ὅτι] καὶ ὁ διπλάσιος λόγος συν-

28 ὅτι ἐρα conj. Hultsch.
de la languette et un tiers vers l'extrémité, si on souffle dans la flûte entière et dans les deux tiers, on entendra l'accord de quinte. Si elle est divisée en quatre, et que l'on prenne trois parties vers le haut et une vers le bas, en soufflant dans la flûte entière et dans les trois quarts, on aura la consonance de quarte.

L'école d'Eudoxe et celle d'Archytas ont pensé que les rapports des consonances pouvaient être exprimés par des nombres; elles ont reconnu aussi que ces rapports expriment les mouvements, un mouvement rapide correspondant à un son aigu, parce qu'il frappe et pénètre l'air d'une manière plus continue et plus rapide, et un mouvement lent répondant à un son grave, parce qu'il est plus tardif.

Voilà ce que nous avions à dire de la découverte (des lois numériques) des consonances. Revenons maintenant à ce qu'a dit Adraste au sujet de ces instruments qui ont été préparés selon certains rapports dans le but de découvrir les consonances; il dit, en effet, que nous jugeons par l'ouïe la grandeur des intervalles et que les raisons confirment le témoignage des sens. Nous expliquerons bientôt comment les sons qui ont entre eux l'intervalle d'un demi-ton, ainsi que nous l'avons dit, sont dans le rapport de 256 à 243.

De l'addition et de la soustraction des consonances

XIII *(bis)*. Il est évident que les compositions et les divisions des consonances sont entre elles dans le même rapport que les compositions et les divisions des nombres qui mesurent les consonances, comme nous l'avons expliqué. Ainsi l'octave se compose de la quinte et de la quarte et se divise en quinte et quarte. Or la raison de l'octave est double, celle de quarte est sesquitième *(4/3)* et celle de la quinte est sesquialtère *(3/2)*. Il est clair que la raison 2 se compose de *(4/3)* et de *(3/2)* et se résout dans les mêmes nombres. Ainsi
τίθεσθαι τε ἐκ τοῦ ἑπτάρτου τε καὶ ἡμιλίου καὶ εἰς τούτους διαφερεῖται · τῶν μὲν γὰρ ς’ τὰ η’ ἑπτάρτια, τῶν δὲ η’ τὰ 1β’ ἡμιλία · καὶ γίνεται τὰ 1β’ τῶν ς’ ἑπτάρτια ς’ η’ 1β’.

πάλιν δὲ ὁ τῶν 1β’ πρὸς τὸν ς’ λόγον διπλάσιον διαφερεῖται εἰς τὸν ἑπτάρτου λόγον τῶν 1β’ πρὸς τὰ θ’ καὶ εἰς τὸν ἡμιλίου τῶν θ’ πρὸς τὰ ς’.

ἐπεὶ δὲ καὶ τὸ διὰ πέντε τοῦ διὰ τεσσάρων ὑπέρέχει τόνω, τὸ μὲν γὰρ διὰ πέντε τριών τόνων ἐστὶ καὶ ἡμιτονίου, ὁ δὲ τόνος ἐν ἐπογόδῳ λόγῳ, φαίνεται καὶ τὸ ἡμιλίου τοῦ ἑπτάρτου υπέρέχειν [ἐν] ἐπογόδῳ · ἀπὸ γὰρ ἡμιλίου λόγου στὸν τῶν θ’ πρὸς τὰ ς’ ἀφαίρεθέντος τοῦ <ἐπιτρίτου> λόγον τῶν η’ πρὸς τὰ ς’ λειτεται λόγος ἐπογόδος ὁ τῶν θ’ πρὸς τὰ η’ · καὶ πάλιν τοῦτο τῷ λόγῳ προστεθέντος ἑπιτρίτου λόγον τοῦ τῶν 1β’ πρὸς θ’ συμπληροῦται λόγος ἡμιλίου τῶν 1β’ πρὸς τὰ η’.

καὶ μὴν ἐπεὶ τὸ μὲν διὰ πασῶν ἐν διπλάσιῳ λόγῳ, τὸ δὲ διὰ τεσσάρων ἐν ἑπιτρίτῳ, τὸ εξ ἀμφότερον ἐν λόγῳ τῶν η’ πρὸς τὰ γ’ τῶν μὲν γὰρ γ’ ἑπιτρίτια τὰ 1δ’, τούτων δὲ διπλάσια τὰ η’. τὸ δὲ διὰ πασῶν καὶ διὰ πέντε ἐν λόγῳ τριπλάσιον · 20 ὁ γὰρ ἡμιλίου καὶ διπλάσιος συντιθέμενοι τοῦτον ποιοῦσιν · ἡμιλίου μὲν γὰρ ὁ τῶν θ’ πρὸς τὰ ς’, διπλάσιος δὲ ὁ τῶν η’ πρὸς τὰ θ’ καὶ γίνεται τριπλάσιος ὁ λόγος τῶν η’ πρὸς τὰ ς’.

<table>
<thead>
<tr>
<th>1η</th>
<th>1δ’</th>
<th>1γ’</th>
<th>1η’</th>
<th>1θ’</th>
</tr>
</thead>
<tbody>
<tr>
<td>διὰ πασῶν καὶ διὰ δ’</td>
<td>διπλάσιος καὶ δισπίτριτος</td>
<td>διπλάσιος</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
8 est les 4/3 de 6 et 12 est les 3/2 de 8, or 12 est le double de 6 : on a les nombres 6, 8, 12. De même, la raison 2 de 12 à 6 se décompose en deux, le rapport sesquioctave (4/3) de 12 à 9 et le rapport sesquialtère (3/2) de 9 à 6.

Comme la quinte surpasse d’un ton la consonance de quarte, puisqu’elle se compose de trois tons et demi, le ton étant dans le rapport sesquioctave (9/8), on trouve que le rapport sesquialtère (3/2) surpasse aussi le rapport sesquioctave (4/3) de la raison sesquioctave (9/8) ; en effet, si de la raison sesquialtère, comme de 9 à 6, on retranche la raison sesquioctave de 8 à 6, le reste est la raison sesquioctave de 9 à 8 *. Si de même on ajoute à celle-ci la raison sesquialtère de 12 à 9, on complète la raison sesquialtère de 12 à 8 *.

Comme la consonance d'octave est en raison double et la 15 consonance de quarte en raison sesquialtère (4/3), la somme des deux donne la raison de 8 à 3, car 4 est à 3 dans le rapport sesquialtère et le double de 4 est 8 *.

La quinte de l'octave est en raison triple, le rapport sesquialtère ajouté à 2 donne, en effet, cette raison, car le rapport de 9 à 6 est sesquialtère et le rapport de 18 à 9 est double, ce qui donne la raison triple pour rapport de 18 à 6 *.

```
\begin{array}{c|c|c}
\text{octave} & \text{quarte} & \text{octave et quarte} \\
8 & 4 & 3 \\
\end{array}
\quad
\begin{array}{c|c|c}
\text{octave} & \text{quinte} & \text{octave et quinte} \\
48 & 9 & 6 \\
\end{array}
```

La double octave est pareillement en raison quadruple, car elle se compose de deux raisons doubles : le double de 6 est 12 et le double de 12 est 24 qui est quadruple de 6 ; ou

\[12 \text{ on a } 9/6 : 8/6 = 9/8. \quad 14 \text{ on a } 9/8 \times 12/9 = 12/8 = 3/2. \quad 18 \text{ on a } 2 \times 4/3 = 8/3 = 2 + 2/3. \quad 22 \text{ on a } 9/6 \times 18/9 = 18/6 = 3.\]

ό δὲ Πλάτων καὶ γένος διάτονοι καὶ συστήματος μέγεθος ἐπὶ τὸ τετράχως διὰ πασῶν καὶ διὰ πέντε καὶ τὸν προαγάγμον. εἰ δὲ λέγοι τις, φησίν ὁ "Αδριστός, ὡς οὐ δέον ἐπὶ τοσοῦτον ἑκτείναι, "Ἀριστόξενος μὲν γὰρ ἐπὶ τὸ δὲ διὰ πασῶν καὶ διὰ τεσσάρων τὸ τὸ κα’ αὐτῶν πολυτρόπου διαγράμματος πεποίηται μέγεθος, οὗ δὲ νεώτεροι τὸ πεντεκοσιδέκχορδον πρόπον μέγιστον ἐπὶ τὸ δὲ διὰ πασῶν [καὶ τὸν] διεστηκός, ρητέον, φησίν, ὡς ἑκεῖνοι μὲν πρὸς τὴν ἡμετέραν γρήγορον ὑποτέτησις οὕτως ἐποίουν, ἡγούμενοι μὴ πλεῖον τῷ τούτων ὅπως πάντως μήτε τοὺς ἀγωνιζόμε- νους φθέγγεσθαι μήτε τοὺς ἀκοῦοντας εὐγνώστως κρίνειν.

Πλάτων δὲ πρὸς τὴν φύσιν ὑμῶν, ἐπειδὴ τὴν ψυχήν ἀνάγκη συνισταμένην καθ’ ἀρμονίαν μέχρι τῶν στερεῶν προάγμεν ἀριθ- μῶν καὶ δυσὶ συναρμόζεσθαι μεσότης, ὅποιοί διὰ παντὸς ἐλλησσότα τοῦ τελείου στερεοῦ κοσμικοῦ σώματος πάντων ἀντιληπτικὴ γενήσεται τῶν ὄντων, καὶ τὴν ἀρμονίαν αὐτῆς μέχρι τούτου προαγάγμον, τρόπον τινα καὶ κατὰ τὴν αὐτῆς φύσιν ἐπ’ ἀπειρον δυναμενήν προϊέναι.

plutôt, d’après ce que nous avons dit au commencement, la raison triple ajoutée à la raison sesquitive donne la raison quadruple. Or la raison d’octave et quinte est 3, celle de quarte est sesquitive (4/3) et c’est des deux que se compose la double octave. C’est donc justement qu’on voit ici la consonance quadruple, car le triple de 6 est 18 dont les 4/3 sont 24 qui est le quadruple de 6. De même le rapport de 8 à 6 est sesquitaire et le triple de 8 est 24 qui est le quadruple de 6. On peut pousser ces notions aussi loin qu’on voudra, on trouvera toujours les mêmes rapports résultant de la composition des consonances *.

Platon a conduit le genre diatonique et l’étendue de ce système jusqu’à la quatrième octave avec une quinte en plus et un ton *. Que si quelqu’un objecte, dit Adraste, qu’il ne faut pas pousser si loin le calcul, puisque Aristoxène a limité à la double octave et quinte l’étendue du diagramme qui représente les différents modes, et que les modernes ont le pentédecacorde (lyre à 15 cordes) dont l’étendue la plus considérable ne contient que la double octave [avec un ton de plus], je réponds, poursuit-il, que ces derniers ne considérant que le point de vue pratique, ont réglé les choses de cette manière, parce qu’ils étaient persuadés que ceux qui concourent pour le prix du chant, ne peuvent pousser la voix au-delà de ces limites, et que, d’ailleurs, les auditeurs ne pourraient plus distinguer facilement les sons.

Platon, au contraire, considérant la nature des choses et l’âme qui se compose nécessairement d’harmonie, prolonge le calcul jusqu’aux nombres solides (8 et 27) et joint les termes par deux moyennes, afin de pouvoir embrasser complètement tout ce qui compose le corps solide du monde ; et il en étend jusqu’à ce point l’harmonie qui, selon sa nature, peut aller à l’infini.

44 Voyez la note IX. — 44 Voy. la note X.
φησι δ' ὅτι καὶ τοὺς μείζονας ἄριθμοὺς τοὺς βαρύτερους φθόγγοις οἰκεῖον ἀποδιδόναι, καὶ ἐπὶ ἐνὶ ὀξεῖ ἄκρη τάσεων διαφωνεῖν, οἷον ἑπὶ τῆς τάσεως τῆς γνωμένης διὰ τῆς ἐξαρητήσεως τῶν βαρών. οὗ γὰρ ἐσώ τὸ τε μῆκος καὶ πάχος γορδών καὶ τὸ ἡλία ὁμοῖον τὸ πλεῖον βάρος διὰ τὴν πλείω τάσιν τὸν ἐξώτερον ποιῆσε φθόγγον. ἐπεὶ γὰρ τὸ πλεῖον βάρος πλεῖον τάσιν ποιεῖ, πλείονα τὴν ἐξώθεν προστίθετος δύναμιν τῷ κατ' αὐτὸν ἐξωτέρῳ φθόγγῳ, ἐλάττονα διὰ τούτοις ἔχοντι τὴν ὑδάιν ἰσχύν τοῦ ἐξαρητήματος. ὁδῆλον ὡς ἀντεστραμμένως ὁ βαρύτερος, τὴν 10 οἰκείαν αὐτοῦ δύναμιν πλεῖον κεχειριμένος τοῦ ἐξαρητήματος, ἐπαι- κεῖ πρὸς τὸ σωζεῖν τὴν οἰκείαις ἁρμονίας ταῖς καὶ συμφωνίας. ὡστε τὸν μείζονα ἄριθμον τῇ πλείοις νεμεῖσθαι δυνάμει. ὁμολογεῖ δὲ τούτοις καὶ τὰ ἡλία. τάλιν γὰρ τὰ μῆκη καὶ τὰ πάχη δυσκινηθήσαν προσάπτοντα ταῖς γορδίαις ἀσθένειαν παρασκευάζει, 15 ὡς μὴ ἡρῴως κυνείσθαι μηδὲ θάπτων πλήθειν τὰ καὶ εἰδοποιεῖν πλείονα ὄντα τὸν πέριχ άέρα.

ὁδῆλον οὖν [ὅτι] ὡς οἱ βαρύτεροι φθόγγοι τὴν αὐτοῦ οἰκείαν δύναμιν κατὰ τὸν πλεῖον κέκτηται ἀριθμὸν. ὁμοία δὲ ἔστιν εὑρεῖν καὶ ἐπὶ τῶν ἐμπνευστῶν ἀργάνων. καὶ γὰρ τῶν ἐν 20 τούτοις φθόγγων οἱ βαρύτεροι, διὰ τὸ μῆκος καὶ τὴν εὐρύτητα τῶν τριμάτων πλέον εἰδοποιοῦσιν τὸν ἄέρα ἢ νὴ. Δίκη τὴν ἀνέστιν τοῦ πνεύματος ὡς ἐπὶ σάλπηρος ἢ τῆς ἁρμηνίας, ἀτο- νώτεροι καὶ ἀσθενεστέροι γινόμενοι τὴν αὐτοῦ οἰκείαις δύναμιν ἐχοῦσι φύσει πλείονα.

25 κυριοτάτη δὲ πασών, φησιν, ἢ διὰ τεσσάρων συμφωνίας ἢ τὸ ἐπὶ ταύτης καὶ αἱ λοιπαὶ εὐρίσκονται. ἢ δὲ διὰ πέντε τῶν τοῦ διὰ τεσσάρων διενήγοιτον.

Τι ἔστι λείμμα

ιδ. ἀμέλει τῶν τόνον οὕτως ὀρίζονται · τὸ ἀπὸ τοῦ διὰ
Il dit de plus qu'il est convenable d'attribuer les plus grands nombres aux sons les plus graves, quoique cela ne paraisses pas convenir à certaines tensions, par exemple à la tension qui se fait par la suspension des poids. En effet, de deux cordes égales en longueur et en grosseur, et semblables du reste, celle qui soutiendra le plus grand poids produira le son le plus aigu, à cause de la tension plus grande, car le plus grand poids, produisant une plus forte tension, donne extrinsèquement une plus grande force au son plus aigu par lui-même qui a, d'après cela, une force moindre que le poids suspendu. Au contraire, il est évident qu'un son plus grave, possédant par lui-même une force plus grande que le poids suspendu, se suffit à lui-même pour retenir sa propre harmonie et sa consonance ; en sorte que le plus grand nombre doit être attribué à la plus grande force. Cela s'accorde avec le reste, car les longueurs et les grosseurs des cordes, ralentissant le mouvement, les rendent impuissantes et les empêchent de vibrer facilement et de frapper rapidement l'air qui les entoure.

Il est donc évident que les sons les plus graves ont leur force propre selon le nombre le plus grand. On trouve la même chose avec les instruments à vent, car dans ces instruments les sons les plus graves résultent de leur longueur et de la largeur des trous qui font mettre en mouvement une plus grande quantité d'air ; ils résultent aussi de la diminution du souffle, comme dans la trompette et dans l'organe vocal où les sons faibles et tempérés ont une force propre plus grande.

La première de toutes les consonances, dit Platon, est la quarte, car c'est par elle qu'on trouve toutes les autres ; la quinte n'est séparée de la quarte que par l'intervalle d'un ton.

Du limma

XIV. On peut définir le ton l'intervalle qui sépare la
πέντε ἐπὶ τὸ διὰ τεσσάρων διάστημα, εὐρίσκεται δὲ ἐκ τοῦ διὰ τεσσάρων καὶ διὰ πέντε τὸ διὰ πατῶν ὡς σύγκειται γὰρ ἐκ τοῦ διὰ τεσσάρων καὶ διὰ πέντε.
οἱ δὲ παλαιὸι πρῶτον διάστημα τῆς φωνῆς ἔλαβον τὸν τόνον, ἡμιτόνοι δὲ καὶ διέστην οὐχ ἡγούντο, οὐ δὲ τόνος εὐρίσκετο ἐν ἐπογδόφι λόγῳ ἐν τῷ δίσκῳ κυκλακεσκείσθησαν καὶ ἄγειν καὶ γορ-δών καὶ αὐλῶν καὶ ἐκχρήσεων καὶ ἄλλων πλειών, τὰ γὰρ τῇ πρὸς τά θ' ἐποίει τονικιόν ἀκούειν διαστήματος. διὰ τούτου δὲ πρῶτον διάστημα οὗ τόνος, ὅτι μέγρι τούτου καταβάλλοντα
ἡ φωνὴ τοῦ διαστήματος ἀπαλάνη τὴν ἀκοήν φυλάσσει, τὸ δὲ μετὰ τούτο ποῦκατί ἢ τα ἢ ἀκοή πρὸς ἀκρίβειαν λαβεῖν τὸ διαστήμα. ἀμέλει περὶ τοῦ ὑφεξῆς διαστήματος καλουμένου ἡμι-τόνιον διαφέροντα, τῶν μὲν τέλειον ἡμιτόνοι ἀυτῷ λειμάτων, τῶν δὲ λείματα. συμπληροῦται δὲ τὸ διὰ τεσσάρων, ὅ ἐστιν ἐπίτριτον, τῷ τόνῳ, τουτέστι τῷ ἐπογδόφι διαστήματι, οὕτω.

συμφωνεῖται γὰρ παρὰ πάσι τὸ διὰ τεσσάρων μείζον μὲν εἶναι διιόνου, ἐλαττων δὲ τριτούν. ἀλλ' Ἀριστόξενος μὲν φησιν εἰ δυὸ ἡμίτονος τόνων αὐτῷ συχνεῖται τελείων, Πλάτων δὲ ἐν δύὸ τόνων καὶ τοῦ καλουμένου λείμματος. τὸ δὲ λείμμα τούτο
φησιν ἀκατονόματον εἶναι, ἐν λόγῳ δὲ εἶναι ἀριθμοῦ πρὸς ἀριθμὸν ὅν ἐγένετο τὰ σεις πρὸς σμη. τὸ δὲ διαστήμα τοῦτο ἐστὶ, καὶ ἡ ὑπεροχή ἤ' ἐφερθήσεται δὲ οὕτως. τὰ μὲν ζ' οὐκ ἂν εἶναὶ πρῶτος ὅρας, ἐπειδὴ οὐκ ἐγείρει ὀγδόον, ἢ ἡ ὑπερθυμεναὶ ἐπόγδοος. ὡς δὲ
μὴν ἢ θ' καὶ γὰρ εἰ ὑπερθυμεναὶ ἐπόγδοον τὸν θ', πάλιν ὃ θ' οὐκ ἐγείρει ἐπόγδοον. δὲ δὲ ἐπογδόοιν ἐπόγδοον λαβεῖν, ἐπειδὴ τὸ διὰ τεσσάρων ἐπίτριτον μεῖζον ἐστὶ διιόνου. λαμβάνομεν οὖν τὸν πυθμένα τὸν ἐπόγδοον τὸν θ' καὶ θ', καὶ τὰ θ' ἐφ' ἐστιν,

quinte de la quarte. On trouve que l’octave est la somme de la quarte et de la quinte, car elle se compose de ces deux consonances.

Les anciens prenaient le ton pour premier intervalle de la voix, sans tenir compte du demi-ton et du dièse. Ils ont trouvé que le ton est en raison sesquioctave (9/8). Ils l’ont démontré avec des disques, des vases, des cordes, des tuyaux, des poids suspendus, et de plusieurs autres manières. C’était toujours le rapport de 8 à 9 qui permettait à l’oreille de discernner l’intervalle d’un ton. Le premier intervalle (contenu dans la quarte) est donc le ton ; la voix, en franchissant cet intervalle, donne à l’oreille une sensation fixe et bien déterminée. L’oreille peut encore saisir avec précision l’intervalle suivant. Quant à l’intervalle qui vient après et qu’on appelle demi-ton, les uns disent que c’est un demi-ton parfait, les autres disent que c’est un limma (un reste). La consonance de quarte qui est en raison sesquitierce (4/3), n’est donc pas complétée par un ton, c’est-à-dire par un intervalle sesquioctave (9/8).

Tous conviennent que l’intervalle de quarte est supérieur à deux tons et inférieur à trois tons. Aristoxène dit qu’il se compose de deux tons et demi parfaits, tandis que Platon dit que cet intervalle est de deux tons et un reste, et il ajoute que ce reste (limma) n’a pas de nom, mais qu’il est dans le rapport de nombre à nombre, qui est celui de 256 à 243. Tel est le limma, la différence des termes est 13.

Voici la méthode dont on s’est servi pour trouver ce rapport : le premier terme ne saurait être 6, puisqu’il n’est pas divisible par 8 et qu’on doit en prendre les 9/8. Il ne saurait non plus être 8, car si les 9/8 de 8 sont 9, on ne saurait prendre ensuite les 9/8 de 9, et il faut prendre les 9/8 des 9/8, puisque la quarte qui est dans le rapport sesquitierce

εὐρίσκομεν ἔτ' εἰτα τὰ ἡ' ἐπὶ τὰ θ', καὶ γίνεται οβ', εἰτα τὰ θ' ἐφ' ἐκπά, καὶ γίνεται τα' η' θ' ἔτ' οβ' τὰ' εἰτα πάλιν τούτων ἐκαστον ληφθήτω τρις, καὶ ἔσται τὰ μὲν ἔτ' τρις ἑβ' τὰ δὲ οβ' τρις σις', τὰ δὲ πα' τρις σμ' η' θ' ἔτ' οβ' τα' ἑβ' σις' σμ' εἰτα προστίθημεν τοις σμ' ἀπὸ τῶν ἑβ' ἐπίτροπον τὸν σις'· οὕτω εἰναι τὴν ἐκθεσιν τοιαύτην· ἐπόγδοος πυθμένθ' θ' η'· δεύτεροι ἐπόγδοοι ἔτ' οβ' πα', τρίτοι· ἐπόγδοοι ἀλλήλων δύο ἑβ' σις' σμ'· κεισθω καὶ ὁ τοῦ ἑβ' ἐπίτροπος ὁ σις', ἔσται τούτο τὸ ἐπίτροπον συμπεπληρωμένον ὑπὸ δύο τόνων καὶ τοῦ εἰρημένου λείμματος.

ρ' οβ' σις' σμ' σις' λείμμα

ἐνυοι δὲ πρῶτον ὄρον λαμβάνουσι τὸν ττπ'. ἦνα γὰρ ὑπὸ λάβωσιν ἐπογδοος, τὸν πρῶτον ὄρον τὸν ε' ὀκταπλαστάσαντες ποιοῦσιν μη', καὶ ταύτα πάλιν ὀκτάκις ττπ', οὐ ἐπίτροπος ὁ φιβ'.

μεταξ' δὲ τούτων δύο ἐπόγδοα, τοῦ μὲν ττπ' υλβ', τούτου δὲ υπος', ἀφ' ὄν ἐπὶ τὰ φιβ' ὁ λειμματικός γίνεται λόγος.

ττπ' υλβ' υπος' φιβ'

τόνος τόνος μη' μη'

ἐπόγδοος ἐπόγδοος λείμμα

ἐπίτροπος ἐπίτροπος διὰ δ' διὰ δ'

tίνες δὲ φασι μὴ φιβ'ος εἰληφθαν τούτους τοὺς ἀριθμοὺς· τὴν γὰρ ὑπεροχὴν τοῦ τεταρτοῦ ὄρου πρὸς τὸν τρίτον μὴ γίνεσθαι η', ὅσα Πλάτων εἴρηκε δεῖν ἔχειν τὸ λείμμα. οὔδὲν δὲ κωλύει καὶ ἐφ' ἐπέρων ἀριθμῶν τὸν αὐτὸν εὐρίσκειν λόγον.
surpasse le double ton. Nous prenons donc le fond sesqui octave, 8 et 9; or, 8 multiplié par lui-même, donne 64 et 9 × 8 donne 72; enfin, 9, multiplié par lui-même, donne 81. Nous avons donc [8, 9], 64, 72, 81. Si maintenant on multiplie chacun de ces nombres par 3 *, on a 64 × 3 = 192; 72 × 3 = 216; 81 × 3 = 243; en sorte que nous avons [8, 9, 64, 72, 81], 192, 216, 243. Après 243, plaçons 192 × 4/3 ou 256 et nous aurons la série des termes suivants :

le fond sesqui octave 8, 9,
les seconds sesquioctaves 64, 72, 81,
les troisièmes sesquioctaves 192, 216, 243.

Si on ajoute les 4/3 de 192 ou 256, la consonance de quarte (4/3) sera complétée par deux tons et le limma dont nous avons parlé.

\[
\begin{array}{c}
192 \\
\text{ton = 9/8}
\end{array}
\quad
\begin{array}{c}
216 \\
\text{ton = 9/8}
\end{array}
\quad
\begin{array}{c}
243 \\
\text{limma = 256/243}
\end{array}
\quad
\begin{array}{c}
256 \\
\text{quarte = 4/3}
\end{array}
\]

Il y en a quelques-uns qui choisissent pour premier terme le nombre 384, afin de pouvoir en prendre deux fois de suite les 9/8. Ils multiplient le terme 6 par 8, ce qui donne 48, et en multipliant ce nombre de nouveau par 8, ils ont pour produit 384 dont les 4/3 égalent 512. Entre ces deux termes se trouvent deux sesquioctaves; car 384 × 9/8 = 432 et 432 × 9/8 = 486 qui, avec 512, donne le rapport de limma.

\[
\begin{array}{c}
384 \\
\text{ton = 9/8}
\end{array}
\quad
\begin{array}{c}
432 \\
\text{ton = 9/8}
\end{array}
\quad
\begin{array}{c}
486 \\
\text{limma = 256/243}
\end{array}
\quad
\begin{array}{c}
512 \\
\text{quarte = 4/3}
\end{array}
\]

Quelques-uns disent que ces nombres ne sont pas pris convenablement, attendu que l'excès du quatrième terme

5. On multiplie par 3, afin de pouvoir prendre les 4/3 du premier terme pour obtenir le nombre qui correspond à la consonance de quarte.
1ος ἔγει τά συς πρὸς τά σμις, οὐ γὰρ ἄριστον ὑριστόμενον ἔλαθεν ο. Πλάτων. ἀλλὰ λόγον ἄριστον. διὸ δὲ ἔγει λόγον τὰ συς πρὸς σμις, τούτοις καὶ τὰ φιδ' πρὸς τὰ ὑπς. τὰ γὰρ φιδ' τῶν συς διπλασία καὶ τὰ ὑπς τῶν σμις. ὅτι δὲ τούτῳ τὸ διάστημα τὸ τῶν συς πρὸς σμις, τοιοῦτο τά ἑγ', ἐλαττὼν ἐστὶν ἡμιτονίου, ὅλον. τὸ γὰρ τόν ἐπογόδο οὔτως τὸ ἡμιτόνιον δις ἐπογόδον ἐστιν. τοιοῦτο ἐφεκκακαδέκατον. τὰ δὲ ὑ' τῶν σμις ἐστίν ἐν λόγῳ πλεον. ὑκτωκακαδέκατον, ὃ ἐστι μέρος ἐλαττὼν ἐκκακαδέκατου.

10 οὖδ' γὰρ οἴνοι τὲ τὸ ἐπόγόδον διαίρεστι ἐπιδιέκαθαι, εἰ καὶ οἳ μὴ λόγῳ ἀλλὰ τῇ ἀκοῇ τούτω κρίνοντες νομίζουσιν. ἀμέλει τοῦ ἐπογόδο διαθμένον τὸ διάστημα τοιοῦτο τῶν ὑ' πρὸς τὰ ἑ' ἢ μονᾶς οὐ τέμνεται.

15 τὸ δὲ λεγόμενον λείμμα εἰ τις ἐρωτόμεν τίνος ἐστὶ λείμμα, ἔι ἐδεδέκα ὁτι ἐστὶ τοῦ διὰ τεσσάρων. τοῦ γὰρ διὰ τεσσάρων λείπει πρὸς τὸ γενέσθαι δῦο ἡμις τῶν τελείων.

16 εὐφήθη δὲ ὁ τόνων ὀντως. ἐπειδὴ τὸ διὰ τεσσάρων ἐν ἐπιτρίτως λόγῳ ἐφάνη διό, τὸ δὲ διὰ πέντε ἐν ἠμιλιαῖ, ἐλέγχθη ἀριστός ὁ πρῶτος ἐγχον ἡμισι καὶ τρίτον. ἐστι δὲ οὔτως ὁ α'. 20 τούτω τὸ πρῶτος μὲν ἐστιν ὁ ἑ', ἡμιλίοις δὲ ὁ ὑ'. α' ὑ' θ'. τὸ δὲ διάστημα τὸ ἀπὸ τοῦ ἠμιλιοῦ ἐπὶ τὸ ἐπίπτον ἐυφήθη ἐν λόγῳ μὲν ἐπογόδο. τὰ γὰρ θ' τῶν ὑ' ἐπόγοδα. ἢ δὲ τάσις ἐλέγχθη τόνων.

25 ὅτι δὲ ὁ τόνως δέχα οὐ διαίρεται Ἰάλον οὔτως. πρῶτον μὲν ὁ ἐπόγοδος πυθμέν τὸ διάστημα ἐγχει μοναχά, ἢτις ἀδιακόπητα (ταυτοχρωμοι ενοτομοι).
sur le troisième n’est pas 13, nombre que Platon a dit devoir être celui du limma. Mais rien n’empêche que nous ne trouvions dans d’autres nombres le même rapport qui existe entre 256 et 243; car Platon n’a pas pris un nombre déterminé, mais seulement la raison du nombre. Or, le rapport qui existe entre 256 et 243 est le même qu’entre 512 et 486, puisque 512 est le double de 256 et 486 le double de 243. Il est manifeste que cet intervalle des nombres 256 et 243, dont la différence est 13, est moindre que le demi-ton, car le ton étant $1 + 1/8$, le demi-ton sera la moitié de $1 + 1/8$, c’est-à-dire $1 + 1/16$. Or, 13/243 est un rapport moindre que 1/18, rapport qui est lui-même moindre que 1/16*.

Il n’est d’ailleurs pas possible de partager la raison $1 + 1/8$ en deux parties égales, quoique quelques-uns le croient possible, jugeant cette question, non par le raisonnement, mais par l’oreille. Le fond de l’intervalle sesquioctave étant le rapport de 9 à 8*, la différence des termes qui est l’unité n’est assurément pas divisible.

XV. Si quelqu’un demande, au sujet du limma, à quelle consonance il appartient, nous lui dirons qu’il faut le considérer comme appartenant à la quarte; car c’est lui qui fait que la quarte est moindre que deux tons et demi parfaits.

Or, voici comment le ton a été trouvé. La quarte étant dans le rapport 4/3, et la quinte dans le rapport 3/2, on a pris le premier nombre divisible à la fois par 2 et par 3. Ce nombre est 6 dont les 4/3 égalent 8 et les 3/2 égalent 9. On a 6, 8, 9, et l’excès de l’intervalle 3/2 sur l’intervalle 4/3 est 9/8, car 9 est les 9/8 de 8. On a donné à cette tension le nom de ton.

XVI. Il est manifeste que le ton ne peut être divisé en deux parties égales. Et d’abord, le fond sesquioctave 9/8 a

ητί γὰρ τοῦ κανόνος αἰσθήτος ὃν ὁ ὑποθελείς πάντως ἐξεί
ti πλάτος καὶ οὐκ ἔσται οὕτως ἀπλατῆς, ὡς μὴ πάντως τι
ἐπιλαθεῖν ἐν τῷ διαιρέσει τοῦ τόνου καὶ τοῦ πέρατος τοῦ πρώ
του μέρους καὶ τῆς πρώτης ἀρχῆς τοῦ δευτέρου, καὶ δικ
tούτῳ ἀπαλυθῆσεται τι τοῦ τόνου. ἔτι ἐν ταῖς διαιρέσει
tριά ἐστὶ, δύο μὲν τὰ διαφοροῦμενα, τρίτον δὲ τὸ ἐξαιροῦμενον.
tῶν δὲ διαφορομένων ἀπὸ αὐτῆς τῆς διαιρέσεως ὡς ἔτι πρόνοια
15 ἐν τῷ τομῆ ἀναλοῦται τι τὸ ἐξαιροῦμενον ὑπ’ αὐτῆς τῆς
tομῆς. ὡς οὖν ἔτι ἔνιοι αἰσθητῶν ἐξαιρεῖται τι, οὕτω καὶ ἔτι
pάντων κἂν ἐκφεύγῃ τὴν αἰσθήσιν πάντως ἀναλυθῆσεται τι ἐν
tῷ τομῆ.

δόρυ γοῦν ἢ κάλαμον ἢ άλλο ὡςοῦν αἰσθητῶν μῆκος ἂν πρὶν
20 ὁ διελεῖν μετρήσῃ, ἔπειτα διέλῃς εἰς τολλὰ μέρη, εὐρήσεις
tὸ τῶν διαφορομένων πάντων κοινὸν μέτρον ἐλαττὸν ὅν τοῦ
ὁλου πρὶν ἢ ὑφερῆσθαι. ἔτι γορδὴν ἂν διέλῃς, εἰτά δικοφής,
ἡ ἐκτασις μετὰ τὴν διακοπὴν ἀνέδραμε, κἂν πάλιν τὰ διακο-
πέντα τείνῃς, ἀνάγκη ἀφρηρθῆσαι τί τοῦ μεγέθους εἰς τὰς ἐξῆς

pour différence des termes l'unité qui est indivisible; et puis,
cet intervalle étant exprimé en nombres quelconques, la diffé-
rence des termes ne peut pas toujours se diviser en deux
parties égales : ainsi, la différence 27 des termes du rapport
de 216 à 243 n'est pas susceptible de la division en deux par-
ties égales, mais en deux nombres qui sont 13 et 14, car
l'unité n'est pas divisible. Tantôt nous saisissons le ton par
l'opération de l'intelligence, tantôt nous le cherchons dans
les nombres et les intervalles, tantôt enfin nous le percevons
par l'oreille dans la voix, et nous savons qu'il n'est pas tou-
jours divisible en deux parties égales, soit dans les nombres,
ainsi que nous venons de le montrer, soit dans les intervalles
sensibles et visibles.

C'est comme dans le canon harmonique : le chevalet
qui est sensible a, quoiqu'on fasse, une certaine largeur
et ne peut être tellement privé d'épaisseur que, dans le par-
tage du ton, il n'intercepte absolument rien de l'extrémité
de la première partie et du commencement de la seconde,
de sorte qu'il y aura toujours une certaine partie du ton qui
sera absorbée. Dans les partages il y a donc trois choses :
les deux divisions et la partie retranchée (par le chevalet).
Par l'acte même de la division, une partie de ce qui est divisé
se trouve détruite, comme on le voit quand on coupe quelque
chose avec une scie. Comme dans certaines choses sensibles,
il se perd quelques particules, il en est de même dans toutes
les autres choses, quand on fait une section, bien que nos
sens ne nous en rendent pas témoignage.

Si, par exemple, avant de diviser une règle en bois, un
roseau ou tout autre objet long, vous le mesurez, et qu'en-
suite vous le divisez en plusieurs parties, vous trouverez la
longueur de toutes les parties réunies moindre que la lon-
gueur de l'objet avant la division. De même, si vous partagez
une corde en plusieurs parties et que vous la coupez, vous
trouverez qu'après la section, le développement sera moin-
dre, et si vous voulez tendre de nouveau toutes les parties,
τῶν ἐκτερωθέν ἄφων τοῦ τεινομένου, καὶ διὰ τούτο οὐκ ἔσται τέλεια δύο ἡμιτόνια.

οὔ μήν οὔδ' ἐπὶ τῶν φωνῶν εὐρίσκεται εἰς ἦς ἡ τομὴ τοῦ τόνου. μελῳδήσας γάρ τόνον καὶ τόνον μελῳδῶ τάλιν τοῦ ἐνός 5 τόνου τὰ δύο ἡμιτόνια ἐν τρισὶ φθόγγοις, οὕτω δὲ διαστήματι ἀναβαίνων τῇ τάσει. ὁ δὲ τρίτος φθόγγος τοῦ δευτέρου δεύτερος ἔσται, καὶ διέστηκεν ἀπὸ μὲν τοῦ πρῶτου τόνου, ἀπὸ δὲ τοῦ δευτέρου δοκεῖ μὲν ἡμιτόνιον, οὐ μήν ἐμοιον ἡμιτόνιον. οὔδε οὖν οὗ δεύτερος ἀπὸ τοῦ πρῶτου· οὐ γὰρ δύναται ἐμοιον 10 εἴναι τὸ βαρύτερον τῷ δεύτερῳ. οὔδε γὰρ ἐπὶ τοῦ αὐτοῦ φθόγγου ἂν δίς μελῳδῆσαι θέλωμεν διακόψαντες τήν φωνήν, τόν αὐτῶν ἢχον ἀποδώσομεν, ἀλλ' ἀνάγκη γενέσθαι τινὰ δια-
φοράν, ἢτις λήσει τὴν ἄκοην.

οὔδὲ γὰρ κεντήσαι ταύταν καὶ ἐμοιον δίς οὖν τε, οὔδε 15 τλῆξαι τὴν αὐτὴν γορδήν δίς ὀμοίως, ἀλλὰ ἡ λαγχαρώτερον ἢ σφοδρότερον, οὔδε βάψαι δίς εἰς τῷ αὐτῷ ύγρὸν ὀμοίως, οὔδε βάψαντα τῷ αὐτῷ ἄνεφερεῖν διὰ δακτύλου ἢ μέλισσον ἢ μέλιτος ἢ πίττης. ὁ δὲ νοήσει ληπτὸς τόνος δύναται νοεῖσθαι καὶ εἰς ἦς ἦτα διακρούμενος.

Ἰς. περὶ δὲ της ἐν ἀριθμοὶς ἀρμονίας λεκτέον ἐξῆς, ὅτι [ὁ] ὄρος ἔστιν ὁ τὸ καθ' ἐκαστὸν ἀπορφαίνων ἱδίωμα τῶν λεγο-

μένων, οἰον ἀριθμός, μέγεθος, ὄψιμαι, ἕγκος, βάρος.

Ποσακχῶς λέγεται λόγος

ιη. λόγος δὲ κατὰ μὲν τοὺς περιπατητικοὺς λέγεται πολ-

vous ne pourrez empêcher en les joignant par les extrémités qu'il ne se perde une partie de la longueur de la corde. Voilà pourquoi deux demi-tons ne seront jamais complets.

Et dans la voix non plus, on ne trouve pas la section du ton en deux parties égales : car, si après avoir fait entendre un ton suivi d'un autre ton, je produis deux demi-tons, au lieu d'un seul ton, par trois émissions de voix, en montant de deux intervalles, le troisième son est plus aigu que le second et il est d'un ton plus haut que le premier, tandis qu'il ne semble être au-dessus du second que d'un demi-ton ; mais ce demi-ton n'est ni égal ni semblable à celui qui se trouve entre le premier son et le second, le plus grave ne pouvant être semblable au plus aigu, et c'est en vain que nous voudrions reproduire deux fois le même son en coupant notre voix, nous donnerons la même résonance, mais il y aura toujours une différence quoique imperceptible à l'oreille.

C'est comme si l'on voulait faire deux piqûres tout à fait semblables, ou pincer également deux fois une corde, il y aura toujours une différence de force en plus ou en moins. Il en sera de même si l'on voulait plonger le doigt deux fois également dans un liquide, ou bien le plongeant dans de l'encre, du miel, de la poix, en retenir la même quantité.

Quant au ton idéal, on conçoit qu'il puisse être divisé en deux parties égales.

XVII. Nous avons à parler maintenant de l'harmonie qui est contenue dans les nombres et à expliquer ce que c'est que le terme qui, dans toute chose, montre la propriété de ce que l'on dit, par exemple, le nombre, la grandeur, la puissance, la masse, la gravité.

En combien de sens se prend le mot λόγος

XVIII. Le mot λόγος est pris en plusieurs sens par les péripatéticiens ; car on appelle ainsi le langage que les modernes nomment oral et le raisonnement mental sans
λαγχώς, ὁ τε μετὰ φωνῆς προφορικὸς ὑπὸ τῶν νεωτέρων λεγό-
μενος καὶ ὁ ἐνδικθέτως καὶ ὁ ἐν διανοίᾳ κείμενος ἀνευ ψιθυρίου
καὶ φωνῆς καὶ ὁ τῆς ἀναλογίας, καθ’ ὃν λέγεται ἔμειν λόγον
τόσο πρὸς τόδε, καὶ ἢ τῶν τοῦ λόγου στοιχείων ἀπόδοσις καὶ
ὁ τῶν τιμώμενων καὶ τιμωμένων, καθ’ ὃν φαινει λόγον τινὸς
ἔμειν ἢ μὴ ἔμειν, καὶ ὁ τραπεζικὸς λόγος καὶ ὁ ἐν τῷ
βιβλίῳ Δημοσθενικὸς ἡ Λυστακὺς καὶ ὁ ἄρος ὁ τὸ τί ἦν εἶνα
καὶ τὴν οὕσιν σημαίνων, ἀριστικὸς ὁν, καὶ ὁ συλλογισμὸς δὲ
καὶ ἢ ἐπαγωγὴ καὶ ὁ Διονυσίως καὶ ὁ μῦθος καὶ ὁ αἴνος λόγος
λέγεται καὶ ἢ παροιμία, ἐτί δὲ καὶ ὁ τοῦ εἴδους καὶ ὁ στερ-
ματικὸς καὶ ἄλλοι πλείονες.

κατὰ δὲ Πλάτωνα τετραχῶς λέγεται λόγος, ἢ τε διάνοια ἀνευ
ϕθόγγου καὶ τὸ μετὰ φωνῆς ρεῦμα ἀπὸ διανοικὸς καὶ ἢ τῶν
tῶν ὅλου στοιχείων ἀπόδοσις καὶ ὁ τῆς ἀναλογίας. ὑπὸ
δὲ πρόκειται περὶ τοῦ τῆς ἀναλογίας λόγου χρήσεως.

Τί ἐστι λόγος ἀναλογίας

9. λόγος δὲ ἐστιν ὁ κατ’ ἀνάλογον ὄρμων ὄρων ὁμογενῶν
ἡ πρὸς ἀλλήλους [ἀυτῶν] ποικὶ σχέσισι, οἷον ἐπιπλάσιος, τρι-
πλάσιος. τὰ μὲν γὰρ ἀνομογενὴ πῶς ἔχει πρὸς ἀλληλά φησιν
20 Ἀράκτος εἰδέναι ἀδύνατον· οἷον τῆς πρὸς μιᾶς ἡ μοναὶ
πρὸς κοτύλην· ἢ τὸ λευκὸν πρὸς τὸ γλυκὸ· ἢ θερμὸν ἀσύγχρητο
καὶ ἀσύμβλητη· τὰ δὲ ὁμογενῆ δυνατὸν, οἷον μῆκος πρὸς
μῆκη <καὶ> ἐπίπεδα πρὸς ἐπίπεδα καὶ στερεὰ πρὸς στερεὰ καὶ
βάρη πρὸς βάρη καὶ ὑγρὰ πρὸς ὑγρὰ καὶ χαλήν πρὸς χαλῆν καὶ
23 ἥπαρ πρὸς ἥπαρ καὶ ἀριθμοὺς πρὸς ἀριθμοὺς καὶ χρόνον πρὸς
χρόνον καὶ κίνησιν πρὸς κίνησιν καὶ φωνῆν πρὸς φωνῆν καὶ

émission de voix ; on appelle encore ainsi le rapport de proportion, et c'est en ce sens qu'on dit qu'il y a rapport de telle chose à telle autre ; l'explication des éléments de l'univers ; le compte des choses qui honorent ou qui sont honorées, et c'est dans cette acception que nous disons : tenir compte de quelque chose, ou n'en pas tenir compte. On appelle encore λόγος le calcul des banquiers, les discours de Démosthènes et de Lysias dans leurs œuvres écrites ; la définition des choses, qui en explique l'essence, puisque c'est à cela qu'elle sert ; le syllogisme et l'induction ; les récits libyques * et la fable. On 10 donne aussi le nom de λόγος à l'éloge et au proverbe. C'est encore ainsi qu'on appelle la raison de la forme, la raison séminale et beaucoup d'autres.

Mais, selon Platon, on emploie le mot λόγος en quatre sens : on appelle ainsi la pensée mentale et sans parole, le discours procédant de l'esprit et exprimé par la voix, l'explication des éléments de l'univers et la raison de proportion. C'est de cette raison que nous nous proposons maintenant de parler.

De la raison de proportion

XIX. La raison de proportion de deux termes de même espèce est un certain rapport qu'ils ont entre eux, comme le double, le triple. Il est impossible, dit Adraste, de trouver un rapport entre deux choses qui ne sont pas de même espèce : ainsi on ne peut ni comparer, ni réunir la coudée (mesure 35 de longueur) et la mine (mesure de poids), la chénice (mesure de capacité pour les choses sèches) et la cotyle (mesure de capacité pour les liquides), le blanc et le doux ou le chaud ; mais on peut comparer ensemble les choses de même espèce, comme les longueurs avec les longueurs, les surfaces avec les surfaces, les solides avec les solides, les poids avec les

10. Comme on dit : les récits ésopiques ; Libycus était un fabuliste.
χμόν πρός γυμόν και γρώμα πρός γρώμα καὶ ὅσα τοῦ αὐτοῦ γένους ἕ εἴδους ὅντα τως ἐξεί πρός ἄλληλα.

κα. ἀναλογία δὲ ἐστὶ λόγων ἢ πρός ἄλληλους ποιὰ σχέσις, οἷον ὡς β’ πρὸς ἐν, ὑστὸς ν’ πρὸς δ’.

κβ’. τῶν δὲ λόγων οἱ μὲν εἰσὶ μειζόνες, οἱ δὲ ἐλάττονες,
10 οί δ’ ἵστοι. οἱ μὲν οὐν ἴσοι εἰς καὶ οὐ αὐτὸς λόγος καὶ προηγοῦνται πάντων τῶν λόγων καὶ ἐστὶ στοιχειώδης. ἵστοι δὲ εἰσιν οἱ κατὰ τὴν αὐτήν ποσότητα ἐξεταζόμενοι πρὸς ἄλληλους, οἱ οὖν ἐν πρὸς ἐν καὶ β’ πρὸς β’ καὶ τ’ πρὸς τ’ καὶ ρ’ πρὸς ρ’. τῶν δὲ μειζόνων οἱ μὲν πολλαπλάσιοι, οἱ δὲ ἐπιμόριοι, οἱ δὲ
15 οὐδέτεροι. οἱ μικροὶ δὲ καὶ τῶν ἐλαττώνοι οἱ μὲν ὑποπολλαπλασιοὶ, οἱ δὲ ὑπεπιμόριοι, οἱ δ’ οὐδέτεροι. τούτων δὲ οἱ μὲν ἐν συμφωνία εἰσίν, οἱ δ’ οὐ.

αἱ μὲν οὖν συμφωνῶσι τῶν πολλαπλασίων ὅ τε διπλάσιος καὶ ὁ τριπλάσιος καὶ ὁ τετραπλάσιος, ἐν δὲ ἐπιμορίαις ἡμιό-20 λιας <καὶ> ἐπιτίτικος, ἐν οὐδέτερῳ δὲ τ’ ἐπόγονος καἱ ὁ τῶν συν’ πρῶς συμ’, καὶ οἱ τούτοις ὑπεναντίοι δ’ το ὑποδιπλάσιος καὶ ὁ ὑποτετραπλάσιος καὶ ὁ ὑποτετραπλάσιος καὶ ὁ ὑφημύλιος καὶ ὁ ὑπετίτικος καὶ ὁ ὑπεπόγονος καὶ τῶν συμ’ πρὸς συν’.

25 καὶ ὁ μὲν διπλάσιος ἐν τῇ διὰ πασῶν εὑρίσκεται συμφωνία.

3 Titre : τί ἢστιν ὁρὸς (ce que c'est que le terme). — 9 Titre : περὶ ἴσοτητος (de l'égalité). — 18 αἱ μὲν οὖν συμφωνίαι εἰ ὡς μὲν οὖν συμφωνίας conj. Hiller.
poids, les liquides avec les liquides, les choses sèches avec les choses sèches, les nombres avec les nombres, le temps avec le temps, le mouvement avec le mouvement, la voix avec la voix, le suc avec le suc, la couleur avec la couleur, enfin toutes les choses de même espèce.

XX. Nous appelons termes les choses homogènes ou de même espèce, prises pour être comparées ensemble. Quand nous examinons quel rapport existe entre le talent et la mine, nous disons que ce sont des termes de même espèce, parce que l’un et l’autre sont des poids. Il en est de même des autres choses homogènes.

XXI. La proportion est une certaine liaison de rapports, telle que : 2 est à 1 comme 8 est à 4.

XXII. Les rapports sont supérieurs, inférieurs ou égaux (à l’unité). Le rapport égal est un et toujours le même, et il l’emporte sur tous les autres, comme étant élémentaire. Tels sont les rapports qui se comparent par la même quantité, comme 1 comparé à 1, 2 à 2, 10 à 10, 100 à 100. Parmi les rapports plus grands (que l’unité), les uns sont multiples (c’est-à-dire entiers), d’autres sont sesquipartiel, d’autres sont neutres. Parmi les rapports moindres (que l’unité), les uns sont sous-multiples, d’autres sont sous-sesquipartiel, d’autres sont neutres. Parmi ces raisons, les unes représentent les consonances, d’autres y sont étrangères.

Les raisons multiples qui représentent les consonances sont la raison double, la raison triple, et la raison quadruple; les raisons sesquipartielles sont la raison sesquialtère \(3/2 = 1 + 1/2\), et la raison sesquitierce \(4/3 = 1 + 1/3\). Parmi les neutres, on a la raison sesquioctave \(9/8 = 1 + 1/8\) et le rapport de 256 à 243. Sont opposées à ces raisons la sous-double \((1/2)\) la sous-triple \((1/3)\), la sous-quadruple \((1/4)\), la sous-sesquialtère \((2/3)\), la sous-sesquitierce \((3/4)\), la sous-sesquioctave \((8/9)\) et le rapport de 243 à 256.

La raison double, comme nous l’avons vu plus haut, se
λέγονται δέ τινες ἐν ἀριθμητικῇ λόγῳ ἀρίθμῳ ὕμων πολλαπλάσιοι καὶ ἐπιμόριοι, ἀλλὰ καὶ ἐπιμερεῖς καὶ πολλαπλασιετιμερεῖς καὶ ἐπὶ πλέον, περὶ δὲ ἐρείξῃς παράδοσον παραδώσομεν. συνέστηκε δὲ τὸ μὲν διὰ τεσσάρων ἐκ δεινῶν τῶν καὶ λείμματος, τὸ δὲ διὰ πέντε ἐκ τριών τῶν καὶ λείμματος, τὸ δὲ δία πασῶν ἐκ τοῦ διὰ πέντε καὶ διὰ τεσσάρων. ἐκ δὲ τούτων εἰσὶν αἱ προηγούμεναι τῶν ἀναλογιών.

πάλιν δὲ κατὰ τὴν ἀριθμητικὴν παράδοσιν λέγονται: <λόγοι> τῶν ἀρίθμων, ὡς καὶ ὁ Ἀδραστὸς παραδόσωσιν, οἱ μὲν πολλαπλάσιοι, οἱ δὲ ἐπιμόριοι, οἱ δ’ ἐπιμερεῖς, οἱ δὲ πολλαπλασιετιμερεῖς καὶ ἐπιμόριοι, οἱ δὲ πολλαπλασιετιμερεῖς, οἱ δ’ οὐδέτεροι, τῶν δὲ ἐλαττονίων οἱ μὲν ὑποπολλαπλάσιοι, οἱ δ’ ὑπεπιμόριοι, καὶ οἱ λοιποὶ ἀντιστρέφοντες τοῖς μείζονι.

καθ’ ἀριθμητικός μὲν οὖν ἔστι λόγος, οὗτος ὁ μείζον όρος πλεονάχης ἐγ’ αὐτὸς τὸν ἐλάττωνα, τούτου ὡσιν ὁ μείζων όρος καταμετρηται ὑπὸ τοῦ ἐλάττωνος ἀπαρτιζόντος ως μηδεν ἐστὶ λιτεσθαι ἀπ’ αὐτοῦ, καὶ καὶ τ’ ἐδόσ τοσπαραπλασιων [ἐστις τον πολλαπλάσιος δ’] ὁ μείζων όρος λέγεται τοῦ ἐλάττωνος, ὡσικ’ ἀν καταμετρηται ὑπ’ αὐτοῦ· οἷον ἂν μὲν δὲς, ὑπελάτος, ἂν

5-16 ἐν οὐδετέρῳ καὶ οὐδέτερος (καὶ Hultsch.) — 23 Titre: τί ἐστιν ὁ πολλαπλάσιος λόγος (du rapport multiple).
trouve dans la consonance d’octave *), la raison triple dans la consonance d’octave et quinte, la raison quadruple dans la double octave, la raison sesquialtère \((1 + 1/2)\) dans la quinte, la raison sesquitierce \((1 + 1/3)\) dans la quarte. Quant à la raison sesquioctave \((1 + 1/8)\) c’est un ton et le rapport de 256 à 243 est le limma. Il en est de même des rapports inverses. Parmi les raisons neutres sont la raison sesquioctave \((1 + 1/8)\) et la raison de 256 à 243 qui ne sont pas des consonances et n’y sont pourtant pas étrangères, puisque le ton et le limma sont les principes de la consonance et ont la vertu de la compléter, sans être cependant des consonances *).

Il y a en arithmétique des raisons de nombres, non seulement multiples et superpartielles, mais encore des raisons épimères et polyépimères et d’autres raisons que nous expliquerons clairement plus tard. La quarte se compose de deux tons et d’un limma, la quinte de trois tons et d’un limma, l’octave d’une quinte et d’une quarte; mais les rapports de proportion doivent les précéder.

Ainsi, selon les principes de l’arithmétique, comme l’enseigne Adraste, il y a des rapports multiples, d’autres sont sesquipartels, d’autres épimères, d’autres multisuperpartels, d’autres polyépimères; d’autres sont neutres, et parmi les rapports plus petits (que l’unité), il y en a de sous-multiples, d’autres sont sous-sesquipartels; les autres sont inverses des rapports plus grands (que l’unité).

XXIII. Le rapport est multiple quand le plus grand terme contient plusieurs fois le plus petit, c’est-à-dire quand le petit terme mesure exactement le plus grand, sans qu’il reste aucune partie de celui-ci. Le plus grand terme est dit autant de fois multiple du plus petit que ce dernier le mesure de fois; si par exemple il le mesure deux fois, le rapport est double; s’il le mesure trois fois, le rapport est triple; s’il le mesure quatre fois, le rapport est quadruple; est ainsi de

Τά Περί Μορφικῆς

dὲ τρὶς, τριπλάσιος, ἧν δὲ τετράχιος, τετραπλάσιος, καὶ κατὰ τὸ ἔξης οὕτως. ἀνάπαλε δὲ ὁ ἑλάττων τοῦ μεῖζονος μέρος ὁμώνυμον τῷ λόγῳ, κατὰ μὲν τὸν διπλάσιον ἤμισυ, κατὰ δὲ τὸν τριπλάσιον τριτημόριον, καὶ λόγος ὁ μὲν ἤμισυς, ὁ δὲ τριτημόριος καὶ ἐπὶ τῶν ἀλλών ὁμοιώς.

Τὸ ἐστιν ἐπιμόριος λόγος

καὶ ἐπιμόριος δὲ ἐστὶ λόγος, ὅταν ὁ μεῖζον ὁρὸς ἀπαξ ἐξ ἕνου τῶν ἑλάττων καὶ μόριον ἐν τῷ ἑλάττων, τοιοῦτοι ὅταν ὁ μεῖζον τοῦ ἑλάττων ταὐτήν ἐξ ἕνου τῆς ὑποροχῆς ἦτο τῷ ἑλάττων ἀριθμοῦ μέρος ἐστίν. ὡς ἴ τετράχιος τῆς τριάδος ὑπερέχει γὰρ αὐτῆς μονάδι, ὡς ἐστὶ τῆς τριάδος τὸ τρίτον καὶ ἴ ἐξ ἕνου τῆς τετράδος ὑπερέχει δυεῖν, ἄτινα τῶν τεσσάρων ἤμισυ ἐστι.

δὲ καὶ ἀπὸ τῆς τῶν μερών ὀνομασίας ἐκάστος τῶν ἐπιμῶ

ρίων ὑδίας ἐσυχε προσηγορίας. ὁ μὲν γὰρ τῷ ἤμισυ τοῦ ἑλάττων μέρει ὑπερέχον ἡμιόλιος ὄνομασταί, ὡς ἴ τριάς τῆς δυάς καὶ ἴ ἐξ ἕνου τῆς τετράς. αὐτήν τε γὰρ ὁλὴν ἐγείρει τὴν ἑλάττωσα καὶ τῷ ἤμισυ αὐτῆς ἐν μὲν γὰρ τῷ τριάδι ένεστιν ἴ δυάς καὶ τῷ ἤμισυ αὐτῆς ἴ μονάς, ἐν δὲ τῇ ἐξιδιὶ ἴ
tetraich kai to haimiou autheis i duas. palin oi to tritom meret to to elattos hyperechontes epitrtoi kalountai, ows i tetraich tis triados, oi de tis tetartou hyperechontes epitartotai, ows o e' twn δ' kai o i' twn h', kai homioi proskaptontes epitepempoii te kai efektai kai efhedoimoi exklathesan pantes outoi epitro-

30 ριοι οντες.

διὸ καὶ οἱ ἀντικειμενοι τούτους οἱ ἑλάττων τῶν μειζόνων ὑπεπιμόριοι ἐκλαθεσαν ἐς γὰρ ἴ τριάς <τῆς> δυάς ἐκλαθε τῆς ἡμιόλιος, οὕτως καὶ ἴ δυάς τῆς τριάδος κατὰ τὸ ἀναλογογόν ύφημιόλιος λεγοθεσα, καὶ ὁμοιῶς ἴ τριάς τῆς τετράς ὑπεπετρίτος.

ἐστὶ δὲ τῶν πολλαπλασίων λόγων πρῶτος καὶ ἐλάχιστος ὁ
suite. Réciproquement le plus petit terme, comme partie du plus grand; reçoit une dénomination correspondante à la raison multiple : on l’appelle la moitié du terme double, le tiers du terme triple,... et la raison est appelée demi, tiers, et ainsi de suite.

Du rapport superpartiel ou sesquipartiel

XXIV. Le rapport est appelé sesquipartiel quand le plus grand terme contient une fois le plus petit et une partie du plus petit, c’est-à-dire quand le plus grand terme surpasse le plus petit d’une certaine quantité qui en est une partie. Ainsi le nombre 4 est sesquipartiel par rapport à 3, parce qu’il le surpasse d’une unité qui est le tiers de 3. De même 6 surpasse 4 de 2 unités qui sont la moitié de 4.

Chaque rapport sesquipartiel a reçu, d’après le nom de la fraction, une dénomination particulière. Ainsi celui qui surpasse l’unité de la moitié du plus petit terme, comme 3/2 et 6/4, a été appelé sesquialtère, car la plus grande quantité contient la plus petite tout entière plus la moitié de la plus petite. En effet, 3 contient une fois 2, plus l’unité qui est la moitié de 2; 6 contient une fois 4, plus 2 qui est la moitié de 4. Le rapport qui surpasse l’unité du tiers du plus petit terme, comme 4/3, est appelé sesquiterce, celui qui surpasse l’unité d’un quart, comme 5/4 et 10/8, est appelé sesquisexte, et en continuant de même, on trouve les rapports qu’on nomme sesquisemptime, sesquiséptième, sesquihuitième, sesquennième, sesquisegisme, sesquisestième, et ainsi de suite.

Inversement, les rapports des plus petits termes aux plus grands sont appelés sous-sesquipartel, car de même que le rapport de 3 à 2 est appelé sesquialtère, par analogie le rapport de 2 à 3 est appelé sous-sesquialtère. De même encore le rapport de 3 à 4 est nommé sous-sesquiterce.

Parmi les rapports multiples, le premier et le plus petit est
Περὶ ἑπιμεροφός λόγου

καὶ ἑπιμερῆς δὲ ἔστι λόγος, ὅταν ὁ μείζων ὅρος ἀπαξ ἐχθρὸς τὸν ἐλάττονα καὶ ἔτι πλειωμέρης αὐτοῦ [τοῦ ἐλάττονος],

εἰτε ταυτὰ καὶ ὁμοιαὶ εἰτε ἔτερα καὶ διάφορα· ταυτὰ μὲν οἶον δύο τρίτα ἤ δύο πέμπτα καὶ εἰ τινὰ ἄλλα οὕτως· ὁ μὲν γὰρ τῶν εἰ ἄριθμος τοῦ τῶν γε ἔτερος, ὁ δὲ τῶν ζ τοῦ τῶν εἰ δὶς ἑπίπεμπτος, ὁ δὲ τῶν ητο τῶν ετρεῖ ἑπίπεμπτος, καὶ οἱ ἐξ ὁμοίως· ἔτερα δὲ καὶ διάφορα οἴον ὅταν ὁ μείζων αὐτὸν τε ἐχθρὸς τὸν ἐλάττονα καὶ ἔτι ἥμισυ αὐτοῦ καὶ τρίτον, οἴον ἔχει λόγον ὁ τῶν καὶ πρός τῶν τῶν ἕν, ἤ πάλιν ἥμισυ καὶ τέταρτον, δὲ ἔστι λόγος τῶν ἕν πρός δὲ, ἤ νη Δία τρίτου καὶ τέταρτου, ὅτε ἔχει λόγον τὰ ὑπὸ πρός τὰ ὑπ’.

παραπλησίας δὲ θεωρεῖσθε καὶ οἱ λοιποὶ ἑπιμερεῖς δυστι υπερέχοντες μέρεσιν ἡ τρισίν ἡ πλεῖστι, καὶ ὁμοίως ἡ ἁνομοίως. ὑπεπεμερῆς δὲ ἔστιν [ὁ] ἀνάπαυσιν ὁ ἐν τῷ προειρημένω λόγῳ ἑλάττων πρὸς τὸν μεγίστην ἐξεταξόμενος.

Περὶ πολλαπλασιεπιμορίων καὶ πολλαπλασιεπιμερῶν

καὶ πολλαπλασιεπιμορίως δὲ ἔστι λόγος, ὅταν ὁ μείζων ὅρος δὲς ἡ πλεονάσεις ἐχθρὸς τὸν ἐλάττονα καὶ ἔτι μέρος αὐτοῦ, ὥς ὁ μὲν τῶν ἕν δὲς ἔχει τὸν ἕν καὶ ἔτι τρίτον αὐτοῦ, καὶ
le double, vient ensuite le triple, puis le quadruple, et ainsi de suite indéfiniment en augmentant.

Parmi les rapports sesquipartiels, le premier et le plus grand est le rapport sesquialtère $(1 + 1/2)$, parce que la fraction $1/2$ est la première, la plus grande, celle qui se rapproche le plus de l'entier; vient ensuite le rapport sesquiquimère $(1 + 1/3)$, puis le rapport sesquiquarte $(1 + 1/4)$, et ainsi de suite indéfiniment, en allant toujours en diminuant.

Du rapport épimère

XXV. Le rapport est dit épimère quand le plus grand terme contient une fois le plus petit et en outre plusieurs parties de celui-ci, soit semblables, soit différentes, semblables comme deux tiers, deux cinquièmes, etc. Ainsi le nombre 5 contient 3, plus les deux tiers de 3; le nombre 7 contient 3, plus les deux cinquièmes de 5; le nombre 8 contient 5 et les trois cinquièmes de 5, et ainsi de suite. Les parties sont différentes quand le plus grand terme contient le plus petit, et en outre la moitié et le tiers de celui-ci, comme dans le rapport de 11 à 6, ou la moitié et le quart, comme dans le rapport de 7 à 4, ou encore le tiers et le quart, comme dans le rapport de 49 à 12.

On peut pareillement reconnaître les autres rapports épimères qui surpassent l'unité de deux, de trois ou d'un plus grand nombre de parties, que ces parties soient semblables ou non. Inversement le rapport hypépimère, est celui qu'on obtient en prenant, dans le rapport précédent, la raison du plus petit terme au plus grand.

Du rapport multisuperpartiel et du rapport polyépimère

XXVI. Le rapport est dit multisuperpartiel ou multises-

\[\frac{11}{6} = 1 + \frac{5}{6} = 1 + \frac{3}{6} + \frac{2}{6} = 1 + \frac{1}{2} + \frac{1}{3} \]

\[\frac{7}{4} = 1 + \frac{3}{4} = 1 + \frac{2}{4} + \frac{1}{4} = 1 + \frac{1}{2} + \frac{1}{4} \]

\[\frac{19}{12} = 1 + \frac{7}{12} = 1 + \frac{4}{12} + \frac{3}{12} = 1 + \frac{1}{3} + \frac{1}{4} \]
λέγεται αυτοῦ διπλασιεπήτριτος, ὁ δὲ τῶν θ᾽ δις ἔχει <τὸν> τῶν δ᾽ καὶ ἐτὶ τὸ τέταρτον αὐτοῦ, λέγεται δὲ διπλασιεπιτέταρτος, ὁ δὲ τῶν γ᾽ τρίς ἔχει τὸν τῶν γ' καὶ τὸ τρίτον αὐτοῦ, καὶ λέγεται τριπλασιεπήτριτος.

5 πυροπλησίως δὲ θεωρεῖται καὶ οἱ λοιποὶ πολλαπλασιεπιμόριοι. τούτῳ δὲ συμβαίνει, ὅταν δυεῖν προτελέσων ἄριστον ὁ ἐλάττων καταμετρῶν τὸν μείζονα μὴ ἱσχύσῃ ἐλον καταμετρῆσαι, ἀλλ' ἀπολείπῃ μέρος τοῦ μείζονος, ὁ ἐστὶν αὐτοῦ τοῦ ἐλάσσονος μέρος· οἷον ὁ τῶν κ' τοῦ τῶν ἔπολαπλα- στεπημόριος λέγεται, ἐπειδὴ περὶ ὁ <ὁ> γ' τρίς καταμετρῆτας τὸν κ' οὐχ ὅλον ἀπῆρτευεν, ἀλλὰ μέχρι τῶν κ' ἐλθὼν δῦο ἐκ τῶν κ' ἀπέλπηεν, ὁ ἐστὶ τῶν γ' τέταρτον.

κ' πολλαπλασιεπιμερῆς <δὲ> ἐστὶ λόγος, ὅταν ὁ μείζων ὄρος δις ἡ πλεονάξις ἔχῃ τὸν ἐλάττωνα καὶ δύο ἡ πλείω τινα μέρη αὐτοῦ ἐτε ὅμοια ἐτε διάφορα ἐν όνον ὁ μὲν τῶν γ' δις ἔχει τὸν τῶν γ' καὶ δύο τρίτα αὐτοῦ, λέγεται δὲ διπλάσιος καὶ δις ἐπιτρίτος, ὁ δὲ τῶν ἐπί τοῦ τῶν γ' τριπλάσιος καὶ δις ἐπιτρίτου, ὁ δὲ τῶν ἐπί τοῦ τῶν γ' διπλάσιος τε καὶ ἡμιόλιος καὶ ἐπιτετάρτος ἡ διπλάσιος τε καὶ τρίς ἐπιτετάρτος.

20 καὶ τοὺς ἄλλους δὲ πολλαπλασιεπιμερεῖς πολλοὺς καὶ ποικιλοὺς οὕτως προσγερίζεσθαι βάδιον. τούτῳ δὲ γίνεται, ὅταν ὁ ἐλάττων ἄριστον καταμετρῆτας τὸν μείζονα μὴ ἱσχύσῃ ἀπαρτίσαι, ἀλλ' ἀπολείπῃ ἄριστον τινα, ἀ ἐστὶ μέρη αὐτοῦ, ὡς ὁ τῶν ϊ' τοῦ τῶν γ' ἢ γὰρ τρίς καταμετρῆτας τὸν τῶν ἔως ὁμοίων ἀπαρτίσαι, ἀλλὰ προκόψασα τετράχις μέγχωρι τῶν ἐβ' τὴν λοιπὴν ἀπὸ τῶν ἐβ' ἀπέλπυο δυάδα, ἡτὶς ἐστὶ τῶν

25 ἡ.
quipartiel quand le plus grand terme contient 2 fois ou un plus grand nombre de fois le plus petit et en outre une partie de ce dernier. C'est ainsi que 7 contient 2 fois 3 et en outre un tiers de 3, aussi l'on dit que le rapport de 7 à 3 est bisesquiquierce. De même 9 contient 2 fois 4 et en outre le quart de 5 4, on dit que le rapport de 9 à 4 est bisesquiquartie. De même encore 10 contient 3 fois 3 et en outre le tiers de 3, le rapport est appelé trisesquiquierce.

On reconnaîtra de la même manière les autres rapports multisuperpartiels. C'est ce qui arrive toutes les fois que de 10 deux nombres proposés le plus petit ne mesure pas exactement le plus grand, mais que le plus grand donne un reste qui est en même temps une partie du plus petit. Ainsi le rapport de 26 à 8 est multisuperpartiel par ce que 3 fois 8 ne donnent pas complètement 26; en arrivant à 24, au lieu de 15 26, il y a un reste 2 qui est le quart de 8.

XXVII. Le rapport est appelé polyépimère quand le plus grand terme contient 2 fois, ou plus, le plus petit, et en outre 2 ou plusieurs parties de ce dernier, soit semblables, soit différentes. Ainsi 8 contenant 2 fois 3 et de plus deux 20 tiers de 3, le rapport est dit double avec deux tiers en plus ($2 + 2/3$); de même le rapport de 11 à 3 est triple avec deux tiers en plus ($3 + 2/3$); le rapport de 11 à 4 est double, avec une demie et un quart en plus, ou double avec trois quarts en plus ($11/4 = 2 + 3/4 = 2 + 1/2 + 1/4$).

Il est facile de trouver beaucoup d'autres rapports polyépimères, et cela a lieu toutes les fois que le plus petit nombre ne mesure pas exactement le plus grand, mais qu'il y a un reste formé de plusieurs parties du petit nombre, comme dans le rapport de 14 à 3, car 3 ne mesure pas exactement 14, mais 4 fois 3 font 12, de 14 il reste 2 qui forment deux parties de trois et qu'on nomme deux tiers. Au rapport polyépimère est opposé le rapport hypo-polyépimère (rapport inverse).
περί της ἐρμημένων λόγων

καθ' ὁποίαν ἀφενεῖς ἐπὸς τῶν λόγων ἔσται, ὑποτεθεῖται δὲ καὶ τῷ πολλαπλασιασμερεῖ ό ὑποπολλαπλασιασμερής.

καθ' ἀριθμοὶ δὲ πρὸς ἀριθμὸν λόγων ἔσται, ὅταν ὁ μείζων πρὸς τὸν ἐλάττωνα ἐν μηδενι ἢ τῶν προειρημένων λόγων, καθ' οὔτε ὁ μείζων ἐν ἐξής καὶ τῷ λείμμα περιέχων [φθόγγος] λόγος ἀριθμοῦ πρὸς ἀριθμὸν ἐξεχθον τοὺς ὄρους ἐν ἐξής καὶ ὁ καθ' ὁ πρὸς τοὺς συνηθέστως λόγους ἀντιστραμμένους ὑπ' ἕκεινων προσταγροφομένοι, καθ' ἐδείχθη.

10 περὶ τυθμένων λόγων

καθ' ὁποίαν ἀριθμοὶ πρὸς τῶν καθ' ἐδείχθης ἐρμημένων λόγων ὁ ἐξ ἐξής καὶ πρῶτοι πρὸς ἀριθμοῖς λόγων ἀριθμοῖς ὄντες καθ' ἐκατόν πρῶτοι λέγονται τῶν τῶν ἀριθμῶν ἐχόντων καὶ πρῶτοι τῶν ὁμοστάσων. ὁποῖον διπλασίων μὲν λόγων πρῶτος καὶ πρῶτος τῶν β' πρὸς ἐν· μετά γὰρ τούτων ἐν μείζωσι καὶ συνήθεστως ἀριθμοῖς λόγοι εἰς διπλάσιον ὁ τῶν β' πρὸς τὰ β' καὶ τῶν ε' πρὸς τὰ γ' καὶ ὁμοίως ἐπὶ ἀπειρον,

τριπλασίων δὲ λόγων πρῶτος καὶ πρῶτος ὁ τῶν γ' πρὸς τὰ ἐν· ὁict' ἐκεῖ ἐν μείζωσι καὶ συνήθεστοις ἀριθμοῖς ἐπὶ ἀπειρον

20 προάγουσιν ὁσαποτέστως ἐπὶ τῶν ἄλλων πολλαπλασίων. ὁμοίως ὁποῖον καὶ ἐν τοῖς ἐπιμορφοῖς· ἡμικλώσιοι μὲν λόγων πρῶτος καὶ πρῶτος τῶν γ' πρὸς τὰ β', ἐπιτρίτως δὲ ὁ τῶν β' πρὸς γ' καὶ ἐπιτετάρτως τῶν ε' πρὸς δ'· ὁμοίως ὁποῖον καὶ συνήθεστοις ἄλλων ἀπειρον τὸ πλήθος· τὸ δ' αὐτὸ θεωρεῖται καὶ 25 ἐπὶ τῶν ἄλλων.

3 Titre : τί ἐστι: λόγος ἀριθμοῦ πρὸς ἀριθμὸν (ce que c'est que la raison de nombre à nombre)
XXVIII. La raison de nombre à nombre est celle qui a lieu quand le plus grand n’a avec le plus petit aucun des rapports dont nous avons parlé ; comme il sera montré, c’est un rapport de nombre à nombre, réduit à ses plus petits termes, qui mesure le limma ; ce rapport est celui de 256 à 5243. Il est évident que la raison des plus petits nombres aux plus grands est l’inverse. Elle emprunte son nom aux premiers rapports, comme il a été montré.

Du fond d’un rapport

XXIX. De tous les rapports dont il a été parlé en détail, ceux qui sont exprimés en nombres les plus petits et premiers entre eux sont appelés les premiers ou les fonds de tous les rapports d’espèce semblable (c’est-à-dire égaux). Ainsi le premier et le fond des rapports doubles est le rapport de 2 à 1, car après celui-là les rapports doubles sont exprimés en nombres plus grands et composés, comme les rapports de 4 à 2, de 6 à 3, et ainsi de suite indéfiniment.

De même le premier et le fond des rapports triples est le rapport de 3 à 1, les rapports triples exprimés en nombres plus grands et composés vont à l’infini. Il en est de même des autres rapports multiples et des rapports superpartiels, le premier et le fond des rapports sesquialtères est 3/2 ; pour le rapport sesquitierce c’est 4/3, pour le rapport sesquiquarte c’est 5/4. Il y a une infinité de rapports équivalents exprimés en termes plus grands et composés. On peut faire les mêmes observations sur les autres rapports.

Τίνι διαφέρει διάστημα καὶ λόγος

λ. διαφέρει δὲ διάστημα καὶ λόγος, ἐπειδὴ διάστημα μὲν ἐστὶ τὸ μεταξὺ τῶν ὁμογενῶν τε καὶ ἀνόιων ὄρων, λόγος δὲ ἀπλῶς ἢ τῶν ὁμογενῶν ὄρων πρὸς ἄλληλους σχέσις. διὸ καὶ τῶν ἐστὶν ὄρων διάστημα μὲν οὐδὲν ἐστὶ μεταξὺ, λόγος δὲ πρὸς ἄλληλους εἰς καὶ ὁ αὐτὸς ὁ τῆς ἱσότητος ὁ τῶν δὲ ἀνόιων διάστημα μὲν ἐν καὶ τὸ αὐτὸ ἄρ’ ἐκατέρων <πρὸς> ἐκατέρων, λόγος δὲ ἐτερος καὶ έναντίος ἐκατέρω πρὸς ἐκατέρων οὖν ἀπὸ τῶν β’ πρὸς τὸ ἐν καὶ ἀπὸ τοῦ ἑνὸς πρὸς τῇ β’ διάστημα ἐν καὶ τὸ αὐτό, λόγος δὲ ἐτερος, τῶν μὲν δύο πρὸς τὸ ἐν διαπλάσιον, τοῦ δὲ ἑνὸς πρὸς τῇ β’ ἤμισυς.

Ἐραστοθένης δὲ ἐν τῷ Πλατωνικῷ φησι, μὴ ταύτων εἶναι διάστημα καὶ λόγον, ἐπειδὴ λόγος μὲν ἐστὶν ὁδὸς μεγεθῶν ἢ πρὸς ἄλληλα ποικὶ σχέσεις; γίνεται δ’ αὐτὴ καὶ ἐν διαφόροις 13 <καὶ ἐν ἀδιαφόροις>. οὖν ἐν ὁ λόγῳ ἐστὶ τὸ αἰσθητὸν πρὸς τὸ νοητόν, ἐν τούτῳ δόξα πρὸς ἐπιστήμην, καὶ διαφέρει καὶ τὸ νοητὸν τοῦ ἐπιστήμου ὁ καὶ ἡ δόξα τοῦ αἰσθητοῦ. διάστημα δὲ ἐν διαφόρους μένον, ἢ κατὰ τὸ μέγεθος ἢ κατὰ ποιότητα ἢ κατὰ θέσιν ἢ ἄλλως ὑποστούν. δὴ τὸ δὲ καὶ ἐντεθεῖν, ὅτι 20 λόγος διαστήματος ἐτερον τὸ γὰρ ἤμισυ πρὸς τὸ διαπλάσιον λόγου μὲν οὐ τὸν αὐτὸν ἔχει, διάστημα δὲ τὸ αὐτὸ.

λα. ἀναλογία δ’ ἐστὶ πλειόνων λόγων ὁμοίοτης ἢ ταυτότης, τουτεστιν ἐν πλείστων ὀρίσεων λόγων ὁμοίοτης, ὅταν ἐν ἔχει λόγον τρόπος πρὸς τὸν δειτερον, τούτον ὁ δειτερος πρὸς τὸν 25 τρίτον, ὁ ἄλλος τίς πρὸς ἄλλον. λέγεται δὲ ἡ μὲν συνεχὴς ἀναλογία, ἡ δὲ διαρρημένη, συνεχὴς μὲν ἢ ἐν ἐλαχίστοις τρι- σιν ὀρίσεως, διαρρημένη δὲ ἢ ἐν ἐλαχίστοις τέσσαρις.

En quoi diffèrent l'intervalle et le rapport

XXX. L'intervalle et le rapport diffèrent en ce que l'intervalle est compris entre des termes homogènes et inégaux, tandis que le rapport lie simplement entre eux des termes homogènes. C'est pourquoi entre des termes égaux il n'y a pas d'intervalle, mais il y a entre eux un rapport qui est celui d'égalité. Entre les termes inégaux, l'intervalle de l'un à l'autre est unique et identique, tandis que le rapport est autre et inverse, d'un terme à l'autre : ainsi de 2 à 1 et de 1 à 2 il n'y a qu'un seul et même intervalle, mais il y a deux rapports différents, le rapport de 2 à 1 étant double, tandis que le rapport de 1 à 2 est un demi.

Ératosthène, dans le *Platonicien*, dit aussi que l'intervalle et le rapport ne sont pas la même chose, parce que le rapport est une certaine liaison de deux grandeurs entre elles et qu'il existe entre des choses différentes ou non, comme quand on dit que le sensible est à l'intelligible dans le même rapport que l'opinion est à la science, ou que l'intelligible diffère du connu dans le même rapport que le sensible diffère de l'opinion, tandis que ces choses diffèrent d'un seul intervalle, soit de grandeur, soit de qualité, soit de position, soit de toute autre manière. Par là il est évident que le rapport est autre chose que l'intervalle, car la moitié et le double ne forment pas un même rapport, tandis que l'intervalle est le même.

XXXI. La proportion est une similitude ou identité de plusieurs rapports, c'est-à-dire une similitude des raisons dans plusieurs termes, ce qui a lieu quand le rapport du premier terme au second est égal au rapport du second au troisième ou au rapport de deux autres termes. La première proportion est appelée continue et la seconde discontinue. Il faut trois termes au moins pour une proportion continue, la discontinue suppose au moins quatre termes.
όσον μετά τὴν ἐν ὑς ὅροις ἀναλογίαν συνεχής ἐν ἀλαγίτως ὅροις κατὰ μὲν τὸ διαπλάσιον δ' β' α' · ἐστὶ γαρ ως δ' πρὸς β', οὕτως β' πρὸς ἔν. διηρμηνέω δὲ στ' ὑ' δ' β' · ἐστὶ γαρ ως σ' πρὸς τά γ', οὕτως δ' πρὸς τά β'. τὸ δὲ αὐτό καὶ 5 ἐπὶ τῶν ἀλλῶν πολλαπλασίων. ἐστὶ δὲ πρῶτον τινα καὶ ἡ συνεχής ἐν τέταρτην ὅροις, δις λαμβανόμενον τοῦ μέσου, καὶ ἐπὶ τῶν ἐπιμορίων δὲ ὁ αὐτὸς λόγος · συνεχής μὲν ἀναλογία ἐν λόγῳ ἡμιολίφθη θ' σ' δ'; διηρμηνέω δὲ θ' σ' ἴ'· ὁ δὲ αὐτὸς λαὶ ἐπὶ τῶν ἀλλῶν λόγως.

10 ὁ δὲ Ἐρατοσθένης φησιν, ὅτι τῆς ἀναλογίας φύσις ἄρχῇ λόγῳ ἐστὶ καὶ πρώτῃ καὶ τῆς γενέσεως αἰτία πάση τοῖς μὴ ἀτάκτως γινομένοις. ἀναλογία μὲν γὰρ πάσα ἐκ λόγων, λόγον δὲ ἄρχῃ τὸ ἴσον. δῆλον δὲ οὕτως. ἐν ἑκάστῳ τῶν γενών ὑδόν ἐστὶς τοις στουχεῖοι καὶ ἄρχῃ, εἰς δ' τὰ ἀλλὰ ἀναλύεται, αὐτὸ

15 δὲ εἰς μηδὲν ἐκεῖνον. ἀνάγκη δὴ τούτω ἀναλύετον εἶναι καὶ ἄτομον τὸ γὰρ διαίρεστον καὶ τομὴν ἐπιδεχόμενον συλλαβῆ λέγεται καὶ οὐ στουχεῖοι.

τὰ μὲν οὖν τῆς οὕτως στουχεία κατὰ οὕτως ἀναλύεται ἐστὶ, τὰ δὲ τοῦ ποιοῦ κατὰ τὸ ποιον, τὰ δὲ τοῦ ποιοῦ κατὰ τὸ 20 ποσὸν. δλως δ' ἐκατόν κατὰ τοῦτο ἄτομον καὶ ἐν, καθ' στουχείαν ἐστί συνθέτου τινὸς ἢ μικτοῦ. τοῦ μὲν οὖν ποσοῦ στουχεῖον ἢ μονάς, τοῦ δὲ τηλίκου στιγμῆς, λόγου δὲ καὶ ἀναλογίας ἰσότης. οὗτε γὰρ μονάδα ἐτὶ διελεῖν ἐστὶν εἰς τὸ ποσὸν, οὗτε στιγμῆν εἰς τὸ τηλίκου, οὗτε ἰσότητα εἰς πλεύσος λόγους. 25 γίνεται δὲ ἀρίθμως μὲν ἐκ μονάδος, γραμμῆ δὲ ἐκ στιγμῆς,

Après la proportion formée de termes égaux, les trois plus petits termes 4, 2, 1, en raison double, forment une proportion continue, car 4 est à 2 comme 2 est à 1; et les nombres 6, 3, 4, 2, forment une proportion discontinue, car 6 est à 3 comme 4 est à 2. On observe la même chose avec les autres rapports multiples et la proportion continue est en quelque sorte une proportion à quatre termes, par la répétition du moyen terme. L'explication est la même quand les rapports sont sesquipartis : ainsi les nombres 9, 6, 4, en rapport sesquialtère (1 + 1/2), forment une proportion continue, et les termes 9, 6, 15, 10, forment une proportion discontinue.

On trouverait de même des proportions avec les autres rapports.

Ératosthène dit que le rapport est le principe qui donne naissance à la proportion et qu'il est aussi la première cause de la génération de toutes les choses qui sont disposées avec ordre. Toute proportion se compose, en effet, de rapports et le principe du rapport est l'égalité. Cela est évident : dans tous les genres il y a un certain élément propre, ou un principe, dans lequel tous les autres se résolvent, tandis que lui-même ne se résout en aucun d'eux. Or, ce principe est nécessairement indécomposable et indivisible, car tout ce qui peut se décomposer et se diviser est appelé collection et non élément.

Les éléments de la substance sont donc indivisibles selon la substance, ceux de la qualité le sont selon la qualité, ceux de la quantité le sont selon la quantité. Et chaque chose est indivisible et une, selon qu'elle est un élément d'une chose composée ou mixte. Ainsi l'élément de la quantité est l'unité, celui de la grandeur est le point, celui du rapport et de la proportion est l'égalité. Car l'unité ne peut pas se diviser en quantité, ni le point en grandeur, ni l'égalité en rapports multiples. Le nombre naît de l'unité, la ligne du point, le rapport et la proportion de l'égalité; mais ce n'est pas de la même manière, car l'unité multipliée par elle-même n'engen-
λόγος δὲ καὶ ἀναλογία ἐξ ἱσότητος, τρόπον δὲ οὐ τὸν αὐτὸν ἔκαστον τούτων · ἀλλὰ μονὰς μὲν πολλαπλασιαζομένη ὑπ’ ἑαυτῆς οὐδὲν γεννᾷ ὡς οἱ ἄλλοι ἀριθμοῖ, τὸ γὰρ ἄτοξ ἐν ἐν · κατὰ σύνθεσιν δὲ αὐξητικό μέχρις εἰς ἀπειρον ·

8 στιγμὴ δὲ οὕτω κατὰ πολλαπλασιασμὸν οὕτω κατὰ σύνθεσιν · ἀλλὰ κατὰ συνέχειαν ῥυεῖτα τε καὶ ἐνεργεῖται γραμμή ἀποτελεῖ, γραμμή δὲ ἑπιφάνειαν, ἑπιφάνεια δὲ σώμα. καὶ μὴν ὁ τῶν ἵσων λόγος οὐκ αὐξητικό συντιθέμενος · πλειόνων γὰρ ἴσων ἕξις τιθεμένων ὁ τῆς περιοχῆς λόγος ἐν ἱσότητι διαμένει. διὸ

10 καὶ συμβαίνει, τὴν στιγμὴν μὴ εἶναι μέρος γραμμῆς μηδὲ τὴν ἱσότητα λόγον, τὴν μέντοι μονάδα ἀριθμοῦ · μόνη γὰρ αὐτὴ συντιθεμένη λαμβάνει τινὰ αὐξητήν. αὕτοι δὲ τοῦ λειχθέντος, ὃτι διαστήματος ἀμοιρος ἱσότης, καθάπερ καὶ ἡ στιγμὴ μεγέθους.

15 ἔσωσε δὲ ὁ Πλάτων μίαν οὕτως οὐνομὴν εἶναι μαθημάτων τὴν ἐκ τῆς ἀναλογίας. ἐν τε γὰρ τοῦ Ἐπικοινόμω φησίν · ἃπαν διάγραμμα ἀρίθμου τε σύστημα καὶ ἀρμονίας σύστασιν ἀπασχοληθεῖσα· τής τε τῶν ἀπόκρυφων περιφορᾶς τὴν ἀναλογίαν οὐκέ τινι ἀπάντων ἀναφανθῆναι δεῖ τῷ κατὰ τρόπον μανθάνοντι· φανησθείη,

20 δὲ, ἂν δὲ λέγομεν ὁρθῶς τῆς ἐμβλέπων μοναδῆς · δετοῦ γὰρ περικυκλώπος ἀπάντων εἰς ἀναφανθησθεῖη.

λβ. διαφέρει δὲ ἀναλογίας μεσότης, ἐπειδὴ εἰ μὲν τὴν ἀναλογία, τούτῳ καὶ μεσότης, εἰ δὲ τῇ μεσότῃ, οὐκ εὐθὺς ἀναλογία. ἐγχειρεῖ γὰρ τοιαῦτα τάξιν μέσων ἄν κέρκιν ἀναλογίας γος πρὸς ταῦτα ἄκρα · ὡς τὰ δύο μέσο αὐτοῖ ὑπέ τάξιν <τού ἐνὸς καὶ> τῶν γ’, καὶ τοῦ ἐνὸς καὶ <τῶν τ’> τὰ γ’ καὶ τὰ δ’ καὶ τὰ ε’ · ἀπὸ γὰρ τοῦ ἐνὸς οὐγκ, οἷον τε ἐλθεῖν ἐπὶ τὰ

dre pas, comme les autres nombres : une fois un est un, tandis que par l'addition le résultat augmente à l'infini.

Quant au point, ce n'est ni par la multiplication, ni par l'addition, qu'il forme la ligne, mais par un mouvement continu, de même que la ligne forme la surface et la surface le solide. Parce que la raison d'égalité ne s'accroît pas par addition, car si l'on additionne par ordre plusieurs rapports égaux, la raison de la somme donne encore une égalité. Ainsi le point n'est pas une partie de la ligne, ni l'égalité une partie du rapport. Toutefois l'unité fait partie du nombre : car elle reçoit un accroissement par la seule répétition d'elle-même. La cause de ce que nous venons de dire est que l'égalité n'a pas d'intervalle, comme le point n'a pas de grandeur.

Platon semble croire que le lien des mathématiques est unique et qu'il consiste dans la proportion. Il dit, en effet, dans l'Epinomis* : il faut que toute figure, toute combinaison de nombres, tout ensemble harmonique, toute révolution astronomique manifeste l'unité de proportion à celui qui apprendra selon la vraie méthode ; or, cette unité apparaîtra à quiconque aura bien compris ce que nous enseignons, il reconnaîtra qu'un seul lien unit naturellement toutes choses.

XXXII. Un nombre moyen diffère du moyen proportionnel*. Car si un nombre est moyen proportionnel entre deux autres, c'est un terme compris entre eux ; mais si un terme est compris entre deux autres, ce n'est pas pour cela un moyen proportionnel entre ces nombres. Il peut arriver, en effet, qu'un nombre compris entre deux extrêmes ne soit pas

16 Epinomis, pp. 994 E — 992 A. — 23 La langue mathématique n'est pas encore fixée. Nous croyons que, par μεσότης, il faut entendre, dans ce paragraphe, non pas une médité, mais un nombre moyen compris entre deux autres, et que, par ἀναλογία, il faut entendre, non pas une analogie, c'est-à-dire une proportion continue, mais un terme moyen proportionnel. Cela paraît résulter de l'explication de Théon et des deux exemples qu'il donne.
Περί ἀναλογίων

λγ. ἀναλογίας δε ὁ μὲν Θράσυκλός φησιν εἰναι προηγουμένας τρεῖς, ἀριθμητικὴν γεωμετρικὴν ἀρμονικὴν. ἀριθμητικὴν ἡ μὲν τὴν ταυτότητα ἀρίθμου ὑπερέχουσαν καὶ ὑπερεχομένην, <οἷον α'/ γ' ε' γεωμετρικὴν δὲ τὴν ταυτότητα λόγου ὑπερέχουσαν καὶ ὑπερεχομένην,> οἷον διπλασία ἡ τριπλασία, ὡς γ' ε' ἴβ' ἀρμονικὴν δὲ τὴν ταυτοτική μέρει τῶν ἄξρων ὑπερέχουσαν καὶ ὑπερεχομένην, οἷον τρίτη ἡ τετάρτη, οἷον ε' ν' ἴβ'..............

tούτων δ' ἔκαστον ἐν ἀριθμοῖς καὶ ἄλλως οὕτως ὀρίται. τῶν σ' διπλάσιος ὁ ἴβ', τριπλάσιος δὲ ὁ νη', τετραπλάσιος δὲ ὁ κο', ἡμιόλιας δὲ ὁ θ', ἐπίτριτος δὲ ὁ νῆ'. τὰ δὲ 0' τῶν νῆ' ἐπίγνωσα τὰ δὲ ἴβ' πρὸς μὲν θ' ἐπίτριτα, πρὸς δὲ νη' ἡμιόλια, [πρὸς δὲ σ' διπλάσιον] τὰ δὲ υ' τῶν θ' διπλάσια. τούτων δὲ τὰ κε' ἡμιόλια καὶ γίνεται μὲν νη' ἐν τῷ διὰ τεσσάρων πρὸς σ', τὰ δὲ θ' ἐν τῷ διὰ τέντα, τὰ δὲ ἴβ' ἐν τῷ διὰ πατῶν, τὰ δὲ υ' ἐν τῷ διὰ πατῶν καὶ διὰ πέντε.
en proportion avec eux, comme 2 qui est compris entre 1 et 3, et 2, 3, 4, qui sont compris entre 1 et 10, car on ne peut arriver de 1 à 10 sans passer par 2, 3, 4, et cependant aucun de ces nombres n'est en proportion avec les extrêmes, car le rapport de 1 à 2 n'est pas égal à celui de 2 à 3, et de même le rapport de 1 à 2, 3, ou 4, n'est pas égal à celui de 2, 3, ou 4, à 10. Les moyens proportionnels entre deux nombres sont au contraire compris entre ces nombres : ainsi dans la proportion 1, 2, 4, dont la raison est double, le moyen proportionnel 2 est compris entre 1 et 4.

Des proportions (entre trois nombres)

XXXIII. Thrasyile compte trois proportions principales entre trois nombres : la proportion arithmétique, la proportion géométrique et la proportion harmonique : la proportion arithmétique est celle dont le terme moyen surpasse autant un terme extrême qu'il est surpassé par l'autre, telle est la proportion 1, 3, 5 ; la proportion géométrique est celle dont le terme moyen contient autant de fois un terme extrême qu'il est contenu dans l'autre, comme 2 fois, 3 fois, telle est la proportion 3, 6, 12 ; la proportion harmonique entre trois nombres est celle dans laquelle le nombre moyen surpasse un nombre extrême et est surpassé par l'autre, de la même fraction des nombres extrêmes, comme le tiers, le quart, telle est la proportion des nombres 6, 8, 12.

On peut considérer ainsi chacun des rapports : 12 est le double de 6 ; 18 en est le triple ; 24 en est le quadruple ; 9 en est les 3/2 et 8 en est les 4/3 ; 9 est les 9/8 de 8 ; 12 est les 4/3 de 9, les 3/2 de 8 [et le double de 6] ; 18 est le double de 9 et 27 est les 3/2 de 18 ; 8/6 donne la consonance de quarte, 9/6 la consonance de quinte et 12/6 celle d'octave ; 18/6 donne octave et quinte, car 12 étant le double de 6 forme la consonance d'octave et 18 étant les 3/2 de 12 est la conso-
τὸν μὲν γὰρ σ᾽ διπλάσια τὰ ἅβι ἔστιν ἐν τῷ διά πασῶν, τῶν δὲ ἅβι τὰ υἱὴ ἡμιολικά ἔστιν ἐν τῷ διά πλέντε, σ᾽ ἅβι υἱὴ ́. τὰ δὲ χοὶ πρός σ᾽ ἐν τῷ διά διὰ πασῶν. τὰ δὲ θ᾽ τῶν η’ ἐν τόνυ. τὰ δὲ ἅβι τῶν η’ ἐν τῷ διὰ πλέντε. τὰ δὲ υἱ᾽ τῶν θ’ διὰ πασῶν. τὰ δὲ χζ τῶν η’

συνέστηκε δὲ τὸ διά πασῶν ἅβι πρός σ᾽ ἐκ τοῦ ἡμιολίου υ’ πρός σ’ καὶ ἐπιτρίτου ἅβι πρός θ’ καὶ πάλιν ἡμιολίου ἅβι πρός η’ καὶ ἐπιτρίτου η’ πρός σ’, καὶ τὰ υἱ᾽ πρός θ’ ἐκ τοῦ υἱ’ πρός ἅβι ἡμιολίου καὶ ἅβι πρός θ’ ἐπιτρίτου, καὶ τὰ κδ’ πρός ἅβι διὰ πασῶν συνέστηκεν ἐκ τοῦ κδ’ πρός θ’ ἐπιτρίτου καὶ τοῦ υἱ’ πρός ἅβι ἡμιολίου. τὰ δὲ θ’ πρός η’ ἐπογοῦσκοι καὶ τοῦ η’ πρός σ’ ἐπιτρίτου, καὶ τὰ ἅβι πρός η’ ἡμιολίον ἐκ τοῦ ἅβι πρός θ’ ἐπιτρίτου καὶ θ’ πρός η’ ἐπογοῦσκοι.

λδ. τὸ δὲ λείμμα γίνεται ἐν λόγῳ ὅν ἔχει τὰ συ’ πρὸς σμγ’. εὐρίσκεται δ’ οὕτω· διεῖν ἐπογοῦσκοι λαχθέντων καὶ τοῦτων τρι̣ς πολλαπλασιασθέντων καὶ τῷ δίς ἐπογοῦσκο προστεθέντως ἐπιτρίτου. οἷον εἰς μὲν ἐπόγοδοσι λόγος ὁ τῶν θ’ πρὸς τὰ

η’. ἐκ δὲ τοῦτων γίνονται δόλο ἐπόγοδου οὕτω· τὰ θ’ ἐφ’ ἐκεῖν ἐπιπληθυνθεὶς παλαιοῦ παλαιοῦ παλαιοῦ παλαιοῦ, ἐπεὶ δὲ τὸν τόθ ἐπόγοδος ὁ δὲ υἱ’ η’ ἐπιτρίτοις, τὰ μὲν πα’ τρι’ γίνεται σμγ’, τὰ δὲ θ’ <τρις> γίνεται σις, τὰ δὲ

ξδ’ τρις γίνεται ρηβ’ τοῦτοι ἐπιτρίτα τὰ συ’ ἀτικῆ πρὸς σμγ’ ἔχει τὸν τοῦ λείμματος λόγον, ὡς ἐστὶ πλείον η’ ἐποκτω-καιδέκατος.

16 Title : peri leimmatos ὃ ἐστιν ἐν λόγῳ τῶν ςυ’ πρὸς σμγ’ (du limma qui est dans le rapport de 235 à 243). — 26 ἑλάτουν J D. Voy. la note de la traduction.
nance de quinte : on a les nombres relatifs 6, 12, 18* ; 24/6
donne la consonance de double octave; 9/8 donne le ton et
12/9 la quarte; 12/8 donne la quinte et 18/9 l’octave. La
raison 27/18 donne la quinte.

L’octave 12/6 se compose de la quinte 9/6 et de la quarte
12/9, ou encore de la quinte 12/8 et de la quarte 8/6*. L’oc-
tave 18/9 se compose de la quinte 18/12 et de la quarte
12/9*; la raison 24/12 de l’octave se compose de la raison
24/18 de la quarte et de la raison 18/12 de la quinte*. Enfin
la raison 9/6 qui est une quinte se compose d’un ton 9/8 et
d’une quarte 8/6*; et la raison 12/8 qui est aussi une quinte
se compose d’une quarte 12/9 et d’un ton 9/8*.

XXXIV. Le limma est dans le rapport du nombre 256 au
nombre 243. Voici comment on trouve ce rapport : on prend
deux fois le rapport sesquioctave (on multiple les deux termes
du premier par 9, les deux termes du second par 8) et on
triple les résultats, puis on y joint le rapport sesquiterce.
Le rapport sesquioctave étant celui de 9 à 8, on forme avec
ces deux nombres deux autres rapports sesquioctaves de la
manière suivante : 9 × 9 = 81; 9 × 8 = 72; et 8 × 8 = 64; 20
81 est les 9/8 de 72 et 72 est les 9/8 de 64. Si nous triplons
ces nombres, nous aurons 81 × 3 = 243; 72 × 3 = 216 et
64 × 3 = 192. Les 4/3 de 192 sont 256. Ce nombre com-
paré à 243 donne le rapport de limma qui est moindre que
1 + 1/18*.

1 18/6 = 12/6 × 18/12. — 6 12/6 = 9/6 × 12/9 = 12/8 × 8/6. — 8
— 12 12/8 = 12/9 × 9/8. — 25 Le limma est moindre que 1 + 1/18. La
fraction 43/243 est en effet moindre que 1/18, donc 1 + 13/243 ou 256/243 est
moindre que 1 + 1/18.
Περὶ τῆς τοῦ κανόνος κατατομῆς

λέει: ἢ δὲ τοῦ κανόνος κατατομὴ γίνεται διὰ τῆς ἐν τῇ
dεκάδι τετρακτύως, ἢ σύγκειται ἐκ μονάδος δυάδος τριάδος τετρά-
dος, α’ β’ γ’ δ’ ἢ ἔχει γὰρ ἐπίτριτον, ἡμιόλιον, διπλάσιον,

5 τριπλάσιον, τετραπλάσιον λόγων.

dιαρεῖ δὲ αὐτῶν ὁ Θράσυλλος οὕτως.

ἄλγη μὲν διελών τὸ μέγεθος μέσην ποιεῖ τὸ διὰ πασῶν ἐν
tῷ διπλασίῳ λόγῳ, ἀντιπεποθήτως ἐν ταῖς κινήσεις διπλασίαν
ἐγκυμοναί τάσιν ἐπὶ τὸ δύο, τὸ δὲ ἀντιπεποθήτως ἐστὶ τοιοῦτον·

10 ὥσπερ ἢ τοῦ μεγέθους ἀφέλης τῆς ἄλγης ἐν τῷ κανόνι χορὸς,
τοσοῦτον τῷ τόνω προστίθεται, καὶ ὅσον ἢ τῷ μεγέθει τῆς
χοροῦ προσθήκης, τοσοῦτον τοῦ τόνου ὑφαρεῖται. τὸ μὲν γὰρ

15 ἡμιστὶ προσαλμαβανομένη μέση πρὸς τὰ δύο μέρη μέγεθος διπλα-

σιῶν τάσιν ἔχει ἐπὶ τὸ δύο, τὸ δὲ διπλάσιον μέγεθος ἡμίσειαν

τάσιν ἔχει <ἐπὶ> τὸ βαρύ.

τρίγα δὲ τῆς διαφέρεσεως γενομένης ἢ τε ὑπάτη τῶν μέσων
cad' ἢ νήτη διεξευγεμένων γίνεται. ἐστὶ δὲ ἢ μὲν νήτῃ διε-
exeugeméneis proseis μὲν τῆς μέσην ἐν τῷ διὰ πέντε ἢ δύο
eγάρ ἢ ἐστὶ διαστήματα πρὸς τρία πρὸς δὲ τὴν ὑπάτην ἐν τῷ διὰ

20 πασῶν ἢ γάρ ἢ ἐστὶ διαστήματα πρὸς τὰ δύο πρὸς δὲ τῶν

prosalambaxonoumeni <ἐν τῷ> διὰ πασῶν καὶ διὰ πέντε πρὸς τὸν
gará <prosalambaxonoumeni> <ἐν τῷ> διὰ πασῶν ὅτος πρὸς τὴν

μέσην προσεύθηκε τὸ μέγερα τῆς νήτης διαστήματα, ὡς ἐστὶ διὰ

25 πέντε πρὸς τὴν μέσην.

ὁ δὲ <ἐπὶ> μέση πρὸς τὴν υπάτην ἐν τῷ διὰ τεσσάρων, πρὸς

ὁ δὲ τῶν προσαλμαβανομένων ἐν τῷ διὰ πασῶν. ὡς ἢ ὑπάτη πρὸς

XXXV. La division du canon se fait suivant le quaternaire de la décade qui se compose des nombres 1, 2, 3, 4 et qui embrasse les raisons sesquiterce, sesquialtère, double, triple et quadruple (c'est-à-dire $4/3$, $3/2$, 2, 3 et 4).

Voici comment Thrasylle divise ce canon. Prenant la moitié de la corde, il obtient la mèse consonance d'octave qui est en raison double, la tension étant double pour les sons aigus, en sens inverse des mouvements. L'inversion est telle que, quand la longueur totale de la corde est diminuée dans le canon, le ton est augmenté en proportion, et que, quand la longueur est augmentée, le ton décroît d'autant; car la demi longueur de la proslambanomène, qui est la mèse par rapport à la corde totale, a une tension double vers l'aigu, et la corde totale qui est double a une tension moitié du côté des sons graves.

La division de la corde en trois donne l'hypate des mèses et la nète des disjointes, la nète des disjointes est la quinte de la mèse, puisque les divisions sont dans le rapport de 2 à 3, et elle est à l'hypate (des mèses) dans le rapport d'octave, puisque les divisions sont comme 1 est à 2. La nète des disjointes donne avec la proslambanomène la consonance d'octave et quinte, car de la proslambanomène à la mèse il y a une octave et les intervalles étant prolongés jusqu'à la nète des disjointes, il y a une quinte de celle-ci à la mèse.

De la mèse à l'hypate (des mèses) il y a une quarte, et de la mèse à la proslambanomène il y a une octave, l'hypate des mèses donnant la quinte par rapport à la proslambanomène. On obtient la même distance d'octave en ajoutant l'intervalle
τὸν προσλαμβανόμενον ἐν τῷ διὰ πέντε. γίνεται δὲ ἵστον τὸ μέγεθος τὸ ἀπὸ τῆς ὑπότης ἐως μέσης τοῦ διὰ τεσσάρων πρὸς τὸ ἀπὸ μέσης ἐως νήτης τοῦ διὰ πέντε. καὶ ὁμοίως ἀντιπεπάνωσιν οἱ ἀριθμοὶ τῶν κινήσεων τῇ διαφέρει τῶν μεγεθῶν.

5 τετραγώνον χαλυμένη, ἢ καὶ διάτονος ὑπατών, καὶ ἢ νήτη τῶν ὑπερβολαίων. ἐστὶ δὲ ἢ μὲν νήτη τῶν ὑπερβολαίων πρὸς μὲν τὴν νήτην τῶν διεξευγμένων ἐν τῷ διὰ τεσσάρων, πρὸς δὲ τὴν μέσην ἐν τῷ διὰ πασῶν, πρὸς δὲ τὴν ὑπάτην ἐν τῷ διὰ πασῶν καὶ διὰ τεσσάρων, πρὸς δὲ τὴν ὑπερπατάτην ἐν τῷ διὰ πασῶν καὶ διὰ πέντε, πρὸς δὲ τὸν προσλαμβανόμενον ἐν τῷ διὰ πασῶν ἐπὶ τὸ βαιρύ.

τῇ δὲ ὑπερμεταίτη λόγος ἐστὶ πρὸς μὲν <τῶν> προσλαμβανόμενον ἐν τῷ διὰ τεσσάρων ἐπὶ τὸ βαιρύ, πρὸς δὲ τὴν μέσην ἐν τῷ διὰ πέντε ἐπὶ τὸ ὑμῖν, τῆς δὲ ὑπάτης τῶν ὑπερβολαίων κατὰ τὸ βαιρύ, καὶ ἐστὶν ἵστον τὸν τοιχίον μέγεθος τῆς ὑπερμεταίτης πρὸς τὴν μέσην καὶ τῇ διὰ τεσσάρων τῆς νήτης διεξευγμένων πρὸς τὴν νήτην ὑπερβολαίων. καὶ ὁμοίως ἀντιπεπάνωσιν οἱ ἀριθμοὶ τῶν κινήσεων τοῖς μεγεθείς [τῆς διαφέρεσις] 20 τῶν διακιστημάτων.

Δήλον δὲ ἐν γένοις τὸ λεγόμενον ἐπὶ τῶν ἀριθμῶν. εἰ γὰρ τὸ τοῦ καυνόν ἡμέρος ἢ τῶν ὑπονοούν, ἐσται μὲν μέση δίχα διαφερεθήσεται εὐκατέρωθεν [διαρρομέμνη] · ἢ δὲ ὑπάτη τῶν μέσων ἢ τῆς ἀργῆς δ' · ἢ δὲ νήτη διεξευγμένων ἢ τῆς τελευτῆς δ' · καὶ τὸ μεταξὺ αὐτῶν δ'. ἢ δὲ ὑπερπατάτη ἢ τῆς ἀργῆς τριὰ ἀρέσει μεγεθή, ἢ τῇ τῆς ὑπάτης ἢ τῇ δὲ τῆς διαφερεθήσεις ἐν.
de l’hypate (des mèses) à la mèse, qui est une quarte, à l’intervalle de la mèse à la nète des disjointes qui est une quinte. Les nombres des mouvements (c’est-à-dire des vibrations) varient en sens inverse de la division des longueurs (c’est-à-dire en sens inverse de la longueur de la partie vibrante).

En divisant la corde en quatre, on obtient la diatone des hypates, nommée aussi hyperhypate, et la nète des hyperbolées. La nète des hyperbolées est à la nète des disjointes dans le rapport de quarte, à la mèse dans le rapport d’octave, à l’hypate (des mèses) dans le rapport d’octave et quarte, à l’hyperhypate dans le rapport d’octave et quinte et à la proslambanomène dans le rapport de double octave, en allant vers les tons graves.

L’hyperhypate est à la proslambanomène dans le rapport de quarte, en allant vers les tons graves, et à la mèse dans le rapport de quinte, en allant vers les tons aigus; elle est d’un ton au-dessous de l’hypate (des mèses), et l’intervalle de ton de l’hyperhypate à la dernière corde (la proslambanomène) est égal à l’intervalle de quarte de la nète des disjointes à la nète des hyperbolées; et ici encore le nombre des mouvements est en sens inverse de la grandeur des divisions *

\[
\begin{array}{cccccccccccc}
\end{array}
\]

Tout cela sera rendu évident par des nombres, car si on divise la longueur du canon en douze parties convenables, la mèse sera donnée par chaque moitié de la corde totale. L’hypate des mèses sera donnée en supprimant quatre parties au commencement du canon et la nète des disjointes en prénant quatre parties à l’autre extrémité du canon, de sorte qu’il y aura quatre
μεταξύ δὲ αὐτῶν ε', ὡστε ἀπὸ τῆς μέσης ἑκατέρα γ', καὶ
gίνεται ἡ δὴ διαίρεσις ἀπὸ μὲν τῆς ἀρχῆς ἐπὶ ὑπερμάτην
g', ἐντεύθεν δὲ ἐπὶ ὑπάτην ἐν, ἐντεύθεν δὲ ἐπὶ μέσην ὅπως,
eἰς ἀπὸ μέσης ἐπὶ τὴν διεξευγμένην ὅπως, ἐντεύθεν δὲ εἰς τὴν
5 ὑπερβολαίαν ἐν, ἀπὸ δὲ ταύτης εἰς τὴν τελευτήν γ'. γίνεται
πάντα ἰδ'.

ἐσται οὖν πρὸς μὲν τὴν ὑπερβολαίαν <ὁ λόγος> τῆς μὲν
νήτης διεξευγμένων δ' πρὸς γ' ἐπίτριτος ὁ τοῦ διὰ τεσσάρων,
tῆς δὲ μέσης ε' πρὸς γ' διπλάσιος ὁ τοῦ διὰ πασῶν, <τῆς δὲ
10 ὑπάτης γ' πρὸς γ' διπλασιεπιτριτός ὁ τοῦ διὰ πασῶν> καὶ
diὰ τεσσάρων, τῆς δὲ ὑπερμάτητης θ' πρὸς γ' τριπλάσιος ὁ τοῦ
diὰ πασῶν καὶ διὰ πέντε, τῆς δὲ ὅλης τοῦ προσπλαμβανομένου
15 ἴδιον πρὸς γ' τετραπλάσιος ὁ τοῦ διὰ διὰ πασῶν · πρὸς δὲ τὴν
νήτην διεξευγμένων ὁ λόγος ἐστὶ τῆς μὲν μέσης ε' πρὸς δ' ἡμι-
λιον ὁ τοῦ διὰ πέντε, τῆς δὲ ὑπάτης γ' πρὸς δ' διπλάσιος ὁ
τοῦ διὰ πασῶν, τῆς δὲ ὑπερμάτητης θ' πρὸς δ' <διπλασιεπι-
tεταρτος> ὁ τοῦ διὰ διὰ πέντε, τῆς δὲ ὅλης τοῦ προσπλαμβα-
νομένου ῾ιδ' πρὸς δ' <τριπλάσιος> ὁ τοῦ διὰ πασῶν καὶ διὰ
πέντε ·

20 πρὸς δὲ τὴν μέσην τῆς μὲν ὑπάτης γ' πρὸς ε' ἐπίτριτος
ὁ τοῦ διὰ τεσσάρων, τῆς δὲ ὑπερμάτητης θ' πρὸς ε' ἡμιλιον

2, 21 ὑπερμάτητη] παραρτήματι Boulliau.
parties entre elles. L'hyperhypate sera donnée en supprimant trois parties au commencement, elle est distante, d'une division, de l'hypate (des mèses). L'hyperbolée (nète des hyperbolées) s'obtient en prenant trois parties de la corde; elle est distante, d'une division, de la disjointe (nète des 5 disjointes).

Entre l'hyperhypate et la nète des hyperbolées, il y a six divisions, trois au-dessus de la mèse et trois au-dessous; et ainsi le partage est complet. En effet, du commencement du canon à l'hyperhypate on compte trois parties du canon, de là à l'hypate des mèses, une partie, et de celle-ci à la mèse, deux parties. De la mèse à la nète des disjointes, il y a deux parties, de là à l'hyperbolée une partie, enfin de celle-ci à la fin du canon trois parties. Toutes les divisions sont donc au nombre de douze.

La raison de la nète des disjointes à la nète des hyperbolées sera 4/3, c'est le rapport sesquihuitième qui donne la consonance de quarte. Le rapport de la mèse à la nète des hyperbolées sera 6/3 = 2 qui est la consonance d'octave. La raison de l'hypate des mèses à la même nète sera 8/3, consonance d'octave et quarte. La raison de l'hyperhypate à la nète sera 9/3 = 3, consonance d'octave et quinte et le rapport de la proslambanomène à la même est 12/3 = 4, consonance de double octave. La raison de la mèse à la nète des disjointes égale 6/4 = 3/2, c'est le rapport sesquiquatréme, consonance de quinte. L'intervalle de l'hypate (des mèses) à la nète des disjointes égale 8/4 = 2, c'est l'octave. Celui de l'hyperhypate à la même nète égale 9/4, c'est la double quinte (quinte de la quinte). Pour la proslambanomène tout entière, le rapport est 12/4 = 3, consonance d'octave et quinte.

Le rapport de l'hypate des mèses à la mèse est 8/6 = 4/3, c'est la quarte. Celui de l'hyperhypate à la mèse est 9/6 = 3/2, il donne la quinte. Celui de la proslambanomène tout entière à la mèse est 12/6 = 2, c'est l'octave. L'hyperhypate est à
ο τού διὰ πέντε, τῆς δὲ ὅλης τοῦ προσλαμβανομένου ὑβ' πρὸς
ε' διπλάσιος ὁ τοῦ [ὅς] διὰ πασῶν . πρὸς δὲ τὴν ὑπάτην
ἐστὶν ἢ μὲν ὑπερυπάτη 9 πρός ἢ' ἐν ἐπογδόφω λόγῳ τῷ τῶ
τόνου, ἢ δὲ ὅλη τοῦ προσλαμβανομένου ὑβ' πρὸς ἢ' ἐν ἡμιολίῳ
5 <τῷ τοῦ διὰ πέντε> . πρὸς <δὲ> τὴν ὑπερυπάτην ἢ ὅλη
tοῦ προσλαμβανομένου ὑβ' πρὸς ἢ' ἐν ἐπιτρίτῳ <τῷ> τοῦ διὰ
tεσσάρων.

Λς. ἀντιπεπόνυμι δ' αἱ λοιπαὶ τῶν χινήσεων κατὰ πυκνοῦ
tοῦ ἐπογδόου τόνου καὶ ἐπιτρίτου διὰ τεσσάρων καὶ ἡμιολίου
10 διὰ πέντε τοῦ κανόνος. ἔπει τὸ ἡμιολίον μὲν διὰ πέντε τοῦ
ἐπιτρίτου διὰ τεσσάρων ἐπογδόφω τόνω ὑπερέχει — οἷον ληφ-
θέντος ἀριθμοῦ δὲ ἐγένετο καὶ ἡμιολίον τῷ σ', τούτῳ ἐπιτρίτῳ μὲν ὁ ἡ', ἡμιολίον δὲ ὁ 9'· τὰ δὲ ὁ τῶν ἢ' ἐπόγδοσ:·
ς' ἡ' 9' . γίνεται ἡ ὑπερογή τοῦ [ἵ'] ἡμιολίον πρὸς τὸ ἐπί-
15 τρίτον ἐν λόγῳ ἐπογδόφω —, τὸ 9' ἐπίτριτον διὰ τεσσάρων ἐκ
δεικνύον ἐπογδόου καὶ τοῦ διεστάλων λείμματος . καταπυκνώσεων
αὕτα τοῖς ἐπογδοσίς τόνοις καὶ τοῖς διεστάλοις λείμμασι. κατα-
pυκνώθηκε δ' ἐν ἀργομελούν ἡμῶν <ἀπὸ τῆς> νῆτας ὑπερθο-
λαίων. τὸ γάρ ὢν τοῦ μέχρι τῆς τελευτῆς διαστήματος
20 ὑπερβιβάσαντες ἔξομεν τὴν διάτονον τῶν ὑπερβολαίων τόνω βαρυ-
τέραν αὐτῆς.

τοῦ δὲ ἀπὸ ταύτης ἡς τῆς τελευτῆς τὸ ὄγδοον ὑπερβιβάσαν-
tες ἔξομεν τὴν τρίτην τῶν ὑπερβολαίων τόνω τῆς διατόνου
βαρυτέραν καὶ τὸ λοιπὸν εἰς τὴν νῆτα τῶν διεζευγμένων
25 ἔστηκε τὸ διεστάλων λείμμα πρὸς συμπλήρωσιν τοῦ διὰ τεσσάρων
πρὸς τὴν νῆτην ὑπερβολαίων. πάλιν δὲ τοῦ ἀπὸ τῆς νῆτης
dιεζευγμένων ἡς τῆς τελευτῆς διαστήματος τὸ μὲν ἐνακο
λαθόντες καὶ ὑποθετάσαντες ἔξομεν τόνω ἐξετέραν τῆς νῆτης
dιεζευγμένων τὴν χρωματικὴν ὑπερβολαίων. τὸ δὲ ὦγδοον ὑπερ-

3 ὑπερυπάτη] παραπέτασθε Bouliana. — 5 ὑπερυπάτην] ὑπάτην Bouliana. —
8 Τίτρο: πεπε καταπυκνώσεως (des insertions) — αἱ λοιπαὶ αἱ αριθμοὶ Hiller, cf.
p. 144, 1. 4 et 19.
XXXVI. Les nombres de vibrations sont soumis à la proportion inverse, puisqu'on trouve condensés dans le canon le ton dont la raison est sesquioctave (9/8), la consonance de quarte dont la raison est sesquitierce (4/3), et la consonance de quinte dont la raison est sesquialtère (3/2).

La raison 3/2 de la quinte surpasse la raison 4/3 de la quarte, d'un ton qui est égal à 9/8 : prenons par exemple le nombre 6 qui est divisible par 2 et par 3, les 4/3 de 6 valent 8, et les 3/2 de 6 valent 9, or 9 est les 9/8 de 8. On a la suite 6, 8, 9, et l'excès de l'intervalle 3/2 sur l'intervalle 4/3 est 9/8. Mais l'intervalle 4/3 de la quarte se compose de deux fois 9/8 et d'un limma, les intervalles doivent donc être remplis par des tons et des limmas. Cette insertion commence à la nête des hyperbolées; en effet si nous prolongeons celle-ci de la huitième partie de sa longueur, nous aurons la diatone des hyperbolées, qui est plus grave d'un ton.

Si nous prolongeons la diatone de la huitième partie de sa longueur, nous aurons la trite des hyperbolées, qui est plus grave d'un ton que la diatone; le reste de l'intervalle jusqu'à la nête des disjointes sera le limma, complément de la consonance de quarte par rapport à la nête des hyperbolées. Si au contraire nous diminuons d'un neuvième la longueur de la nête des disjointes, nous aurons la chromatique des hyperbolées, qui est d'un ton plus aiguë que la nête des disjointes; celle-ci augmentée d'un huitième donnera la paranète des disjointes, qu'on appelle aussi diatone et nête des conjointes et qui est plus grave d'un ton que la nête des disjointes.
διδάσκαντες ἔξομεν τὴν παρανήτην διεξευγμένων · ἡ αὐτῇ δὲ καὶ διάτονος καὶ νῆτη συνημμένων, τὸν βαρυτέρᾳ τῆς νῆτης διεξευγμένων.

τοῦ δὲ ἀπὸ τῆς νῆτης ἐς τῆς τελευτής τὸ ὄγδοον λαβόντες καὶ ὑπερβιδάσκαντες ἔξομεν τὴν τρίτην τῶν διεξευγμένων τὸν βαρυτέραν · ἡ δὲ αὐτῇ καὶ διάτονος συνημμένων ἐστίν. ὅμοιος δὲ τοῦ ἀπὸ ταύτης ἐς τῆς τελευτῆς διαστήματος τὸ ὄγδοον ὑπερβιδάσκαντες ἔξομεν τὴν τρίτην συνημμένων τὸν βαρυτέραν.

τὸ δὲ λοιπὸν εἰς τὴν μέσην ἔσται τὸ διεστάτων λείμμα εἰς τὴν διὰ πασῶν συντέλειαν. ἀπὸ δὲ τῆς μέσης τὸν αὐτὸν τρόπον <τὸ ἕνατον> ὑπερβιδάσκαντες ἔξομεν τὴν παραμέσην ἢ τὴν χρωματικήν συνημμένων, τὸν ἀμετάκιν ὑπερβιδάσκαντες τῆς μέσης. ταύτῃς δὲ τὸ ἕνατον ὑπερβιδάσκαντες ἔξομεν τὴν χρωματικήν διεξευγμένων.

τὸ ὄγδοον δὲ τῆς μέσης ὑπερβιδάσκαντες ἔξομεν τὴν τῶν μέσων διάτονον τόνῳ βαρυτέραν τῆς μέσης, ἐστι τὸ ἀπὸ ταύτης ὄγδοον ὑπερβιδάσκαντες τῇ παραμέσῃ <τῶν μέσων> ταύτης τόνῳ βαρυτέραν. καὶ ἔστι τὸ λοιπὸν εἰς τὴν υπότην τῶν μέσων τὸ διεστάτων λείμμα πρὸς συμπληρωσιν τοῦ διὰ τεσσάρων πρὸς τὴν μέσην. ἀπὸ δὲ τῆς υπότης τὸ μὲν ἐνατον ὑπερβιδάσκαντι ἢ χρωματική τῶν μέσων ἐσται τὸν ἀμετάκιν. τὸ ὄγδοον δὲ ὑπερβιδάσκαντι ἐγένε τὴν υπερμέσην συμβῆσεται. ταύτης δὲ τὸ ὄγδοον ὑπερβιδάσκαντι παραμέσῃ ὑπεκτῶν γενῆσεται.

ἐξ ἀναστροφῆς δὲ ἀπὸ τοῦ προσλαμβανομένου τέμνεσθι τὸ ὄλον διάστημα εἰς ἢ καὶ ἐν ὑπολεῖσθαι κατὰ τὸ ἐνατιόν <τῶν> νητῶν, ὑπεκτῶν υπότην γενήσεται τὸν τῆς ὅλης ἀμετάκιν, συγκλείσουσα τὸ τῶν ὑπεκτῶν τεσσάρων τῷ πρὸς τὴν παραμέσην λείμματι. καὶ οὕτως συμπληρωθῆσεται τὸ πᾶν ἀμετάκινον σύστημα κατὰ τὸ διάτονον καὶ χρωματικὸν γένος.

6-10 ὅμοιος δὲ... συντέλειαν] τὸ δὲ λοιπὸν εἰς τὴν παραμέσην ἔσται τὸ διεστάτων λείμμα. ὅμοιος δὲ τοῦ ἀπὸ ταύτης ἐς τῆς τελευτῆς διαστήματος τὸ ὄγδοον ὑπερβιδάσκαντες ἔξομεν τὴν μέσην τόνῳ βαρυτέραν εἰς τὴν τοῦ διὰ πασῶν συντέλειαν. J D.
Musique

Que si nous prolongeons la nète des conjointes d’un huitième de sa longueur, nous aurons la trite des disjointes, plus grave d’un ton, et qui est la même que la diatone des conjointes. Et le reste de l’intervalle jusqu’à la paramèse sera le limma. Si nous prolongeons la paramèse d’un huitième, nous aurons la mèse, plus grave d’un ton, et qui complète l’octave. Si nous diminuons la mèse de la même manière (en retranchant un neuvième de sa longueur), nous aurons la paramèse ou chromatique des conjointes, plus aiguë d’un ton que la mèse; en retranchant de celle-ci la neuvième partie, nous aurons la chromatique des disjointes.

La mèse augmentée d’un huitième donnera la diatone des mèses, plus grave d’un ton que la mèse; la diatone des mèses, augmentée d’un huitième, donne la parhypate des mèses, plus grave d’un ton, et de là à l’hypate des mèses il reste un limma pour le complément de la consonance de quarte avec la mèse. Si de l’hypate des mèses on retranche un neuvième, on a la chromatique des mèses, plus aiguë d’un ton, et, si au contraire on l’augmente d’un huitième on a l’hyperhypate, laquelle augmentée d’un huitième donne la parhypate des hypates.

Réciproquement, si l’on divise en 9 parties la longueur de la proslambanomènè, et qu’on retranche une de ces parties, à l’inverse de ce que nous avons fait pour les tons aigus, on aura l’hypate des hypates, plus aiguë d’un ton que la proslambanomènè et terminant le tétracorde des hypates par le rapport de limma quelle a avec la parhypate. C’est ainsi que se complète tout le système immuable du genre diatoni­que et du genre chromatique.
περὶ τετρακτύων καὶ δεκάδος

τὸ δὲ ἐναρμόνιον ἐξαιρουμένων τῶν διατόνων καὶ ἐκατὸν τετράχορδον διπλωδομένων γίνεται.

εὐροίμεν δὲ ἂν ταῦτα καὶ ἐν ἀριθμοῖς ἀπὸ τῆς νήσης τῶν ὑπερθολαίων ἀρχόμενοι, ὑποτεθεῖσθαι αὐτῆς μυρίων τεχ. οἱ 5 ἔφεξις ἐπόγοδοι τε καὶ οἱ λοιποὶ κατὰ τοὺς προειρημένους λόγους λαμβάνονται, οὔς περιτεργὸν ἐκτιθεῖαι ἐβόλιον δὲ τῷ παρηκολουθητὶ τοῖς προειρημένοις.

καὶ ἡ μὲν ὑπὸ Θρασύλλου παραδεδομένη κατατομὴ τοῦ κχόνος ὀδε ἔχει. ὃν δὲ τρόπον καὶ ἐπὶ τῆς τῶν ὅλων ἐφαρ- 10 μέζεται σφαίρας, ἐπειδὰν καὶ τοὺς ἄστρονομίας ἐκδιόμεθα λόγους, παραδείξουμεν. νυνὶ δὲ ἐπενέλθομεν ἐπὶ τὸν τῶν λοιπῶν ἀναλο- γιῶν καὶ μεσοτήτων λόγον, ἐπειδῇ ὡς ἐφαμεν ἡ ἀναλογία καὶ μεσότης, οὐ μέντοι ἡ μεσότης καὶ ἡ ἐναλογία. καθὸ δὴ <ἡ> ἀναλογία καὶ μεσότης ἔστω, ἀκόλουθος ἄν εἰ ὁ περὶ τῶν 15 ἀναλογιῶν καὶ περὶ τῶν μεσοτήτων λόγος.

Περὶ τετρακτύων καὶ δεκάδος

λῦ. ἐπειδὴ τάντες οἱ τῶν συμφωνιῶν εὐρέθησαν λόγοι, καθὰ δέδεικται, ἐν τῇ τῆς δεκάδος τετρακτύ, καὶ περὶ τούτων πρότερον λεκτέον. τὴν μὲν γὰρ τετρακτύων συνέστησαν ἡ δεκάδα. 20 ἐν γὰρ καὶ β’ καὶ γ’ καὶ δ’ ι’. α’ β’ γ’ δ’. ἐν δὲ τούτωι τοῖς ἀριθμοῖς ἔστων ἡ τε διὰ τεσσάρων συμφωνία ἐν ἐπιτρίτῳ λόγῳ καὶ ἡ διὰ τέντε ἐν ἡμιολίῳ καὶ ἡ διὰ πασῶν ἐν διπλά- σίῳ καὶ <ἡ> διὰ διὰ πασῶν ἐν τετραπλασίῳ. εξ ὧν συμ- τηροῦται τὸ ἀμετάβολον διάγραμμα.

Quant au système enharmonique, il se déduit du système diatonique en supprimant les diatones que nous faisons entendre deux fois dans chaque octave et en divisant en deux les demi-tons.

Nous trouverons les résultats en nombres en commençant par la nète des hyperloéées que nous supposerons composée de 384 parties, dont on prend successivement les 9/8 et les autres fractions que nous avons indiquées. La proslambanomène en vaudra 10368*. Il est superflu d'exposer cela en détail, parce que quiconque aura compris ce qui précède fera facilement le calcul.

Telle est la division du canon donné par Thrasyle. Quand nous exposerons les éléments de l'astronomie nous montrerons comment tout cela s'applique au système du monde. Revenons maintenant à l'explication des autres moyennes et des nombres moyens, puisque, comme nous l'avons dit, toute moyenne est un nombre moyen, mais que tout nombre moyen n'est pas une moyenne. C'est donc en tant que la moyenne est un nombre moyen, qu'il faut entendre ce qui suit, des moyennes et des nombres moyens.

Du quaternaire et de la décade

XXXVII. Puisque, comme nous l'avons montré, tous les rapports des consonances se trouvent dans le quaternaire de la décade, c'est de ces nombres que nous avons à parler. La décade constitue en effet le quaternaire, puisque la somme des nombres 1, 2, 3, 4, est 10. Or, ces nombres contiennent la consonance de quarte dans le rapport sesquitrice (4/3), celle de quinte dans le rapport sesquialtère (3/2), celle d'octave dans la raison double, et celle de double octave dans la raison quadruple; et par là est complété le diagramme immuable.

9 Voy. la note XIII.
Πόσαι τετρακτύες

λη. τοιαύτη μὲν <Η> ἐν μουσικῇ τετρακτύσι κατὰ σύνθεσιν ὤς, ἐπειδὴ ἕντος αὐτῆς πάσαι αἱ συμφωνίες εὐρίσκονται. οὐ διὰ τούτο δὲ μόνον πάσι τοῖς Πυθαγόρειοις προτετήμηται, ἀλλ' 5 ἐπεὶ καὶ δοκεῖ τὴν τῶν ὄλων φύσεως συνέχειαν ὁ θεὸ καὶ ὄρκος ἥν αὐτοῖς.

οὐ μὰ τὸν ἀμετέρῳ ψυγῷ παραδόντα τετρακτύν,
παρὰν ἀλλού φύσεως βλέψωμα τ' ἔγορον.
τὸν παραδόντα Πυθαγόρακα λέγοντι, ἐπεὶ δοκεῖ τούτου εὑρήμα
10 ὁ περὶ αὐτῆς λόγος.

ἡ μὲν οὖν προειρημένη τετρακτύς <αὐτῆ>, κατ' ἐπισύνθεσιν τῶν πρῶτων ἀποτελούμενη ἁρμυμών.

δευτέρα δ' ἦστι τετρακτύς ἡ τῶν κατὰ πολλαπλασιασμὸν ἐπιμετρημένων ἀπὸ μονάδος κατὰ τὸ ἀρτιόν καὶ περιττόν, τὸν 15 πρῶτον μὲν [κατὰ τὸ ἀρτιόν] λαμβάνωμεν ἡ μονάς, ἐπειδὴ αὕτη ἁρμή πάντων ἀρτιῶν καὶ περιττῶν καὶ ἁρτιοπεριττῶν, ὡς προειρητεύει, καὶ ἀπλοῦσ· ἡ ταύτης λόγος· οἱ δ' ἐφεξῆς τρεῖς ἁρμήμαι κατὰ τὸ ἀρτιόν καὶ περιττόν. τὴν δὲ σύνθεσιν λαμβάνομεν, ἐπειδὴ καὶ ὁ πᾶς ἁρμήμας οὖτε μόνον ἁρτιός οὐτε μόνον 20 περιττός. διὸ δὲ λαμβάνονται αἱ κατὰ πολλαπλασιασμὸν τετρακτύες, ἁρτία καὶ περιττή, ἡ μὲν ἁρτία ἐν λόγῳ διπλασίῳ, πρῶτος γὰρ τῶν ἀρτιῶν ο β' καὶ αὐτὸς ἐκ μονάδος κατὰ τὸ διπλάσιον ηὐξημένος, ἡ δὲ περιττὴ ἐν λόγῳ ηὐξημένη, τριπλασίῳ, ἐπειδὴ πρῶτος τῶν περιττῶν ο γ' καὶ αὐτὸς ἀπὸ μόναδος 25 κατὰ τὸ τριπλάσιον ηὐξημένος. ὡσε κοινὴ μὲν ἁμορφότερων ἡ μονάς, καὶ ἁρτία ὁστε καὶ περιττή· δευτέρος δὲ ἁρμήμας εὐ 20 μὲν τοῖς ἄρτιοι καὶ διπλασίους ο β', ἐν δὲ τοῖς περιττοῖς καὶ τριπλασίοις ο γ'· τρίτος δὲ ἐν μὲν τοῖς ἄρτιοις ο δ', ἐν δὲ

7 οὗτοι.
Combien il y a de quaternaires

XXXVIII. L'importance du quaternaire qu'on obtient par addition (c'est-à-dire 1, 2, 3, 4) est grande en musique, parce qu'on y trouve toutes les consonances. Mais ce n'est pas seulement pour cela que tous les Pythagoriciens lui font l'honneur du premier rang: c'est aussi parce qu'il semble renfermer toute la nature de l'univers. C'est pour cette raison que la formule de leur serment était: «J'en jure par celui qui a transmis dans nos âmes le quaternaire, source de la nature éternelle» *. Celui qui a transmis, c'est Pythagore, ce qui a été dit de la tétractys paraît venir en effet de ce philosophe.

Le premier quaternaire est celui dont nous venons de parler: il est formé, par addition, des premiers nombres.

Le second est formé, par la multiplication, de nombres pairs et de nombres impairs, à partir de l'unité. De tous ces nombres, l'unité est le premier, parce que, comme nous l'avons dit, elle est le principe de tous les pairs, de tous les impairs et de tous les pairs-impairs, et que son essence est simple. Viennent ensuite trois nombres tant dans la série paire que dans la série impaire. Ils admettent la réunion du pair et de l'impair, parce que tout nombre n'est pas seulement pair où seulement impair. C'est pour cela que dans la multiplication, on prend deux quaternaires, l'un pair, l'autre impair: le pair dans la raison double, le premier des pairs étant 2 qui provient de l'unité doublée; l'impair dans la raison triple, le premier des impairs étant 3 qui provient de l'unité triplée, en sorte que l'unité qui est paire et impair

τοίς περιττοῖς ο̇ θ'· tέταρτος εν μὲν τοίς ἁρτίους η', εν δε τοίς περιττοῖς κ'ζ'.

ἐν τούτοις τοίς ἀριθμοῖς <οἶ> τελευτεροὶ τῶν συμφωνιῶν εὐρίσκονται λόγοι· συμπεριέληπται δὲ αὐτοῖς καὶ ὁ τόνος. 5 δύναται δὲ η μὲν μονὰς τὸν τῆς ἁρχῆς καὶ σημείου καὶ στιγμῆς λόγον· οὶ δὲ δεύτεροι πλευρὰν δύνανται θεὶ τε β' καὶ ο γ', ὁντες ἀσύνθετοι καὶ πρώτοι καὶ μονάδι μετρούμενοι καὶ φύτει εὐθυμετρικοῖ· οὶ δὲ τρίτοι θροί ο δ' καὶ ο θ' δύνανται ἐπίπεδον τετράγωνον, ἵσακίς ἵσαι ὁντες· οι δὲ τέταρτοι 10 θροί ο τη η καὶ ο κ'ζ' δύνανται ἵσακίς ἵσαι ἵσακίς <ὁντες> κύδων· ὡστε ἐκ τούτων τῶν ἀριθμῶν καὶ ταύτης τῆς τετρακτύλους ἀπὸ σημείου καὶ στιγμῆς εἰς στερεόν ἡ αὐξησις γίνεται· μετὰ γ'ρα σημείου καὶ στιγμῆς πλευρὰ, μετὰ πλευρὰν ἐπίπεδον, μετὰ ἕπειδον στερεόν. ἐν οἷς ἀριθμοῖς καὶ τὴν ψυχὴν 15 συνίστησιν ὁ Πλάτων ἐν τῷ Τιμαίῳ· ο δὲ ἐγκαύς τούτων τῶν ἐπτὰ ἀριθμῶν ἵσος ἔστι τοῖς πρὸ αὐτοῦ πᾶσιν· ἐν γ'ρ καὶ β' καὶ γ' καὶ δ' καὶ η καὶ θ' γίνονται κ'ζ'.

δύο μὲν οὖν αὐταί τετρακτύλες, ή τε κατ' ἐπισύνθεσιν καὶ ή κατὰ πολλαπλασιασμόν, τοὺς τε μοισικοὺς καὶ γεωμετρικοὺς 20 καὶ ἀριθμητικοὺς λόγους περιέχουσα, εξ ὧν καὶ η τοῦ παντὸς ἁρμονία συνέστη.

τρίτη δὲ ἐστὶ τετρακτύλες· ή κατὰ τὴν αὐτὴν ἀναλογίαν παντὸς μεγέθους φύσιν περιέχουσα· ὅπερ γ'ρ ἐν τῇ προτέρα τετρακτύλες μονάς, τούτο ἐν ταύτῃ στιγμή· ὅπερ δὲ ἐν ἐκείνῃ οἱ πλευ-
tout à la fois est commune à l’un et à l’autre. Le second nombre dans les pairs et doubles est 2, dans les impairs et triples, 3. Le troisième dans l’ordre des pairs est 4, dans la série des impairs, 9. Le quatrième parmi les pairs est 8, parmi les impairs, 27 :

C’est dans ces nombres que se trouvent les raisons des consonances les plus parfaites; le ton y est même compris : Or l’unité contient la raison de principe, de terme et de point. Les seconds 2 et 3 ont la raison latérale, étant incomposés, premiers et mesurés seulement par l’unité, et par conséquent linéaires. Les troisièmes termes, 4 et 9, ont la puissance de la surface carrée, étant également égaux (c’est-à-dire des nombres carrés). Les quatrièmes termes, 8 et 27, ont la puissance du solide cubique, étant également égaux également (c’est-à-dire des nombres cubiques); en sorte qu’à l’aide des nombres de ce quaternaire, l’accroissement va du terme et du point jusqu’au solide. En effet, après le terme et le point vient le côté, puis la surface et enfin le solide. C’est avec ces nombres que Platon constitue l’âme, dans le Timée 19. Le dernier de ces sept nombres est égal à (la somme de) tous les précédents, car on a $1 + 2 + 3 + 4 + 8 + 9 = 27$.

Il y a donc deux quaternaires de nombres, l’un qui se fait par addition, l’autre par multiplication; et ces quaternaires renferment les raisons musicales, géométriques et arithmétiques dont se compose l’harmonie de l’univers.

Le troisième quaternaire est celui qui, selon la même proportion, embrasse la nature de toutes les grandeurs : car ce que

19 Platon, le Timée, p. 35 B C.
φὰν δυνάμενοι ἀριθμοὶ τὰ β’ καὶ γ’, τοῦτο ἐν ταύτῃ τὸ διττὸν ἔδος τῆς γραμμῆς ἢ τε περιφερής καὶ ἢ εὐθεία, κατὰ μὲν ἄρτιον ἢ εὐθεία, ἐπειδή δυστ σημείους περιτούτκι, κατὰ δὲ τὸ περίττον ἢ περιφερής, ἐπειδὴ ὑπὸ μιᾶς γραμμῆς πέρας 8 οὐκ ἐγχύσης περιέχεται.

όπερ δὲ ἐν ἐκείνῃ οἱ τετράγωνοι δυναμένοι ο δ’ καὶ ο θ’, τοῦτο ἐν ταύτῃ τὸ διττὸν ἔδος ἐπιπέδων, εὐθύγραμμον καὶ περιφερήγραμμον. οπέρ δὲ ἐν ἐκείνῃ οἱ χῶδοι δυνάμενοι ο η’ καὶ ο χ’ δύο ὄντες ο μὲν ἐκ περίττοι, ο δὲ εξ ἄρτιοι, τοῦτο 10 ἐν ταύτῃ στερεόν, διστὸν ὄν, <τῷ μὲν> ἐκ κολῆς ἐπιφάνειας ὡς σφαίρα καὶ κύλινδρος, τὸ δὲ εἰς ἐπιπέδων ὡς χῶδος <καὶ> πυραμίς. αὐτή δὲ ἔστιν ἡ τρίη τετραγώνως παντὸς μεγέθους συμπληρωτική ἐκ σημείου γραμμῆς ἐπιπέδου στερεοῦ.

τετάρτῃ δὲ τετραγώνως ἔστὶ τῶν ἀπλῶν <σωμάτων>, πυρὸς 13 ἀέρος ὑδάτος γῆς, ἀναλογίαν ἔχουσα τὴν κατὰ τοὺς ἀριθμοὺς. οπέρ γὰρ ἐν ἐκείνῃ μονάς, ἐν ταύτῃ τῷρ . δ’ ὁ δὲ δυσ, ἅρ . 6 δ’ ὁ ἄρ ρ . δ’ ὁ ἐπερ . ὁ τοῦ τοῦ ὑδατ . τοῦτο ἀνεφευρεῖν καὶ παχυμέρειν, ὡστε τοῦτον ἑμεν τὸν λόγον τῷρ πρὸς ἂρη, δὲν ἐν πρὸς β’, πρὸς δὲ 20 ὑδατ, δὲν ἐν πρὸς γ’, πρὸς δὲ γῆν, δὲν ἐν πρὸς δ’ καὶ τὰλλα ἀνάλογον πρὸς ἄλληλα.

πέμπτῃ δ’ ἐστὶ τετραγώνως ἢ τῶν σχημάτων τῶν ἀπλῶν σωμάτων. ἢ μὲν γὰρ πυραμίς σχήμα πυρός, τὸ δὲ ὀκτάεδρον ἄρεος, τὸ δὲ εἰκοσάεδρον ὑδάτος, χῦδος δὲ γῆς. 25 ἔκτη δὲ τῶν φυσικῶν. τὸ μὲν στέρμα ἀνάλογον μονάδο καὶ σημεῖο, ἢ δὲ εἰς μῆκος αὐξή δυάδι καὶ γραμμῆ, ἢ δὲ εἰς <σωμάτων> Hiller, cf. p. 158 l. 23 et p. 160 l. 22.
fait l’unité dans le précédent quaternaire, le point le fait dans celui-ci, et ce que font dans le précédent les nombres 2 et 3 qui ont la puissance latérale (ou linéaire), la ligne, par sa double forme, droite ou circulaire, le fait dans celui-ci, la ligne droite répondant au nombre pair, parce qu’elle a deux termes, et la circulaire à l’impair, parce qu’elle est comprise dans une seule ligne sans terme.

Et ce que sont dans le précédent les nombres 4 et 9 qui ont la puissance de la surface, les deux espèces de surfaces, la surface plane et la surface courbe, le sont dans celui-ci. Enfin ce que sont dans le précédent les nombres 8 et 27 qui ont la puissance du cube, et dont l’un est pair et l’autre impair, le solide le fait dans celui-ci, étant de deux espèces, l’une à surface courbe, comme la sphère et le cylindre, l’autre à surface plane, comme le cube et la pyramide. Le troisième quaternaire est donc celui qui a la propriété de constituer toute grandeur, par le point, la ligne, la surface et le solide.

Le quatrième quaternaire est celui des corps simples, le feu, l’air, l’eau et la terre, et il offre la même proportion que le quaternaire des nombres : car ce qu’est dans celui-ci l’unité, le feu l’est dans celui-là, l’air répond au nombre 2, l’eau au nombre 3, la terre au nombre 4 ; telle est, en effet, la nature des éléments selon la ténuité ou la densité de leurs parties, en sorte que le feu est à l’air comme 1 est à 2, à l’eau comme 1 est à 3, et à la terre comme 1 est à 4. Les autres rapports sont aussi égaux (c’est-à-dire que l’air est à l’eau comme 2 est à 3, et ainsi des autres).

Le cinquième quaternaire est celui des figures des corps simples, car la pyramide est la figure du feu, l’octaèdre la figure de l’air, l’icosaèdre la figure de l’eau, le cube la figure de la terre.

Le sixième est celui des choses engendrées, la semence étant analogue à l’unité et au point ; supposons l’accroissement en longueur, c’est analogue au nombre 2 et à la ligne ; supposons encore l’accroissement en largeur, c’est analogue.
τοῦ τρία, καὶ ἀπεφανεῖται, ὡς δὲ εἰς πάντα τρέχει καὶ στερεῶ.

ἐθάρρυνε δὲ τετρακτύς ἢ τῶν κοινωνιῶν. ἀρχὴ μὲν καὶ οὖν μονᾶς ἀνθρωπος, δύος δὲ οἶκος, τριάς δὲ κόμη, τετράς δὲ στόλις. τὸ γὰρ θύσας ἐκ τούτων σύγκειται.

καὶ αὐταὶ μὲν ὑλικαὶ τε καὶ αἰσθηται τετρακτύς.

ὁγδόνη δὲ τετρακτύς ἦδε, τούτων κριτικὴ καὶ νοητὴ τις οὐσα. οὐ χαίρει οὔτε σύνεσι, οὐ δὲ ἐπιστήμη δόξα αἰσθητικής, οὐδὲ μὲν ἡ ὧν ἡ ὑποστήμη ἐπιστήμη. δόξα δὲ ὡς ὑπος, ἐπειδὴ τινὸς ἐστὶν ἐπιστήμη. <δόξα>

δὲ ὡς τριάς, ἐπειδὴ καὶ μεταξύ ἐστι δόξα ἐπιστήμης [ἐστι] καὶ ἡγολογίας. ἡ δὲ αἰσθητικὴ τῶν τετράς, ἐπειδὴ τετρακτηθηκεν κοινῆς πασῶν ὑπος τῆς ἀρχῆς καὶ ἐπιφήν πάσαι ἐνεργοῦσιν αἰ αἰσθήτεις.

ἐνάτη δὲ τετρακτύς, ἡς ἢς συνεστῆκε τὸ ζῷον, ψυγῆ τε καὶ σώμα. ψυγῆς μὲν γὰρ μέρη λογιστικών θυμικών ἐπιθυμητικών, καὶ τέταρτον σώμα, ἐν οί ἐστιν ἡ ψυγῆ.

οὔσατη δὲ τετρακτύς ὅρων δι' ᾳς γίνεται πάντα, ἔσρ ὧς ἑώρος μετοπωρον χειμώνων.

ἐνοὔσατη δὲ ἢ ἱλικίων, νηπίων μειρακίου ἀνήρος γέροντος.

ὅσις τετρακτυς ἐνδεκά · πρώτη ἡ κατα σύνθεσιν ἀριθμῶν, δευτέρα, ἡ κατα τολλατασκιμάν άριθμῶν, τρίτη κατα μέγεθος, τετάρτη τῶν ἁπλῶν σωμάτων, πέμπτη τῶν σχημάτων, ἐκτῆ τῶν φυσικῶν, ἐθάρρυνε τῶν κοινωνιῶν, ὡς δὲ κριτική, ἐνάτη τῶν μερῶν τοῦ ζῷου, δευτέρα τῶν ὅρων, ἐνούσατη ἢλιο

κιονων. ἐγκουσι δὲ πάσαι ἀναλογίζον · ο γὰρ ἐν τῇ πρώτῃ καὶ δευτέρα μονάς, τούτο ἐν τῇ τρίτῃ συμμορία, ἐν δὲ τῇ τετάρτῃ πῦρ, ἐν δὲ τῇ πέμπτῃ τυραμίς, ἐν δὲ τῇ ἐκτῇ στέρμα, <καὶ>
au nombre 3 et à la surface; supposons enfin l’accroissement en épaisseur, c’est analogue au nombre 4 et au solide.

Le septième quaternaire est celui des sociétés. L’homme en est le principe et pour ainsi dire l’unité. La famille répond au nombre 2, le bourg au nombre 3, la cité au nombre 4; car c’est de ces éléments que se compose la nation.

Tous ces quaternaires sont matériels et sensibles.

Le huitième contient les facultés par lesquelles nous pouvons porter des jugements sur les précédents et qui sont en partie intellectuelles, savoir : la pensée, la science, l’opinion et le sens. Et certes, la pensée doit être assimilée à l’unité dans son essence; la science est comme le nombre 2, parce qu’elle est la science de quelque chose; l’opinion est comme le nombre 3, car elle tient le milieu entre la science et l’ignorance; enfin le sens est comme le nombre 4, car il est quadruple, le tact étant commun à tous, tous les sens agissant par le contact.

Le neuvième quaternaire est celui dont se compose l’animal, corps et âme, l’âme ayant trois parties, la raisonnable, l’irascible, la concupiscible; la quatrième partie est le corps dans lequel l’âme réside.

Le dixième quaternaire est celui des saisons de l’année par la succession desquelles toutes choses prennent naissance, savoir : le printemps, l’été, l’automne, l’hiver.

Le onzième est celui des âges : l’enfance, l’adolescence, la virilité, la vieillesse.

Il y a donc onze quaternaires. Le premier est celui des nombres qui se forment par addition, le second est celui des nombres qui se forment par multiplication; le troisième est celui des grandeurs; le quatrième, celui des corps simples; le cinquième, celui des figures; le sixième, celui des choses engendrées; le septième, celui des sociétés; le huitième, celui des facultés du jugement; le neuvième, celui des parties de l’animal; le dixième, celui des saisons et le onzième, celui des âges. Ils sont proportionnels entre eux : car ce qu’est l’unité.
εν τῇ ἑβδόμῃ ἀνθρώπος, καὶ εἰ ἐν τῇ ἁγδόῃ νοῦς, καὶ τὰ λοιπὰ ἀνάλογον.

οἷον πρώτη μονάς δυάς τριάς τετράς, δευτέρα μονάς πλευράς τετράγωνον κύβος, τρίτη στυγμή γραμμή ἐπιφάνεια στερεός, 5 τετάρτη πύρ ἄηρ ὑδάων γῆ, πέμπτη πυραμίς ὀκτάεδρον εἰκοσ- ἄεδρον κύβος, ἑκάτη στέρμα μῆκος πλάτος βάδος, ἑβδόμη ἄνθρω- πος οἷος κόμη πόλεως, ἁγδόῃ νοῦς ἑπιστήμη ὁδὸς ἀείθυσις, ἑκάτη λογιστικῶν θυμικῶν ὑποθύμητικῶν σῶμα, ἑκάτη ἐκ δήρος μετάπωρον χειμών, ἑυκάτη παλιόν μειράκιον άνὴρ γέρων. ο ὰδε [καὶ] ἐκ τῶν τετρακτών τούτων συστάκες κόσμος ἐσται [τέ- λειος] ἠρμοσμένος κατὰ γεωμετρίαν καὶ ἀρμονίαν καὶ ἀριθμόν, δυνάμει περιεικηρίως πάσην ἀριθμόν φύσιν πάν τινας καὶ πάν σῶμα ἁπλῶν τε καὶ σύνθετον, τέλειος τε, ἐπιδή τὰ πάντα μὲν τούτοις μέρη, αὐτὸς δὲ εὐθειός. διὸ πρώτῳ τῷ εἰρημένῳ
10 ὁρκῷ οἱ Πυθαγόρειοι ἐλέγοντο........................ καὶ ἀριθμὸν δὲ τὰ πάντα ἐπέσωξε.

Περὶ δεκάδος

λή, καὶ τούτο εἰναι τὸ σοφότατον· πάντα μὲν γὰρ τῶν ἄριθμῶν εἰς δεκάδα ἤγαγον, ἐπειδὴ ὑπὲρ δεκάδας οὐδεὶς ἔστιν ἀριθμός, εἰν τῇ αὐξήσει πάλιν ἡμῶν ὑποστρεφόντων ἐπὶ μονάδας καὶ ὑδάδα καὶ τοὺς ἔζης· τὴν δὲ δεκάδα ἐπὶ τετράδα συν- ἱστούσαι· εἰν γὰρ καὶ β' καὶ γ' καὶ δ' ἐστί τ', ὡστε τοὺς ὑγιαστικάς ἄριθμοὺς ἐντὸς τῆς τετράδος Θεωρεῖται.

16· Voy. Plutarque, De la création de l’âme dans le Timée, XXXIII, 4, p. 1690 A ; Sextus Empiricus, Contre les mathématiciens, IV, 2 et VII, 94 et 109; Jamblique, Vie de Pythagore, 162.
dans le premier et le second quaternaire, le point l’est dans le troisième; le feu, dans le quatrième; la pyramide, dans le cinquième; la semence, dans le sixième; l’homme, dans le septième; la pensée, dans le huitième et ainsi des autres qui suivent la même proportion.

Ainsi le premier quaternaire est 1, 2, 3, 4. Le second est l’unité, le côté, le carré, le cube. Le troisième est le point, la ligne, la surface, le solide. Le quatrième est le feu, l’air, l’eau, la terre. Le cinquième est la pyramide, l’octaèdre, l’icosaèdre, le cube. Le sixième est la semence, la longueur, la largeur, la hauteur. Le septième est l’homme, la famille, le bourg, la cité. Le huitième est la pensée, la science, l’opinion, le sens. Le neuvième est la partie raisonnable de l’âme, l’irascible, la concupiscible et le corps. Le dixième est le printemps, l’été, l’automne, l’hiver. Le onzième est l’enfant, l’adolescent, l’homme fait, le vieillard. Et le monde parfait qui résulte de ces quaternaires est arrangé géométriquement, harmoniquement et arithmétiquement, comprenant en puissance toute nature du nombre, toute grandeur et tout corps, soit simple, soit composé. Il est parfait, parce que toutes choses en sont des parties, et que lui-même n’est partie d’aucun autre. C’est pourquoi les Pythagoriciens se servaient du serment dont nous avons rapporté la formule et par lequel toutes choses sont assimilées au nombre.

De la décade

XXXIX. Les Pythagoriciens n’ont pas été moins sages en ramenant tous les nombres à la décade, puisqu’au delà de dix nous ne comptons aucun nombre : dans l’accroissement nous revenons aux nombres 1, 2, 3, et ainsi de suite. La décade se trouve d’ailleurs dans le quaternaire, puisque la somme des quatre nombres 1, 2, 3, 4 est égale à 10, d’où il suit que les nombres les plus forts, peuvent être considérés comme ayant leur raison dans le quaternaire.
ΠΕΡΙ ΤΕΤΡΑΚΤΥΟΣ ΚΑΙ ΔΕΚΑΔΟΣ

Περί τῶν ἐν δεκάδι ἀρίθμουν δυνάμεων

μ. ἢ μὲν γὰρ μονάς ἀρχῆς πάντων καὶ κυριωτάτη πατσών....... καὶ ἐξ ἕς πάντα, αὐτὴ δὲ ἐξ ὀὐδενός, ἀδιαίρετος καὶ δυνάμει πάντα, ἀμετάδικτος, μηδεπότετο τῆς αὐτῆς ἔξισται—μένη φύσεως κατὰ τὸν πολλαπλασιασμὸν· καθ' ἣν τὸν νοητὸν καὶ ἀγέννητον καὶ ἡ τῶν ἱδεῶν φύσις καὶ ὁ θεὸς καὶ ὁ νοῦς καὶ τὸ καλὸν καὶ τὸ ἀγαθὸν καὶ ἐκάστη τῶν νοητῶν οὐσίαν, οἰον αὐτὸ καλὸν, αὐτὸ δίκαιον, αὐτὸ [τὸ] ἱσον· ἐκαστὸν γὰρ τοῦτων ὡς ἐν καὶ καθ' ἑαυτὸ νοείται.

μα. πρώτη δὲ αὐξή καὶ μεταβολὴ ἐκ μονάδος εἰς δυάδα κατὰ διπλασιασμὸν τῆς μονάδος, καθ' ἣν ὡλη καὶ πάν τὸ αἰσθητὸν καὶ ἡ γέννησι καὶ ἡ κίνησι καὶ ἡ αὐξησι καὶ ἡ σύνθεσι καὶ κοινωνία καὶ τὸ πρός τι.

μβ. ἢ δὲ διὰς συνηλθούσα τῇ μονάδι γίνεται τρίας, ὡς

πρώτη ἀρχὴ καὶ μέτα καὶ τελευτὴν ἐγεί. διὸ καὶ πρώτη λέγεται πάντα εἶναι· ἐπὶ γὰρ ἐπιτόνων αὐτῆς σὺ λέγεται πάντα εἶναι. ἀλλὰ ἐν καὶ ἀμφότερα, ἐπὶ δὲ τῶν τριῶν πάντα. καὶ τρεῖς σπονδάς ποιουμέθα δηλοῦντες ὃτι πάντα ἄγαθα αἰτούμεθα, καὶ τοὺς κατὰ πάντα ἄθλους τρισισθλίους καλοῦμεν καὶ τοὺς κατὰ πάντα μακάριους τρισισθλίους,

πρώτη δὲ καὶ ἢ τοῦ ἐπιπέδου φύσις ἐκ τούτου. ἢ γὰρ τριάς οἰον εἰκόν ἐπιπέδου, καὶ πρώτη αὐτοῦ ὑπόστασιν ἐν τριγώνῳ, καὶ διὰ τούτο τρία αὐτῶν γένη, ἰσόπλευρον ἰσοσκελὲς σκαληνὸν. τρεῖς δὲ καὶ γονίας ὑμοιόμεναι ἢ μὲν ὀρθή τῇ

Propriétés des nombres contenus dans la décade

XL. L'unité est le principe de toutes choses et ce qu'il y a de plus dominant : c'est d'elle que tout émane et elle n'émane de rien. Elle est indivisible et elle est tout en puissance. Elle est immuable et ne sort jamais de sa propre nature par la multiplication \((1 \times 1 = 1)\). C'est en elle que demeure tout ce qui est intelligible et ne peut être engendré : la nature des idées, Dieu lui-même, l'âme, le beau et le bon, et toute essence intelligible, telle que la beauté elle-même, la justice elle-même, l'égalité elle-même ; car nous concevons chacune de ces choses comme étant une et comme existant par elle-même.

XLI. Le premier accroissement, le premier changement de l'unité se fait par le doublement de l'unité qui devient 2, en quoi l'on voit la matière et tout ce qui est sensible, la génération et le mouvement, la multiplication et l'addition, l'union et le rapport d'une chose à une autre.

XLII. Le nombre 2 ajouté à l'unité produit 3 qui est le premier nombre ayant un commencement, un milieu et une fin. C'est pourquoi ce nombre est le premier auquel on puisse appliquer le mot multitude*, car des nombres moindres on ne dit pas multitude, mais un ou l'un et l'autre ; tandis que de trois, on dit multitude. Nous faisons trois libations pour montrer que nous demandons tout ce qui est bien. Nous appelons trois fois malheureux ceux qui sont au comble de l'infortunée, et trois fois heureux ceux qui sont au comble du bonheur.

Le nombre ternaire représente aussi la première nature du plan, car il en est comme l'image, la première forme du plan étant le triangle. C'est pour cela qu'il y a trois genres de triangle, l'équilatéral, l'isocèle et le scalène ; et qu'il y a

τοῦ ἐνὸς φύσει ὁρισμένη, καὶ ἔξ ἱστου καὶ ὁμοίου συνεστῶτα·
διὸ καὶ πᾶσαι αἱ ἀρχαὶ ἀλληλαίας ἐσθίν ἱσται, μέσαν ὑσταὶ ὁξεῖαις
καὶ ἀμβλείαις καὶ ὑπερέχοντος καὶ ὑπερεχρωμένου· καὶ δὲ λοιποῖοι ἄνεροι καὶ ἄφοιτοι· ἐκ γὰρ ὑπεροχῆς καὶ ἐλειψεως συνεστῶσιν. ἦ δὲ τρίς ἐκ τής μονάδος καὶ δυάδος ζ' ποιεῖ κατὰ σύνθεσιν, ὃς ἐστὶ πρῶτος τέλειος ἁριμὸς τοῖς ἑκάτοι μέρεσι ἱστος ὰν· ὅ δὲ τέλειος ὁ ὁδός συνεδεῖς τῷ πρῶτῳ τετράγωνῳ τῇ τετράδι ποιεῖ τὴν δεκάδα.

μ. ἦ δὲ τετράς στερεοῦ ἐστὶν εἰκών πρῶτὸς τε ἁριμὸς 10 [καὶ] τετράγωνός ἐστιν ἐν ἁρτίοις· καὶ αἱ συμφωνικα καὶ πάσαι καὶ αὐτῶν συμπληροῦνται, ὡς ἑδείγμη.

μδ. ἦ δὲ πεντάς μέσῃ ἐστὶ τῆς δεκάδος. ἐκ γὰρ καθ' ὀποιανοῦ σύνθεσιν ἐκ δύο ἁριμῶν τόν ι' συνθῆς, μέσος εὑρεθήσεται ὃ ε' κατὰ τήν ἁριμηνικήν ἀναλογίαν· ὅν θ' καὶ ι', 15 χαὶ ι' καὶ β', καὶ ζ' καὶ γ', καὶ ζ' καὶ β' αἰεὶ τε ι' ποιήσεις καὶ μέσως εὑρεθήσεται ὃ ε' κατὰ τήν ἁριμηνικήν ἀναλογίαν, ὡς δὴ λοιπὸ τῷ διάγραμμα, κατὰ πάσαν σύνθεσιν τῶν συμπληροῦντος τά ι' δυνεῖν ἁριμῶν μέσου εὑρεθήσεται ὃ ε' κατὰ τήν ἁριμηνικήν ἀναλογίαν τῷ ι' ἁριμῷ τῶν ἅρων ὑπερ- 20 ἐγχων τε καὶ ὑπερεχρῶμενος.
aussi trois espèces d’angles, le droit dont la propriété est
d’être unique, bien défini et composé de l’égal et du semblable,
ce qui fait que tous les angles droits sont égaux entre eux,
tenant le milieu entre l’angle aigu et l’angle obtus, plus
grands que l’un et plus petits que l’autre. Tous les autres 3
angles sont en nombre infini et indéterminé, car ils sont ou
plus grands ou plus petits. Le nombre 3 ajouté à l’unité et à 2
donne 6 qui est le premier nombre parfait c’est-à-dire égal à
la somme de ses parties aliquotes. Ce nombre parfait, ajouté
au premier nombre carré 4, donne la décade.

XLIII. Le nombre quatre est l’image du solide, et c’est le
premier nombre carré parmi les nombres pairs; il complète
toutes les consonances, comme nous l’avons montré 4.

XLIV. Le nombre 5 est la moyenne de (deux nombres
dont la somme est) la décade; car si, par l’addition de deux 15
nombres quelconques, on obtient 10, la moyenne de ces
nombres sera 5 selon la proportion arithmétique. Ainsi, par
exemple, si vous additionnez 9 et 1, 8 et 2, 7 et 3, 6 et 4, la
somme sera toujours 10 et la moyenne en proportion arith-
mérite sera 5, comme le montre le diagramme dans lequel 20
toute addition de deux nombres (opposés) donne 10, la
moyenne en proportion arithmétique étant 5 qui surpassé
l’un des extrêmes et est surpassé par l’autre, de la même
différence.

Ce nombre est aussi le premier qui embrasse les deux 25

43 Le nombre quatre est l’image du solide parce que le plus élémentaire
des solides est la pyramide triangulaire qui a 4 faces et 4 sommets. Et il
complète les consonances qui sont 4/3, 3/2, 2, 3 et 4, c’est-à-dire la quarte, la
quinte, l’octave, la quinte de l’octave et la double octave. Cf. supra II, vi.
με. ο φε πεθείσαν, ἐπειδὴ τοὺς ἑκατεῖν ἔπεισίν ἔττειν ἐστος, ὡς δεδεικτει διὸ καὶ γάμου αὐτῶν ἐκάλουν, ἔπει γάμου ἐγρον ὡμοία ποιεῖ τὰ ἐκγονα τοῖς γονεύσει. καὶ κατὰ τούτον δὲ πρῶτον συνεστε ἢ ἀρμονικὴ μεστης λιπθέντος [μὲν] τοῦ ε' ἐπιτρίτου <μὲν> λόγου τῶν γ', υπελασίου δὲ τῶν ιβ' - ε' γ', ιβ' - τῷ γάρ αὐτῷ μέρει ἡ γ', τῶν ἄχρων ὑπερέχει καὶ ὑπερέχεται, ε' - ε' ιβ', τούτου τῷ τρίτῳ καὶ ἀριθμητικὴ δὲ μεστῆς λιπθέντος τοῦ ε' ἡμισίου μὲν λόγου τῶν β' υπελασίου δὲ τῶν ιβ' - τῷ γάρ αὐτῶι ἀριθμῷ τὰ β' ὑπερέχει τῶν ἄχρων
10 καὶ ὑπερέχεται. ποιεῖ δὲ τὴν γεωμετρικὴν ἀναλογίαν μέσος λιπθεῖς. ἄν γάρ ἡμιτυ αὐτοῦ λάθομεν τὸν γ' καὶ υπελάσιον τὸν ιβ', ἐσται ἡμῖν ἡ γεωμετρικὴ ἀναλογία γ' ε' ιβ' τῷ γάρ αὐτῷ λόγῳ τὰ ε' τῶν ἄχρων ὑπερέχει τε καὶ ὑπερέχεται, γ' ε' ιβ', τούτου τῷ υπελασίῳ.

13 με. καὶ ἡ ἐθνομαξὶ δὲ ἀς δεκάδος οὔσα θιαμασελν ἔχει ὕμναμι. μόνος γάρ <ὁ ζ>' τῶν ἑντός τῆς δεκάδος οὔτε γεννη

15 ὕπορον οὔτε γεννήτατο ὑπ' ἐπέρου διὸ καὶ. ἰδης ὑπὸ τῶν

18 πυθαγορικῶν ἐκστείτα, οὔτε μετρος τινος οὔσα οὔτε μήτηρ.

20 οὔτε γάρ γίνεται ἐκ συνδυασμοῦ οὔτε συνδυασεῖται τοι, τῶν

23 γάρ ἀριθμῶν τῶν ἐν τῇ δεκάδι οἱ μὲν γεννησε τε καὶ γεννήθ

25 ται, ὥς ὁ ε' γεννη μὲν μετὰ δυάδος τοῦ γ', γεννήτατο δὲ ὑπὸ

28 δυάδος οί δὲ γεννήτατι μὲν, οὐ γεγονότα δὲ, ὡς ὁ ε' γεν

29 νήτατο μὲν ὑπὸ β' καὶ γ', οὐ γεννη ὑπὸ οὐδενά τῶν ἐν τῇ δεκά

30 δί οὶ δὲ γεγονότα μὲν, οὐ γεγονότα δὲ, ὡς ὁ γ' καὶ ὁ ε' γεν

32 νήτατο μὲν εξ οὐδενος [ἀριθμοῦ] συνδυασμοῦ, γεγονιστι δὲ ὁ μὲν

espèces de nombres, le pair et l’impair, savoir 2 et 3, car l’unité n’est pas un nombre.

XLV. Le nombre six est un nombre parfait parce qu’il est égal à la somme de ses parties aliquotes, comme on l’a montré. C’est pour cela qu’on l’a appelé mariage, parce que l’œuvre du mariage produit des enfants semblables à leurs parents *. La médité harmonique se constitue d’après ce premier nombre, car, si l’on en prend les quatre tiers 8 et le double 12, on aura la proportion harmonique des nombres 6, 8, 12; 8 surpassa l’un des extrêmes 6 et est surpassé par l’autre extrême 12, de la même fraction des extrêmes, qui est un tiers des extrêmes. Il donne aussi la médité arithmétique en prenant 9 qui en est les 3/2 et 12 qui en est le double, car 9 surpasse un des extrêmes et est surpassé par l’autre, de la même quantité 3. Enfin, il produit la proportion géométrique quand, étant placé au milieu, on met d’un côté la moitié 3 et de l’autre le double 12, ce qui donne la proportion géométrique des nombres 3, 6, 12 : car alors 6 contient un des extrêmes 3 et est contenu dans l’autre, dans le même rapport 2.

XLVI. Un autre nombre de la décade, le nombre sept, est doué d’une propriété remarquable : c’est le seul qui n’engendre aucun nombre compris dans la décade et qui n’est engendré par aucun d’eux, ce qui a porté les Pythagoriciens à lui donner le nom de Minerve, parce que cette déesse n’a point été engendrée par une mère et n’a point été mère; elle ne provient d’aucune union et n’a été unie à personne. Parmi les nombres compris dans la décade, les uns engendrent et sont engendrés, par exemple, 4 multiplié par 2 engendre 8, et il est engendré par 2. D’autres sont engendrés mais n’engendrent pas, comme 6, qui est le produit de 2 par 3, mais qui n’engendre aucun des nombres de la décade; d’autres engendrent mais ne sont point engendrés, comme 3 et

7. Voy. la note XIV.
γ' τὸν θ' καὶ τὸν σ' μετὰ δυάδας, ο' δὲ ε' γεννᾷ μετὰ δυάδας αὐτῶν τὸν ι'.

μόνος δὲ ὁ ζ' οὕτω συνδυασθείς τινι γεννᾷ των τῶν ἐν τῇ δεκάδι οὕτω ἐκ συνδυασμοῦ γεγυναίται. ἐπόμενος δὲ τῇ φύσει καὶ ὁ Πλάτων ἐξ ἐπτὰ ἀριθμῶν συνίστησι τὴν ψυχήν ἐν τῷ Τιμαῖῳ. ἡμέρα μὲν γὰρ καὶ νῦ, ὡς φησὶν Ποσειδώνοις, ἀρτίου καὶ περιττοῦ φύσιν έγροσέ· μήν δὲ καὶ ἐθεομάδας τεσσαρας συμπληροῦται, τῇ μὲν πρώτῃ ἐθεομάδι διγοτόμῳ τῇς σελήνης ὁρμαμένης, τῇ δὲ δευτέρᾳ πλησιελήνου, τῇ δὲ τρίτῃ διγοτόμου, τάλιν δὲ τῇ τετάρτῃ σύνοδον ποιομένῃς πρὸς ἦλιον καὶ ἁρχήν ἔτερου μηνος. αὕτη τε αὐξάσει καὶ ἐθεομάδα.
5, qui ne sont engendrés par aucune combinaison de nombres, mais qui engendrent ; savoir : 3 produit 9, et, multiplié par 2, produit 6, et 5 multiplié par 2 produit 10.

Sept est le seul nombre qui, multiplié par un autre, n’engage aucun de ceux qui sont dans la décade, et qui n’est produit par la multiplication d’aucun nombre. Platon, dans le Timée", imitant la nature, constitue l’âme de 7 nombres... Le jour et la nuit, dit Posidonius, ont la nature du pair et de l’impair... Le mois se compose de quatre semaines (quatre fois sept jours); dans la première semaine, la 10 lune paraît divisée en deux; dans la seconde, elle devient pleine; dans la troisième, elle est divisée de nouveau, et, dans la quatrième, elle revient à la rencontre du soleil pour commencer un nouveau mois et croître la semaine suivante.

C’est en sept semaines que le fœtus paraît arriver à sa perfection, comme Empédocle le dit, à mots couverts, dans ses Expiations. Quelques-uns pensent que le fœtus mâle met cinq semaines à se perfectionner. C’est aussi dans le septième mois que les fœtus naissent viables. C’est dans le septième 20 mois à partir de leur naissance que les enfants font leurs dents, et c’est à l’âge de sept ans qu’ils perdent leurs premières dents; c’est dans la seconde période de sept ans que la semence et la puberté font leur apparition, et le plus souvent c’est dans la troisième période que la barbe commence à croître. C’est alors aussi que l’homme acquiert sa taille, mais ce n’est que dans la quatrième période qu’il acquiert son embonpoint.

Il faut sept jours pour le diagnostic des maladies, et dans toutes les fièvres périodiques, même dans la fièvre tierce et dans la fièvre quarte, le septième jour est le plus grave. D’une conversion tropicale du soleil à l’autre il y a sept mois, et les planètes sont au nombre de sept. Pairement, d’un équi-

7 Le Timée p. 35 B.
μ. δὲ ἄγδος, ἢτις ἐστὶ πρῶτος χύδος, συντιθεται ἐκ τε μονᾶδος <καὶ ἐπτάδος>. ένοι δὲ φασιν ὀκτὼ τοὺς πάντων κρατοῦντας εἶναι θεούς, ὡς καὶ ἐν τοῖς 'Ὀργικοῖς ὀρκοῖς ἐστιν εὗρεν; ναὶ μὴν ἄθανάτων γεννήτορας αἱ ἔντων
τῷ καὶ ύδωρ γαϊάν τε καὶ οὐρανὸν ἢδὲ σελήνην
ηὔλον τε Φανή τε μέγαν καὶ νῦκτα μέλαιναν.
ἐν δὲ Αιγυπτιακῇ στῆλῃ φησίν Εὐανδρός εὑρίσκεσθαι γραφὴν
βασιλέως Κρόνου καὶ βασιλίσσης 'Ῥέας· "προσδύτατος βασι-
λεως πάντων Ἁμīς θεοῖς ἄθανάτως πνεύματι καὶ οὐρανῷ καὶ
γῆ καὶ νυκτὶ καὶ ἡμέρᾳ καὶ πατρὶ τῶν ὄντων καὶ ἐσομένων
"Ερωτει μνημείᾳ τῆς αὐτοῦ ἁρτετὸς <καὶ> βίου συγτάξεως."
Τιμόθεος φησι καὶ παροιμίαν εἶναι τὴν "πάντα ὀκτὼ" διὰ
το τοῦ κόσμου τὰς πάσας ὀκτὼ σφαιράς περὶ γῆν κυκλεύσας,
καθα φησὶ καὶ 'Ερατοσθενῆς· ὀκτώ δὴ τάδε πάντα σὺν ἀρμονίαν ἄρχει,
καὶ δὲ εν σφαιρῆσι κυκλίσθηκε κύκλῳ ἱόντα
............................ ἐνάτην περὶ γαϊάν.
μή. δὲ τῶν ἐννέα πρῶτος ἐστὶ τετράγωνος ἐν περιττοῖς,
πρῶτοι γὰρ εἶσιν ἀριθμοὶ δύο καὶ τριάς, ἢ μὲν ἀρτίων, ἢ
δὲ περιττῶν· διὸ καὶ πρῶτους τεταράγωνους ποιοῦσιν, ὡς μὲν δ',
δ' δὲ ή'.

noxe à l'autre, on compte sept mois *. La tête à sept ouvertures. Il y a sept viscères, le cœur, le poumon, le foie, la rate, les deux reins et l'intestin. Hérophile dit que l'intestin de l'homme a vingt-huit coudées de long, c'est-à-dire quatre fois sept coudées. Enfin, dans la plupart des détroits, le flux et le reflux se font sentir sept fois par jour *.

XLVII. Le nombre huit qui est le premier cube se compose de l'unité et du septenaire. Quelques-uns disent qu'il y a huit dieux maîtres de l'univers et c'est aussi ce qu'on voit dans les serments d'Orphée :

Par les créateurs des choses à jamais immortelles :
le feu et l'eau, la terre et le ciel, la lune
et le soleil, le grand Phanès et la nuit noire.

Et Évandre rapporte qu'en Égypte on trouve sur une colonne une inscription du roi Saturne et de la reine Rhéa :

« Le plus ancien de tous, le roi Osiris, aux dieux immortels, à l'esprit, au ciel et à la terre, à la nuit et au jour, au père de tout ce qui est et de tout ce qui sera et à l'Amour, souvenir de la magnificence de l'ordre de sa vie. » Timothée rapporte aussi le proverbe : huit est tout, parce que les sphères du monde qui tournent autour de la terre sont au nombre de huit. Et, comme dit Ératosthène :

« Ces huit sphères s'harmonisent ensemble en faisant leurs révolutions autour de la terre. »

XLVIII. Le nombre neuf est le premier carré parmi les impairs : les deux premiers nombres sont 2 et 3, l'un pair, l'autre impair, qui donnent les deux premiers carrés 4 et 9.

1 D'une conversion tropicale du soleil à l'autre, et d'un équinoxe à l'autre, il n'y a que six mois. Il faut donc comprendre ainsi la pensée de Théon : partit d'un tropique ou d'un équinoxe, la soleil atteint l'autre tropique ou l'autre équinoxe le septième mois. — 6 Voy. la note XV.
μο. ἡ μέντοι δεκάς πάντα περαίνει τὸν ἀρχήμον, ἐμπεριέγχοσα πάσαν φύσιν ἐντὸς αὐτῆς, ἀρτίου τε καὶ περίττου κινουμένου τε καὶ ἀκινήτου ἀγάθου τε καὶ κακοῦ· περὶ ής καὶ Ἀρχήμος ἐν τῷ περὶ τῆς δεκάδος καὶ Φιλόλασος ἐν τῷ περὶ φύσιος πολλῇ διεξιάσθη.

<Περὶ μεσοτητῶν>

ν. ἐπανιτεύον δὲ ἐπὶ τὸν τῶν ἀναλογίων καὶ μεσοτητῶν λόγον. μεσοτήτες εἰσὶ πλείονες, γεωμετρικὴ ἀρίθμητικὴ ἀρμονικὴ ὑπενναίτια πέμπτη ἑκτη. λέγονται δὲ καὶ ἄλλαι πάλιν ἐξ ταύτας ὑπενναίτια. τούτων δὲ φησιν ὁ Ἀδραστός μίαν τὴν γεωμετρικὴν χωρίαν λέγεσθαι καὶ ἀναλογίαν καὶ πρώτην· ταύτης μὲν γὰρ αἱ ἄλλαι προσδέονται, αὕτη δὲ ἐκείνων οὐχὶ, ὡς ὑποδείκνυσιν ἐν τοῖς ἐφεξῆς. κοινότερον δὲ φησι καὶ τὰς ἄλλας μεσότητας ὑπὶ ἑνίων καλεῖσθαι ἀναλογίας.

τὸν δὲ χωρίας λειομένων ἀναλογίων, τούτεστι τῶν γεωμετρικῶν, αἱ μὲν εἰσίν ἐν ἑκατὸς ὅροις τε καὶ λόγοις, ὡς ἢβ᾽ ἢ γ᾽, εἰσὶ γὰρ ἐν λόγοις διπλασίοις, καὶ ὅσα τοιαύτα αὐτίνες εἰσίν ἐν ἀριθμοῖς, αἱ δὲ ἐν ἀριθμοῖς τε καὶ ἄλογοι ἦσσος μεγαλύεσιν ἢ βάρεστι ἢ χρόνοις ἢ τιτικ ἄλλοις διπλασίοις ἢ τριπλασίοις ἢ τοις τοιούτοις πολλαπλασίοις ἢ ἐπιμορφοῖς. γεωμετρικὴ μὲν γάρ, ὡς ἔραμεν, μεσότης ἢ τῷ αὐτῷ λόγῳ τῶν ἄχρων ὑπερέχουσα καὶ ὑπερεχομένη· ἀριθμητικὴ δὲ ἢ τῷ αὐτῷ ἀριθμῷ τῶν ἄχρων ὑπερέχουσα καὶ ὑπερεχομένη, ἀρμονικὴ δὲ ἢ τῷ αὐτῷ μέρει τῶν ἄχρων ὑπερέχουσα καὶ ὑπερ-
Des médïétés

L. Revenons maintenant aux proportions et aux médïétés. Il y a plusieurs médïétés : la géométrique, l'arithmétique, l'harmonique, la souscontraire, la cinquième et la sixième, auxquelles il faut ajouter six autres qui leur sont souscontraire. Or, de toutes ces médïétés, Adraste dit que la géométrique est la seule qui soit une vraie proportion et que c'est la première, car toutes les autres en ont besoin, tandis qu'elle-même n'a aucun besoin des autres, comme il le montre ensuite. Il dit que les autres médïétés reçoivent de quelques-uns le nom plus général de proportion.

Parmi les proportions proprement dites, c'est-à-dire géométriques, les unes ont les termes et les rapports rationnels, comme la proportion 12, 6, 3, dont les termes sont en raison double, ou toute autre proportion numérique ; les autres ont des termes inexprimables et irrationnels [grandeur, poids, temps ou autres], en raison double, triple, et en général multiple ou sesquipartiale. Dans la médïété géométrique, le moyen terme, comme nous l'avons dit, est contenu dans un extrême et contient l'autre dans le même rapport \((a : b = b : c)\). Dans la médïété arithmétique, le moyen terme est surpassé par un extrême et surpassé l'autre, du même nombre \((a - b = b - c)\). Enfin, dans la médïété harmonique, le moyen terme est surpassé par un extrême et surpassé l'autre de la même partie des extrêmes.

31 Si \(a - b = ma\), on a aussi \(b - c = mc\), d'où \(a - b : b - c = a : c\).
να. δείκνυσι δὲ ὅτι ὁ τῆς ἴσότητος λόγος ἄρχηγός καὶ πρῶτος ἐστὶ καὶ στοιχεῖον πάντων τῶν εἰρημένων λόγων καὶ τῶν κατ' αὐτούς ἀναλογίων ἐκ πρῶτου γὰρ τούτου πάντα συνίσταται καὶ εἰς τούτον ἀναλύεται τὰ τὰ τῶν λόγων καὶ τὰ τῶν ἀναλογίων.

ὁ δὲ Ἐρατοσθένης φησίν ὅτι πᾶς μὲν λόγος ἡ κατὰ διά-
στημα ἡ κατὰ τοὺς ὅρους αὐξάται· τῇ δὲ ἴσότητι συμβέβηκε diasthmatos μὴ μετέγειν· εὐδηλον δὲ ὅτι κατὰ τοὺς ὅρους μόνος αὐξηθήσεται. λάθοντες δὴ τρία μεγάθη καὶ τὴν ἐν τοὔ-
toις ἀναλογίαν κινήσομεν τοὺς ὅρους· καὶ δειξόμεν ὅτι πάντα τὰ ἐν τοῖς μαθηματικῶς ἐξ ἀναλογίας τοσῶν τίνων σύγχειται καὶ ἔστιν αὐτῶν ἀρχὴ καὶ στοιχεῖον ἡ τῆς ἀναλογίας φύσις.

τάς δὲ ἀποδείξεις ὁ μὲν Ἐρατοσθένης φησὶ παραλεύσειν. ὁ δὲ Ἀδραστος γνωριμώτερον δείκνυσιν, ὅτι τριῶν ἐκτεθέντων ὅρων ἐν τῇ δής ἰσότητι ἀναλογία, ἐὰν τρεῖς ἔτεροι λιθώσων ἐκ τούτων παλαισμένοι ὁ μὲν τῷ πρῶτῳ ἦσος, ὁ δὲ σύνθετος ἐκ πρῶτου καὶ δευτέρου, ὁ δὲ ἐξ ἐνός πρῶτου καὶ δύο δευτέρων καὶ τρί-
tou, οἱ λιθώσεις οὕτως πάλιν ἔστοτε ἀναλόγων.

καὶ ἐκ τῆς ἐν ἑσος ὅρους ἀναλογίας γεννᾶται ἡ ἐν διπλα-
σίος ἀναλογία, ἐκ δὲ τῆς ἐν διπλασίας ἡ ἐν τριπλασίαις, ἐκ δὲ τριώτης ἡ ἐν τετραπλασίαις, καὶ ἐξ ὑπὸ οὕτως αἱ ἐὰν τοῖς ἀλλοις πολλαπλασίαις· οἶον ἐκκείσθω ἐν τρισίν ὅρους ἵπτως ἐλαχιστος ἀναλογία ἡ τῆς ἴσοτητος, τονέστων ἐν μονάθι τρι-
σίν. ἀλλὰ καὶ εἰλικρίνεσθαι ἄλλου τρεῖς ὅρου τῶν εἰρημένων τρι-
tou, ὁ μὲν ἐκ πρῶτου, ὁ δὲ ἐκ πρῶτου καὶ δευτέρου, ὁ δὲ ἐκ πρῶτου καὶ δύο δευτέρων Ῥ καὶ τρίτου· γεννῆσθαι α' β' ὁ δὲ ἐστιν ἐν λόγω διπλασίᾳ.

LI. Adraste montre que la raison d'égalité est la première en ordre, et que c'est l'élément de toutes les raisons dont nous avons parlé précédemment et de toutes les proportions qu'elles donnent. Car c'est d'elle que naissent toutes les autres et c'est en elle qu'elles se résolvent toutes.

Ératosthène dit aussi que toute raison s'accroît ou par un intervalle ou par les termes : or l'égalité a cela de propre qu'elle n'est susceptible d'aucun intervalle, et il est bien évident qu'elle ne peut s'accroître que par les termes. Prenant donc trois grandeurs avec la proportion qui s'y trouve, nous en combinerons les termes et nous montrerons que toutes les mathématiques consistent dans la proportion de certaines quantités et que l'égalité en est le principe et l'élément.

Ératosthène dit qu'il omettra les démonstrations mais Adraste montre clairement que « trois termes quelconques étant donnés en proportion continue, si on en prend trois autres formés de ceux-là, l'un égal au premier, un autre composé du premier et du second, un autre enfin composé du premier, de deux fois le second et du troisième, ces nouveaux termes seront encore en proportion continue ». De la proportion dont les termes sont égaux, il naît ainsi une proportion en raison double, de la proportion en raison double naît la proportion en raison triple, celle-ci produit la proportion en raison quadruple et ainsi de suite, selon les autres multiples. Soit, par exemple, en trois termes égaux les plus petits possibles, c'est-à-dire en trois unités, la proportion d'égalité (1, 1, 1) ; si l'on prend trois autres termes de la manière qui a été indiquée, l'un formé du premier seul, l'autre composé du premier et du second, le dernier composé du

20 Soient en effet, a, b, c, les trois termes donnés en proportion continue : on a \(b^2 = ac \). Les trois termes obtenus d'après la règle d'Adraste, sont a, \(a + b \) et \(a + 2b + c \); le carré du moyen terme est \(a^2 + 2ab + b^2 \) et le produit des extrêmes est \(a^2 + 2ab + ac \). Mais \(b^2 = ac \) par hypothèse, donc le carré du moyen terme est égal au produit des extrêmes et les trois nouveaux termes sont en proportion continue.
πάλιν ἐκ τούτων συνεστάτωσαν ἔτεροι κατὰ τὸν αὐτὸν τρό-
πον, ὁ μὲν ἐκ πρῶτου, ὁ δὲ ἐκ πρῶτου καὶ δευτέρου, ὁ δὲ
ἐκ πρῶτου καὶ δύο δευτέρων καὶ τρίτου ἔσται α᾽ γ᾽ θ᾽, ἡ
ἔστιν ἐν λόγῳ τριπλασίῳ, ἐξ δὲ τούτων ὁμολογοῦσιν συστησόνται
α ᾗ δ᾽ ις ἐν λόγῳ τετραπλασίῳ, καὶ ἐκ τούτων α᾽ ε᾽ κε᾽ ἐν
λόγῳ πενταπλασίῳ, καὶ ἐξής οὕτως ἐπὶ ἀπειρον ἐν τοῖς ἐχο-
μένοις πολλαπλασίοις.

\[
\begin{array}{ccc}
a & a & a \\
α & β & δ \\
α & γ & θ \\
α & δ & ις \\
α & ε & κε \\
α & ζ & λς \\
α & η & μθ \\
α & θ & πα \\
α & ρ \\
\end{array}
\]

ἐκ δὲ τῶν πολλαπλασίων ἀνάπαυλιν τεθέντων [α᾽ α᾽ α᾽] καὶ
ὁμολογοῦσιν πλαττομένοις οἱ ἐπιμόριοι λόγοι ἐκ τούτως
συστησόνται ἀναλογία, ἐξ μὲν τῶν διπλασίων ἡμιάλοιοι, ἐκ δὲ
tῶν τριπλασίων οἱ ἐπίτριτοι, ἐκ δὲ τῶν τετραπλασίων ἐπιτε-
tατοί, καὶ ἄει ἐξής οὕτως. οίνων ἐστω ἀναλογία κατὰ τόν δι-
πλάσιον λόγον ἐν τρισίν ὀροῖς, τοῦ μείζονος κειμένου πρῶτου,
καὶ πεπλάθωσαν ἔτεροι τρεῖς ἐκ τούτων τόν εἰρημένον τρό-
πον· δ᾽ β᾽ α᾽· οἱ δὲ ἐξ αὐτῶν γενήσονται δ᾽ ε᾽ θ᾽· γίνεται
ἀνάλογον ἐν ἡμιάλοιοι.

πάλιν ἐστώσαν τρεῖς ὄροι ἀνάλογον ἐν τριπλασίῳς θ᾽ γ᾽ α᾽·
sυστησόνται τὸν αὐτὸν τρόπον ἐκ τούτων ὄροι τρεῖς ἀνάλογον

premier, de deux fois le second et du troisième, on aura les termes 1, 2, 4, qui sont en raison double.

Avec ceux-ci, formons-en de nouveaux par la même méthode, le premier sera égal au premier, le second sera composé du premier et du second, le troisième le sera du premier, de deux fois le second et du troisième, et les termes seront 1, 3, 9, en raison triple. Par la même méthode, on formera avec ces nombres les termes 1, 4, 16, qui sont en raison quadruple, et avec ceux-ci, les termes 1, 5, 25, en raison quintuple, et ainsi à l'infini, en suivant l'ordre des multiples.

\[
\begin{array}{ccc}
1 & 1 & 1 \\
1 & 2 & 4 \\
1 & 3 & 9 \\
1 & 4 & 16 \\
1 & 5 & 25 \\
1 & 6 & 36 \\
1 & 7 & 49 \\
1 & 8 & 64 \\
1 & 9 & 81 \\
1 & 10 & 100 \\
\end{array}
\]

Si maintenant on dispose inversement les proportions multiples et qu'on additionne les termes de la même manière, on obtiendra des proportions en raison sesquipartie : les doubles donneront, en effet le rapport hémiole ou sesquialtère \((1 + 1/2)\), les triples donneront le rapport épitrète ou sesquitierce \((1 + 1/3)\), les quadruples le rapport sesquiquarte, \((1 + 1/4)\), et, ainsi de suite. Soit donnée, par exemple, la proportion en raison double, à trois termes, et soit le plus grand terme placé le premier 4, 2, 1 ; avec ces termes formons-en de nouveaux selon la méthode indiquée, nous en déduirons 4, 6, 9, qui est une proportion continue dont le rapport est sesquialtère.

Soient de même les trois termes en proportion triple 9, 3, 1 ; nous en déduirons de la même manière les trois termes proportionnels en raison sesquitierce 9, 12, 16. Avec les quadruples, nous obtiendrons les termes en raison sesquiquarte
ἐν ἑπτάδες θ' ἵβ' ἢ', ἐκ δὲ τῶν τετραπλασίων συστήσονται ἐν ἑπταετάρτοις ἢ' κ' κε', καὶ οὕτως ἄκε ἐκ τῶν ἐχομένων οἱ ἔξης ὁμόνυμοι.

τά τῶν ἑπιμορίων οἱ τ' ἑπιμερεῖς καὶ οἱ πολλαπλασιεψαμένοι μόριοι, τάλιν δ' ἐκ τῶν ἑπιμερῶν ἐτεροί τε ἑπιμερεῖς καὶ πολλαπλασιεψαμένοις· ὅν τά μὲν πλείστα παραλειπότον οὐκ ἀναγκαία ὄντα, μικρὰ δὲ θεωρητέον. ἐκ μὲν γὰρ τῆς ἔν ἡμιολίοτος ἀναλογίας τὸν εἰρημένον τρόπον ἀπὸ μὲν τοῦ μείζονος ἀρχομένων ὑπο συνίσταται ἀναλογία ἐν ἑπιμερείς λόγους δια-

10 ἑπιτρίτοις· οἷον θ' ζ' δ' ἢ', ἐκ δὲ τοῦτων κατὰ τὴν εἰρημένην μέθοδον συνίσταται θ' ἢ' κε'. ἀπὸ δὲ τοῦ ἐλάττων ὑπο ἀρχο-

μένων ἔσται πολλαπλασιεψαμένος ἀναλογία, τούτης ἡ διπλα-

σημικόλος, οἷον ἑκκείσθω δ' ζ' θ'· ἐκ τοῦτων κατὰ τὴν αὐτήν μέθοδον δ' ἢ' κε'.

15 ἐκ δὲ τῆς ἐν ἑπιτρίτοις ἀπὸ μὲν τοῦ μείζονος ἀρχομένων ὑπο ἔσται ἑπιμερῆς ἀναλογία ἢ τριπτετάρτος, οἷον ἐκ τῆς τῶν ἵβ', θ' ἐσται τε' κα' μῆ'. ἀπὸ δὲ τοῦ ἐλάττων ἀρχο-

μένων ὑπο ἔσται πολλαπλασιεψαμένος ἀναλογία <ἡ> διπλα-

σημικόλος· ἐκ τοῦ <ἡ> ἡ ἑπταετάρτος οἷον <ἡ> ἡ ἑπταετάρτος· ἀπὸ δὲ τοῦ ἐλάττων ἀρχομένων ἔσται πολλαπλα-

σημικόλος· ἢ διπλασιεψαμένος· <οἷον> ἀπὸ τῶν ἢ' κ' κε'
16, 20, 25, et ainsi de suite; nous aurons toujours le rapport sesquipartiel \((1 + 1/n)\) correspondant au multiple \((n)\).

\[
\begin{array}{cccc}
4 & 2 & 1 & 4 & 6 & 9 \\
9 & 3 & 1 & 9 & 12 & 16 \\
16 & 4 & 1 & 16 & 20 & 25 \\
25 & 5 & 1 & 25 & 30 & 36 \\
36 & 6 & 1 & 36 & 42 & 49 \\
49 & 7 & 1 & 49 & 56 & 64 \\
64 & 8 & 1 & 64 & 72 & 81 \\
81 & 9 & 1 & 81 & 90 & 100 \\
\end{array}
\]

De même, les rapports sesquipartiel \((1 + 1/n)\) nous donnent les rapports épimères \((1 + \frac{m}{m+n})\) et les rapports multisuperpartiel \((a + 1/n)\); et de nouveau les rapports épimères \((1 + \frac{m}{m+n})\) nous donnent d'autres rapports épimères et des rapports polyépimères \((a + \frac{m}{m+n})\). Nous devons omettre la plupart de ces rapports comme peu nécessaires; il nous faut cependant en considérer quelques-uns. Avec la proportion de raison sesquialtère \((1 + 1/2)\), en commençant par le plus grand terme, on obtient par la méthode indiquée une proportion dont la raison épimère est \(1 + 2/3\); ainsi la proportion 9, 6, 4 donne par la méthode d'Adraste 9, 15, 25; et, en commençant par le plus petit terme on obtient la proportion dont la raison multisuperpartielle est 2 + 1/2: on donne 4, 6, 9, on en conclut par la même méthode 4, 10, 25.

Et de la proportion dont le rapport est sesquiquinze \((1 + 1/3)\), en commençant par le plus grand terme, on tirera la proportion de raison épimère \(1 + 3/4\). On a, en effet, la proportion 16, 12, 9, qui donne 16, 28, 49, et en commençant par le plus petit terme, on aura la proportion de raison multisuperpartielle 2 + 1/3 dans ces termes 9, 21, 49. Avec la proportion de raison sesquiquarte \((1 + 1/4)\), en commençant

2 Soit en général la proportion continue \(n^3, n, 1\), dont la raison est \(n\). La nouvelle proportion continue obtenue par la règle d'Adraste sera formée des termes \(n^3, n^2 + n, n^2 + 2n + 1\); la raison est \(1 + 1/n\).
εσται ἢ ἐν τοῖς ἵς' λε' πα'. καὶ ἢ τάξεις οὕτω πρόειτιν ἐπὶ ἄπειρον. καὶ ἀπὸ τοῦτον δὲ ἀλλοι πλάσσονται κατὰ τὸν αὐτὸν λόγον, περὶ δὲ ὦν οὐκ ἀναγκαίον μηκύνειν τὸν λόγον.

γ' οὖσα δ' αἱ τοιαύται ἀναλογίαι καὶ οἱ ἐν αὐταῖς λό-

γοι πάντες, καθάπερ συνεστάσιν ἐκ πρῶτου τοῦ τῆς ἱσότητος

λόγου, οὕτως καὶ ἀναλύονται εἰς ἐστικον τοῦτον. ἐὰν γὰρ ἐξ ὀποιοσδέν ἀναλογίας ἐν τρισὶν ὑπὲρ ἀντίσως οὕτως ἀφελόντες ἀπὸ μὲν τοῦ μέσου τὸν ἐλάχιστον, ἀπὸ δὲ τοῦ μεγίστου τὸν
tε ἐλάχιστον καὶ δύο τοιούτων ὡςοι ἐλεύθη τοῦ μέσου

ἀφαιρεθέντος ἀπ' αὐτοῦ τοῦ ἐλαχίστου τοὺς γενομένους τάξωμεν

ἐφεξῆς, πρῶτον μὲν αὐτὸν τὸν ἑλάττωνα, ἐπειτα τὸν ἀπὸ τοῦ

μέσου λειτήλαστα καὶ τελευταίον τὸν ἀπολειφθέντα τοῦ ἑσγάτου,

η διαλυθεῖσα οὕτω ἀναλογία ἀναλυθήσεται εἰς τὴν πρὸ αὐτῆς

ἐξ ἂς συνέστη. τοῦτον δ' ἂει γινομένου ἐλεύθεται ἡ ἀνάλυσις

ἔστ᾽ ἐσχάτην τὴν τῆς ἱσότητος ἀναλογίαν, ἐξ ἂς πρώτης ἀποκι

συνέστησαν· αὖθι δὲ ὦκετε εἰς ἄλλην, ἄλλα καὶ μόνον εἰς τὸν
tῆς ἱσότητος λόγον.

Ἐρετοσθένης δὲ ἀποδείκνυσιν, ὅτι καὶ τὰ σχήματα πάντα ἐκ

tων ἀναλογιῶν συνέστησεν ἀρχαγμένων τῆς συστάσεως ἀπὸ

ἱσότητος καὶ ἀναλυμένων εἰς ἱσότητα· περὶ δὲ ὦν τὰ νῦν λέγειν

οὖ χ ἀναγκαίον.

Περὶ σχήματων

γ' ὅτι δὲ αὐτὰ ὑφεσθήσεται καὶ ἐπὶ σχήματων. ὃν πρῶ-
tὸν ἐστὶν ἢ στυγμή, δ' ὑπὶ σημείων ἀμέγεθες καὶ ἀδιάστατον,

4 Titre : ὅτι ἀναλύονται αἱ ἀναλογίαι εἰς ἱσότητα (que les proportions se

résolvent en égalité).
par le plus grand terme, on trouvera la proportion de raison épimère $1 + 4/5$. La proportion 25, 20, 16, donne, en effet, 25, 16, 81; et, en commençant par le plus petit terme, on en déduira la proportion de raison multisuperpartielle $2 + 1/4$. Ainsi, des termes 16, 20, 25, on déduit 16, 36, 81; et on peut continuer ainsi à l'infini, en sorte qu'au moyen de ces proportions, on peut en former d'autres par la même méthode. Nous n'avons pas besoin de développer davantage ce sujet.

LII. De même que toutes ces proportions et toutes leurs raisons se composent de la première raison d'égalité, de même aussi elles se résolvent définitivement en elle. En effet, si une proportion quelconque, à trois termes inégaux, étant donnée, nous soustrayons du moyen terme le plus petit, et du plus grand le plus petit et deux fois le moyen diminué du plus petit, si ensuite nous mettons en ordre les termes ainsi obtenus, nous aurons pour premier terme le même plus petit, puis pour second l'excès du moyen sur le plus petit et enfin pour troisième ce qui est resté du plus grand, la proportion qui résultera de cette décomposition sera celle-là même qui a donné naissance à la nouvelle proportion. Quand on aura répété cette décomposition, on arrivera à la proportion d'égalité qui est la première origine de toutes les proportions et qui elle-même ne peut se résoudre en aucune autre, mais seulement dans la raison d'égalité.

Ératosthène démontre que toutes les figures résultent de quelque proportion, que pour les construire il faut partir de l'égalité et qu'elles se résolvent en égalité. Il n'est pas nécessaire de nous étendre davantage sur ce sujet.

Des Figures

LIII. Nous trouverons les mêmes résultats dans les figures dont la première est le point, qui est un signe sans étendue, sans dimension, étant le terme d'une ligne et tenant la même place que l'unité (dans les nombres). La grandeur qui n'a
τῶν δὲ γραμμῶν εὐθεία μὲν ἐστὶν ὀρθή καὶ οἷον τετράγωνη, ἦτις δύο δοθέντων σχημάτων μεταξύ ἐλαχίστη ἐστί τῶν τὰ ὑπὸ πέρατα ὑγιοτέων καὶ δὲ ἐν ὑπὸ τὸς ἐκτεταμένης σχηματισμὸς κειμένη.

10 καμπύλη δὲ ἡ μὴ ὀφθαλμός ἑρώτα. διαφέρει δὲ καὶ ἐπιπέδου ἐπιφανείας παραπλησίως. ἐπιφάνεια μὲν γὰρ ἐστὶ παντὸς στερεοῦ σώματος κατὰ δύο διαστάσεις μήκους καὶ πλάτους ἐπιφανεί νόμον πέρας. ἑπιπέδου δὲ ἐστὶν ὀρθή ἐπιφάνεια· ὡς ἐπέκειν δύο σχηματῶν ἔγινε τετράγωνα, ὀλὴ αὐτῆς ἐσφαρμόζεται. παράλληλι

15 λοι δὲ εἰσὶν εὐθείαι, ἀκτίνες ἐν τῷ αὐτῷ ἑπιπέδῳ ἐπὶ ἀπειρον ἕκαστομενε ἐπὶ μηδέτερα συμπίπτοντον, ἀλλὰ τριτοῦ ἐν πάντι τῆς διάστασιν.

τῶν δὲ σχημάτων ἑπιπέδα μὲν εἰσὶ τὰ ἐν τῷ αὐτῷ ἑπιπέδῳ πάσας ἑχοντα τὰς γραμμάς καὶ εὐθύγραμμα μὲν τὰ ὑπὸ 20 εὐθείων περιεχόμενα, οὐκ εὐθύγραμμα δὲ τὰ μὴ ὀφθαλμος ἑχοντα. τῶν δὲ ἑπιπέδων καὶ εὐθυγράμμων σχημάτων τὰ μὲν τριτῆς περιεχόμενα πλευραῖς τριγλευρα καλεῖται, τὰ δὲ τέταρτος τετράγλευρα, τὰ δὲ πλείον πολύγωνα.

τῶν δὲ τετραπλεύρων τὰ παραλλήλους ἔχοντα τὰ ὑπενεντῖν 25 πλευράς ἐκατέρας παραλληλόγραμμα καλεῖται. τούτων δὲ ὀρθόγωνια μὲν τὰς γωνίας ἔχοντα ὀρθάς· ὀρθαὶ δὲ εἰσὶ γωνίαι, ἀκτίνας εὐθείας ἐπὶ εὐθείαις ἑρεστώτα δύο ἵππες παρ' ἐκτεταμένα ἀποτελεῖ. τῶν δὲ ὀρθογωνίων παραλληλόγραμμον ἐκαστὸν πε-

qu’une dimension et n’est divisible que d’une manière, est la ligne, qui est une longueur sans largeur ; la grandeur étendue dans deux sens, est une surface, elle a longueur et largeur ; la grandeur ayant trois dimensions, est le solide, qui a longueur, largeur et hauteur. Or, le solide est compris et limité entre des surfaces, la surface est limitée par des lignes et la ligne limitée par des points.

Parmi les lignes, la ligne droite est celle qui est directe et comme tendue, c’est celle qui, entre deux points donnés, est la plus courte de toutes celles qui ont les mêmes extrémités et qui est étendue également entre tous ses points. La ligne courbe est celle qui n’a pas cette propriété. La même différence se retrouve entre le plan et la surface (courbe). En effet, la surface est le terme apparent de tout corps solide, suivant deux dimensions, longueur et largeur. Or le plan est une surface droite telle que si une ligne droite la touche en deux points, elle coïncide avec elle dans toute sa longueur. Des lignes droites sont parallèles quand, prolongées à l’infini sur un même plan, elles ne se rencontrent pas et gardent toujours entre elles la même distance.

Les figures planes sont celles dont toutes les lignes sont dans un même plan. Les figures rectilignes sont celles qu’entourent des lignes droites et les figures non rectilignes n’ont pas cette propriété. Parmi les figures planes et rectilignes, celles qui sont comprises entre trois côtés sont appelées tria- térales. Celles de quatre côtés sont appelées quadratères ; on appelle polygones celles qui sont comprises entre un plus grand nombre de lignes droites.

Parmi les quadratères, ceux qui ont les côtés opposés parallèles sont appelés parallélogrammes, et les parallélo- grammes qui ont les angles droits sont appelés rectangles. Les angles sont droits quand une ligne droite en rencontre une autre en formant avec elle deux angles adjacents égaux. Chaque parallélogramme rectangle est dit proprement compris sous les côtés qui forment l’angle droit, et parmi ces
περιέχοντα λέγεται ίδίως ύπό τῶν τήν ὁφθην γωνίαν περιεχομένων πλευρῶν. καὶ τῶν τοιούτων τὰ μὲν τὰς τεσσάρας πλευρὰς ἵπτας έχοντα ίδίως λέγεται τετράγωνα, τὰ δὲ μὴ τοιαύτα ἔτερομην.

5 νῦν ὁμοίως δὲ καὶ τῶν στερεῶν τὰ μὲν ὑπὸ ἐπιτέθων παραλληλογράμμων πάντων ἑξ ὀντων περιεχόμενα παραλληλεπιπέδα καλεῖται, τὰ δὲ καὶ ὑπὸ ὀρθογωνίων τούτων ὀρθογώνια. τούτων δὲ τὰ μὲν πάντα ἴσοπλευρα, τουτέστων ἵστον έχοντα τὸ μῆκος καὶ πλάτος καὶ βάθος, ὑπὸ τετραγώνων ἵστον πάντων περιεχόμενα, κύθοι τὰ δὲ τὸ μὲν μῆκος καὶ πλάτος ἵστον έχοντα, τουτέστω τὰς βάσεις τετραγώνους, τὸ δὲ ύψος ἔλαττων, πλυνθὲς τὰ δὲ τὸ μὲν μῆκος καὶ πλάτος ἵστον, τὸ δὲ ύψος μείζον, δοκίμες τὰ δὲ πάντα ἀνισόπλευρα σκαληγά.

15 < Περὶ τῶν μεσοτήτων δυνάμεων >

ἀκριβεστερῶν δὲ περὶ τῶν μεσοτήτων λειτίον, ἐπειδὴ καὶ ἀναγκαιοτάτη εἰς τὰ Πλατωνικὰ ἡ τούτων θεωρία. ἀπλῶς μὲν οὐν μεσότης ἐστὶν, ἐπειδὰν δῶν ὄρων ὁμογενῶν ἀνίσων μεταξὺ τις ὁμογενής ἔτερος ὄρος λαθεῖ, ὥστε εἰναι ὡς τὴν ὑπεροχὴν τοῦ πρῶτου καὶ μείζονος ὄρου παρὰ τὸν ἀρχιλέγειτα πρὸς τὴν ὑπεροχὴν τοῦ μέσου παρὰ τὸν ἑλάττωνα, οὕτως τὸν πρῶτον ὄρον ἦτοι πρὸς ἑαυτὸν ἢ πρὸς τινα τῶν ἄλλων ἢ ανάπαυλιν τὸν ἑλάττωνα πρὸς τινα τῶν ἄλλων.

νε. ἐπὶ μέρους δὲ ἄριθμητικὴ μὲν ἐστὶ μεσότης ὑπὸ αὐτῶν ἀριθμῶν τῶν ἀκρῶν τοῦ μὲν ὑπερέχουσα, ὑπὸ οὖ δὲ ὑπερεχόμενη ὡς γ’ β’ α’ ὡς γ’ ἄρ’ τῶν β’ ἀριθμῶς μονάδι ὑπερέχει τοῦ ἐνός καὶ μονάδι ὑπερέχεται ὑπὸ τοῦ γ’. συμβε-
rectangles ceux qui ont les quatre côtés égaux sont appelés proprement carrés. Ceux qui ne sont pas dans ce cas sont appelés promèques.

LIV. Parmi les solides, les uns sont compris sous des parallélogrammes plans, au nombre de 6, et sont appelés parallélépipèdes. D'autres sont compris sous des rectangles et sont appelés parallélépipèdes rectangles. De ceux-ci, les uns sont équilatéraux dans tous les sens, c'est-à-dire que la longueur, la largeur et la hauteur sont égales et qu'ils sont compris sous des carrés égaux, ils sont appelés cubes. Ceux qui ont la longueur et la largeur égales, c'est-à-dire les bases carrées, mais dont la hauteur est moindre, sont appelés plinthes ou carreaux. Ceux dont la longueur est égale à la largeur, mais dont la hauteur est plus grande, sont appelés dôches ou poutrelles. Enfin, ceux qui ont les trois dimensions inégales, sont appelés parallélépipèdes scalènes.

Propriétés des médiétés

Nous avons maintenant à parler plus en détail des médiétés dont la théorie est indispensable pour comprendre les écrits de Platon. Il y a médiété quand, entre deux termes homogènes inégaux, on prend un autre terme homogène tel que l'excès du premier, qui est en même temps le plus grand, sur ce terme moyen, soit à l'excès de celui-ci sur le plus petit, comme le premier terme est à lui-même ou à l'un des deux autres, ou bien comme le plus petit est à l'un des deux autres.

LV. En particulier, la médiété arithmétique est celle ou le moyen terme surpasse un extrême et est surpassé par l'autre d'un même nombre, comme dans la proportion 3, 2, 1. En effet, le nombre 2 surpasse 1 d'une unité et est aussi surpasse par 3 d'une unité. Ce moyen terme a la propriété d'être la

3 Voyez la définition des nombres promèques, 1, xvi, p. 51.
θηκε δὲ ταύτη τῇ μεσότητι πρὸς τὴν τῶν ἄχρων σύνθεσιν ὑποτι-πλαστῷ εἶναι. ἦ τε γὰρ τρίς καὶ ἡ μονὰς συντεθεῖται τὴν
tετράδα ἐποίησαν, ἦτε διπλασία ἐστὶ τοῦ μέσου ἀριθμοῦ—τῆς
dυσάδος.

5 νῦ. γεωμετρικὴ δὲ ἐστὶ μεσότης ἡ καὶ ἀναλογία χωρίως
λεγομένη ἢ τῷ αὐτῷ λόγῳ ὑπερέχουσα καὶ ὑπερεχθηκένη, οἶον
πολλαπλασίων ἡ ἐπιμορφ. οἶον α' β' δ'. τά τε γὰρ δ' τῶν
β' διπλασία καὶ τὰ β' τοῦ ἐνὸς διπλασία· καὶ πάλιν ἡ ὑπε-
ρογή τῶν β' ἐστὶ τὸ ἐν <καὶ ἡ ὑπερογή τῶν δ' τὰ β'>,
tαυτὰ δὲ ὁμοίως ἔξετακόμενα ἐστίν ἐν διπλασίῳ λόγῳ. συμ-
θέθηκε δὲ ταύτη τῇ ἀναλογίᾳ τὸ ὑπὸ τῶν ἄχρων συντιθέμενον
κατὰ πολλαπλασιασμὸν ἦστον εἶναι τῷ ἀπὸ τοῦ μέσου τετραγώνῳ.
οἶον οἱ ἄχροι ἐπὶ ἀλλήλους πολλαπλασιάζομενοι ποιοῦτον τὸν δ'
ἀπὸ γὰρ δ' δ'. καὶ πάλιν ὁ β' ἐφ' ἑαυτῶν λαμβανόμενος
ποιεῖ τὸν δ' δ' δ' ράρ β' δ'. ὡστε <τὸ> ὑπὸ τῶν ἄχρων
ὕστον γίνεται τῷ ἀπὸ τοῦ μέσου· α' β' δ'.

νῦ. ἀρμονικὴ δὲ ἐστὶν ἀναλογία, ἐπειδὰν τριῶν ὀρῶν προ-
tεθέντων ὦν ἔχει λόγων ὁ πρῶτος πρὸς τὸν τρίτον, τὸν ἀπὸ
ἡ τοῦ πρῶτου ὑπερογή πρὸς τὴν τοῦ δευτέρου ὑπερογήν ἔγιν.
οἶον γ' γ' β'· ἡ γάρ ἔξης πρὸς τὴν δυάδα τριπλασία ἐστὶ· καὶ
ἡ ἀναμορφ. δὲ τῆς ἐξάδος πρὸς τὰ γ' τρίς οὕτω τριπλασία
ἐστὶ τῆς μονᾶς, ἡτίς ἀναμορφ. ἐστὶ τῆς τριάδος συγκρισθεῖσαν
πρὸς τὰ β'. συμθέθηκε δὲ ταύτῃ τῇ ἀναλογίᾳ, τὸν μεσὸν
ὄρον τοῦ αὐτοῦ μέρει κατὰ τοὺς ἄχρους ὑπερέχειν τε καὶ ὑπερ-
ἐγερθαί· οἶον β' γ' σ'. καὶ γάρ ὁ τῶν σ' τῷ ἡμίσει αὐτοῦ
ὑπερέχει τῆς τριάδος καὶ ἡ ὑπο τῆς ἑκατότης ἡμίσει ὑπερέχε-
tαι ὑπὸ τῆς τριάδος. καὶ τοὺς ἄχρους δὲ συντεθεῖσιν ἀλλήλους
καὶ ὑπὸ τοῦ μέσου πολλαπλασιασθέντας διπλασίους ἐν εὑρο-
μεν τοῦ ἐκ τῶν ἄχρων ἀποτελομένου πολλαπλασίου. οἶον σ'
καὶ β' ἡ'· ταύτα δὲ ὑπὸ τῆς τριάδος, οἱ ἐστὶ μέρος, πολ-

demi-somme des extrêmes; en effet, $3 + 4 = 4$ qui est le double du terme moyen 2.

LVI. La médiation géométrique, appelée aussi proprement proportion, est celle dont le moyen terme surpasse un extrême et est surpassé par l'autre dans la raison, multiple ou superpartielle (du premier terme au second ou du second au troisième), comme la proportion 1, 2, 4. En effet, 4 est le double de 2, et 2 est le double de l'unité; et de même la différence 2 — 1 est 1, et la différence 4 — 2 est 2. Ces nombres comparés ensemble sont donc en raison double. Cette médiation jouit de la propriété, que le produit des extrêmes est égal au carré du moyen terme: ainsi, dans la proportion précédente, le produit des extrêmes est 4, car $1 \times 4 = 4$, et le carré de 2 est aussi 4, car $2 \times 2 = 4$. Donc le produit des extrêmes est égal au carré du moyen terme.

LVII. Il y a proportion harmonique quand, étant donnés trois termes, le premier est au troisième dans le même rapport que l'excès du premier (sur le second) est à l'excès du second (sur le troisième). Tels sont les nombres 6, 3, 2: l'extrême 6 est le triple de 2, et l'excès de 6 sur 3 est 3, qui est le triple de l'unité, laquelle est l'excès de 3 sur 2. Cette proportion jouit de la propriété, que le moyen terme surpasse un extrême et est surpassé par l'autre de la même partie des extrêmes. Ainsi, dans la proportion formée des nombres 2, 3, 6, l'extrême 6 surpasse 3 de la moitié de 6, et l'autre extrême 2 est surpassé par 3 de la moitié de 2. De plus, si l'on additionne les termes extrêmes et qu'on multiplie la somme par le terme moyen, on trouve un nombre double du produit des extrêmes. Ainsi, $6 + 2 = 8$, et 8 multiplié par le

75 Suivant son habitude, Théon vérifie simplement la proposition énoncée. Soient a, b, c, les trois nombres qui donnent la médiation géométrique; on a, par hypothèse, $a - b : b = b - c : c$, d'où $ac - bc = b^2 - bc$, et par conséquent $ac = b^2$.
λαπλασιασθέντα γίνεται κα' ταί τάλιν δίς μ' τουτών δέ τα κα' διπλάσια.

νη. ὑπεναντία δε τῇ ἀρμονικῇ καλείται μεσότης, ὅταν ὡς ὁ τρίτος ὅρος πρὸς τὸν πρώτον, οὔτως ἡ τοῦ πρῶτου ὑπεροχή πρὸς τὴν τοῦ δευτέρου ὁ ὅν σ' ἐ' γ' τα μέν οὖν σ' τῶν ε' μονάδι ὑπερέχει, τα δε ε' τῶν γ' δυσί· τά δε γ' τῶν ε' ὑπο- διπλάσιά ἐστιν· ἀλλά καὶ ἡ μονάς ὑπεροχὴ οὔσα τοῦ [τε] πρῶτου ἀριθμοῦ ὑποδιπλάσια ἐστι τῆς δυάδος ὑπεροχῆς οὔσης τοῦ δευτέρου ἀριθμοῦ.

10 νη. ἡ δε πέμπτη μεσότης ἐστιν, ὅταν τριῶν ὅρων ὄντων ὡς ἐκχ λόγον ὁ τρίτος πρὸς τὸν δεύτερον, τούτων ἐκχ τὸν λόγον ἑ τοῦ πρώτου ὑπεροχή πρὸς τὴν τοῦ δευτέρου ὑπερο- χήν· οὖν ε' δ' β' τα μέν ε' τῶν δ' μονάδι ὑπερέχει, ἀλλά καὶ τὰ δ' τῶν β' δυσί· ὑποδιπλάσια δὲ τὰ β' τῶν δ' καὶ

15 τὸ ἐν δὲ τῶν β' ὑποδιπλάσιον, ἀπερ ὑπεροχ' εἰς τοῦ τε πρῶ- του καὶ τοῦ δευτέρου ἀριθμοῦ.

ζ. ἔκτη λέγεται μεσότης, ὅταν τριῶν ὅρων προτεθέντων ὡς ὁ δεύτερος πρὸς τὸν πρῶτον ἐγείρει, οὔτως ἡ τοῦ πρῶτου ὑπεροχή πρὸς τὴν τοῦ δευτέρου· οὖν ε' δ' α' τα μέν γὰρ ε' τῶν

20 δ' δυσί ὑπερέχει, τα δε δ' τοῦ α' τρισίν· ἐστι δε δ' τῶν ε' ύψημολία και ἡ δυάς ὑπεροχὴ οὔσα τῶν ε' ύψημολία ἐστι τῆς τριάδος ὡς ἐστιν ὑπεροχή τῆς τετράδος.

περὶ μὲν τούτων καὶ τῶν ταύτας ὑπεναντίων εἰς μεσοτήτων ὑπὸ τῶν Πυθαγορικῶν καὶ ἔπει πλεόν εὑρηθαί· ἡμῖν δ' ἐξαρ- 25 κεῖ χατά τῶν Πυθαγορικῶν λόγον συνόψεως ἕνεκα τῶν μαθημα- τικῶν τυπωδῶς αὐτά ἤθροισθεναι καὶ ἐπιτομικῶς.

3 Titre : τίς ὑπεναντία τῇ ἀρμονικῇ (de la médieté contraire à l'harmonique).
moyen terme 3 donne 24 ; or 6 × 2 = 12 dont le double est 24 .

LVIII. On appelle médiété sous-contraire à l'harmonique
la médiété dont le troisième terme est au premier comme
l'excès du premier (sur le second) est à l'excès du second
(sur le troisième) : telle est la médiété formée par les nom-
bres 6, 5, 3, où 6 surpasse 5 d'une unité, et où 5 surpasse 3 de
2 unités, où enfin 3 est moitié de 6, comme l'unité, excès
du premier nombre (sur le second), est moitié de 2, excès du
second nombre sur le troisième.

LIX. On a la cinquième médiété, quand, étant donnés trois
termes, le troisième est au second comme l'excès du premier
(sur le second) est à l'excès du second (sur le troisième) : telle
est la proportion formée des nombres 5, 4, 2. L'extrême 5
surpasse 4 d'une unité et 4 surpasse l'autre extrême 2 de
2 unités. Or l'extrême 2 est moitié de 4, et l'unité, excès du
premier terme (sur le second), est moitié de 2, excès du second
(sur le troisième).

LX. On a la sixième médiété, quand, étant donnés trois
termes, le second est au premier comme l'excès du premier
(sur le second) est à l'excès du second (sur le troisième) : telle
est la proportion formée des nombres 6, 4, 1. En effet, l'ex-
tème 6 surpasse 4 de 2, et 4 surpasse l'autre extrême 1 de 3,
et 4 est à 6 comme 1 est à 1 + 1/2. Or 2, excès de 6 sur 4, est
t à 3, excès de 4 sur 1, dans le même rapport 1 à 1 + 1/2.

Les Pythagoriciens se sont longuement étendus sur ces six
médiétés et leurs sous-contraires. Pour nous, qu'il nous suf-
fise d'avoir, selon la méthode de Pythagore, esquisé som-
mairement ces principes, pour résumer l'exposition des
mathématiques.

2 Soit, en général, la proportion harmonique a − b : b − c = a : c ; en
egalant le produit des extrêmes au produit des moyens, on a (a + c) b = 2 ac,
ce qui démontre la proposition énoncée.
Πώς εὐρίσκονται αἱ μεσότητες

ξα. εὐρίσκονται δὲ αἱ μεσότητες κατὰ μὲν τὴν ἀριθμητικὴν ἀναλογίαν οὕτως. τῆς ὑποροχῆς τοῦ μείζονος παρὰ τὸν ἑλάττων τῷ ήμισθία ὑποτιθέμενοι τῷ ἑλάττων ἐξομεν τὸν 5 μέσον, ἡ ἐκατέροι τῶν δυοκέντον ἀριθμῶν τὰ ήμίσθια συνθέντοι τὸν συνθέοντα μέσον εὐρήκαμεν, ἡ τοῦ συνθέοντος εἰς ἀριθμὸν λαμβάνοντες τῷ ήμισθία προστετάχθη οὕτω ἀριθμῶν τῶν ἦς καὶ ητέον ὅρον λαθεῖν κατὰ τὴν ἀριθμητικὴν μεσότηταν. λαμβάνομεν τὴν ὑποροχῆ τοῦ μείζονος ἦς παρὰ τὸν ἑλάττων εἰς 10 ὃν ήμισθία γ. ταυτά προσθέομεν τῷ ἑλάττων γίνεται θ', διὸ ἐστὶ μέσος τῶν ήθ' καὶ ητέον ἀριθμητικώς, τρισχ ὑπερέχων καὶ ὑπερεχόμενος ήθ' θ' εἰς τάλλιν συνθήκαμεν τοὺς ἐξ ἀρχῆς ἄκρως τῷ ήθ' καὶ τὰ εἰς γίνεται ηπ'. ὃν ήμισθία θ', διὸ ἐστὶ μέσος. 15 κατὰ δὲ τὴν γεωμετρικὴν ἀναλογίαν ἐπὶ μὲν ἀριθμῶν τοῦ ὑπὸ τῶν ἄκρων περιεχόμενον πλευρῆν τετράγωνον λαθοῦντες ταυτὴ ἐξομεν τὸν μέσον ὅρον, οὐδὲν δεδουλεύσαν δύο ἀριθμοί οὐ τῇ κὴ ἤς ο' προστετάχθην τούτων κατὰ τὴν γεωμετρικὴν ἀναλογίαν τὸν μέσον ὅρον ἀνευρεῖν. πεπολλακτικάσπισαν οὗ τεθέντες ἐπὶ ἀλλήλους γίνεται ρμ' τούτων εἰλήφων πλευρὰ 10 τετράγωνος ἐσται ο' ήθ', διὸ γίνεται μέσος ἐστι γὰρ ὦς ὁ κη ής ήθ', οὕτως τὰ ήθ' πρὸς 6' ἐν δυπλασίῳ λόγῳ. ἀλλ' ἂν μὲν ὁ ὑπὸ τῶν ἄκρων περιεχόμενος ή τετράγωνος, ὁ λιμπθεὶς οὕτως μέσος ὅρος ἡπτὸς γίνεται καὶ μήκες σύμμετρος τοῖς ἄκροις. 20 ἄκροις ἐξ οὕτως μονάδων εὐρίσκομεν. ἐὰν δὲ μή ή τετράγωνος ο περιεχόμενος ζύπ θῶν ἄκρων, ὁ μέσος ὅρος δυνάμει μόνον ἐσται σύμμετρος τοῖς ἄκροις. λαμβάνεται δὲ κοινότερον ἐν τε ἀριθμοὶ καὶ ἡπτοὶ καὶ ἐν λόγοι καὶ μεγέθει καὶ σύμμετροι γεωμετρικῶς οὕτως. ἐστω-
Comment on trouve les moyens termes des méditéés

LXI. Voici comment on trouve les moyennes. Dans la proportion arithmétique, on ajoute au petit terme la moitié de l’excès du plus grand sur le plus petit, ou bien on additionne les moitiés de chacun des deux nombres donnés, ou enfin on prend la moitié de la somme des deux termes donnés. Soit proposé de trouver le moyen terme, en proportion arithmétique, entre les nombres 12 et 6, on prend l’excès du plus grand 12 sur le plus petit 6, la moitié est 3 qu’on ajoute au plus petit 6, et l’on obtient 9 qui est la moyenne arithmétique entre les nombres 12 et 6, puisqu’elle surpasse l’un et est surpassée par l’autre de 3 unités. De même, si on additionne les extrêmes 12 et 6, la somme est 18, dont la moitié 9 est la moyenne entre les nombres donnés.

Voici maintenant comment on obtient le moyen terme d’une proportion géométrique : on prend la racine carrée du produit des extrêmes. Soient donnés, par exemple, les deux nombres 24 et 6, dont il s’agit de trouver le moyen terme en proportion géométrique. On multiplie les nombres donnés l’un par l’autre, le produit est 144 dont la racine 12 est le moyen terme, car on a 24 : 12 = 12 : 6, en raison double. Si le nombre compris sous les extrêmes est carré, le moyen terme trouvé est rationnel et sa longueur est commensurable avec les extrêmes, se composant d’unités entières. Mais si le nombre compris sous les extrêmes n’est pas un carré parfait, le moyen terme ne sera commensurable qu’en puissance avec les extrêmes.

Le plus souvent on le détermine géométriquement, qu’il soit exprimé en nombre rationnel ou que la raison et les grandeurs soient incommensurables. Voici comment on s’y prend : soient $\alpha\beta$ et $\beta\gamma$ les deux termes. Plaçons-les en ligne droite et sur la somme $\alpha\gamma$ décrivons une demi-circonférence,
σαν δύο ὅροι ὧν δεῖ μέσον ἀνάλογον λαθεῖν γεωμετρικῶς: οἷόν αὖ βγαὶ καὶ ἀκεφαλήσθωσαν ἐπὶ εὐθείας· καὶ περὶ ὅλην τὴν ἀγ γεγραμμένον ἡμικύκλιον· καὶ ἀπὸ τοῦ β ἀνήχθω τῇ αὐν πρὸς ὅρθας μέχρι τῆς περιφερείας ἡ βδ· 8 αὐτῇ δὴ γίνεται μέση τῶν αβ βγ κατὰ τὴν γεωμετρικὴν ἀνάλογιαν· ἐπιζένθεσθων γὰρ τῶν αδ ὅγι· ὧρθη γίνεται ἡ δ γωνία· ἐπεὶ ἐστὶν ἐν ἡμικύκλῳ· καὶ <ἐν> ὀρθογονιώ τῷ αὖ κάθετος ἡ δβ· 10 καὶ τὰ περὶ ταύτην τρίγωνα τῷ τε ὅλῳ καὶ ἄλλῃς ὅροι ἐστὶν· ὡστε αἱ περὶ τὰς ἢς τῶν αὐτῶν γωνίας πλευραί ἀνάλογον εἰστιν· ὡς ἄρα ἡ αβ πρὸς τὴν βδ· ἡ δβ πρὸς βγ· τῶν ἄρα αβ βγ μέσῳ ἀνάλογον ἐστιν· ἡ βδ· ὅπερ ἐδεικνύεται·

λειτυπεῖ δείκτης· τὰς κατὰ τὴν ἀρμονικὴν ἀνάλογιάν εὑρομεν· 15 ὅτι τὸν μέσον ὅρον· ἐδον μὲν οὖν ἐν διπλασίῳ λόγῳ πρὸς ἀλλήλους διδοῦσιν οἱ ἄχροι· οἷς ὁ βγ καὶ οἱ σ', τὴν ὑπεροχήν τοῦ μείζονος παρὰ τὸν ἐλάττωνα οἷς τὰ σ' ποιήσαντες ἐπὶ τὸν σ' καὶ τὸν γενόμενον λα' παραβαλλόντες παρὰ τὸν σύνθεσιν ἐξ τῶν ἄχρον οἷς παρὰ τὰ τ' ὑπ' καὶ τὸ πλάτος τῶν λα' οἷς τὰ β' προσθέντες τῷ ἐλάττω ντιν· τούτης τῶν σ'· ἔξω μεν τὸν χρυσομενον· ἐσται γὰρ οἱ τῶν σ' τοῦ αὐτῷ μέρει τῶν ἄχρων ὑπερ- ἐχων καὶ ὑπερεχόμενος· τούτης τῶν ἄχρων τρίτω· ὁ β' η' σ'.

ἐὰν δ' ἐν τριπλασίῳ λόγῳ πρὸς ἄλλῃς δοθῶσιν οἱ ἄχροι· 20 οἷς ὁ νυ καὶ οἱ σ', τὴν ὑπεροχήν τοῦ μείζονος παρὰ τὸν ἐλάττω να τοι ποιήσαντες ἐπὶ εὐθείαν· γίνεται ββ' ἐπὶ ββ', ἡ ἐστὶν ρμβ'· ὃν ἡμιπτῶ ββ', <ἐν> παραβαλλόντες παρὰ τὸν σύνθεσιν ἐξ τῶν ἄχρων οἷς τὰ σχ'· τὸ πλάτος τῆς παραβολῆς οἷς οὐκ ἐπὶ γ' προσθέντες τῷ ἐλάττων· ἔξω μεν τὸν χρυσομενον· ὅτι μέσον τῶν ζε' ἀρχής τῶν θ'· τῶν ὑπερεχόμενων· ἐσται καὶ ὑπερεχόμενος· ἡμιπτῶ τῶν ἄχρων· ὁ νυ θ' σ'.

κοινότερον δ' ἐπὶ πάντων τῶν δοθέντων ἀνίσως δύο ὅρων τὸν μέσον ἀρμονικὸς λιπτέων οὖτω· τὴν ὑπεροχήν ποιητῶν ἐπὶ
puis du point β menons à $\alpha\gamma$ la perpendiculaire $\beta\delta$, jusqu'à sa rencontre avec la demi-circonférence, je dis que $\beta\delta$ sera la moyenne proportionnelle géométrique entre les droites $\alpha\beta$ et $\beta\gamma$. En effet, si l'on joint $\alpha\delta$ et $\delta\gamma$, on a en δ un angle droit, puisqu'il est inscrit dans une demi-circonférence. Dans le triangle $\alpha\delta\gamma$ la hauteur est $\delta\beta$ et les triangles qui sont de part et d'autre sont semblables au triangle total et, par conséquent, semblables entre eux, donc les côtés qui comprennent les angles égaux sont proportionnels et l'on a: $\alpha\beta : \beta\delta = \beta\delta : \beta\gamma$; donc $\beta\delta$ est moyenne proportionnelle entre $\alpha\beta$ et $\beta\gamma$. C'est ce qu'il fallait démontrer.

Il nous reste à montrer comment on obtient le moyen terme dans la proportion harmonique. Soient donnés deux extrêmes en raison double, comme 12 et 6. On multiplie l'excès du plus grand sur le plus petit, c'est-à-dire 6, par le plus petit 6, puis on divise le produit 36 par la somme des extrêmes, c'est-à-dire par 18, et on ajoute le quotient 2 au plus petit terme 6, on obtient 8 qui sera le moyen terme cherché, car il surpasse un extrême et est surpassé par l'autre de la même fraction des extrêmes, savoir du tiers. La proportion harmonique est donc formée des nombres 12, 8, 6.

Si les extrêmes donnés sont en raison triple, comme 18 et 6, on multiplie par lui-même l'excès du plus grand sur le plus petit, le produit 12×12 est 144 dont la moitié égale 72. On divise ce résultat par la somme des extrêmes ou 24, le quotient 3 de la division, ajouté au plus petit terme, donne 9 pour le moyen terme cherché, car il surpasse un extrême et est surpassé par l'autre de la moitié des extrêmes. On a la proportion harmonique des nombres 18, 9, 6.

Pour trouver la moyenne harmonique entre deux termes inégaux quelconques donnés, on peut aussi se servir de la
τὸν ἐλάττωνα καὶ τὸν γενόμενον παραθλητέον παρὰ τὸν σύνθετον ἐκ τῶν ἄχρων ἐπειτα τὸ πλάτος τῆς παραβολῆς προσθετέον τῷ ἐλάττωνι. οὖν εἰληφθὲσαν ὁὐο ἄροι ὁ λβ’ καὶ ὁ δ’ · καὶ ἡ ὑπεροχὴ τῶν ἵβ’ τουτέστιν ἦ', ληφθὴτο ἐπὶ τὸν ἐλάττωνα, τουτέστι τὸν δ’ γίνεται λβ’ · καὶ τὰ λβ’ παραθλητέον παρὰ τὸν σύνθετον ἐκ τῶν ἄχρων τὸν ἵβ’ · <καὶ προσθετέον τὸ πλάτος τῆς παραβολῆς,> τουτέστι τὰ β’, τῷ ἐλάττωνι, τουτέστι τῷ δ’ καὶ ἔσται τ’ μεσότης ἀρμονικῆ τῶν ἵβ’ καὶ δ’, τῷ αὐτῷ μέρει τῶν ἄχρων ὑπερέχουσα καὶ ὑπερεχομένη, τουτέστι τῷ ἡμίσει τῶν ἄχρων · ἵβ’ τ’ δ’.

ταύτα μὲν τὰ ἀναγκαῖότατα γρηγοριωτάτων ἐν τοῖς προειρημένοις μαθήμασιν ὡς ἐν κεφαλαιώδει παραδόθει πρὸς τὴν τῶν Πλατωνικῶν ἀνάγνωσιν. λείπεται δὲ μνημονεύσα τοιχειωδῶς καὶ τῶν κατ’ ἀστρονομίαν.

14 Après ἀστρονομίαν le copiste d’un ms. de Venise a ajouté : ἔδεξα τῷ ἄγιῳ θεῷ, et le copiste d’un autre ms. : τέλος σὸν θεῷ τῷ παρόντος βιβλίου.
méthode plus générale que nous avons d’abord exposée. Il faut multiplier l’excès par le plus petit extrême et diviser le produit par la somme des extrêmes, puis ajouter le quotient au plus petit terme. Soient donnés, par exemple, les deux termes 12 et 4. En multipliant l’excès de 12 sur 4, c’est-à-dire 8, par le plus petit terme 4, on a pour produit 32. Si maintenant on divise 32 par la somme des extrêmes qui est 16, on a 2 pour quotient. Ce quotient 2, ajouté au plus petit terme 4, donne 6 pour moyenne harmonique entre 12 et 4. En effet, 6 surpasse un extrême et est surpasse par l’autre de la même fraction des extrêmes, soit de la moitié. On a donc la proportion harmonique des nombres 12, 6, 4.

Après cette exposition sommaire, en faveur des lecteurs de Platon, de ce qu’il y a de plus nécessaire et de plus utile dans les parties des sciences mathématiques dont nous avons parlé, il nous reste à faire mention des éléments de l’astronomie.

12 Voy. la note XVI.
< ΜΕΡΟΣ Γ >

< ΤΑ ΠΕΡΙ ΑΣΤΡΟΛΟΓΙΑΣ >

< ΠΕΡΙ ΤΟΥ ΤΗΣ ΓΗΣ ΣΦΑΙΡΙΚΟΥ ΣΧΗΜΑΤΟΣ >

α. ότι τάς ο κόσμος σφαιρικός, μέση δ' αὐτοῦ ή γῆ, σφαιρειδὴς οὐσι καὶ αὐτή, κέντρου μὲν κατὰ τὴν θέσιν, σημείον δὲ κατὰ τὸ μέγεθος λόγον ἔχουσα πρὸς τὸ πάν, ἀνάγκη προκαταστήσασθαι πρὸ τῶν ἄλλων. ή μὲν γὰρ ἀκριβωτέρα τούτων ἁρχής μακροτέρας σκέψεως δεῖται, ὡς λόγων πλείων ἐξαρκέσθαι δὲ πρὸς τὴν τῶν μελλόντων παραδοθήσεσθαι σύνοψιν μόνον μημονεύσαι τῶν ὑπὸ τοῦ Ἀδράστου κεφαλαιωθέως παραδοχέων.

δὲ γὰρ σφαιρικός ο κόσμος καὶ ή γῆ σφαιρική, κέντρου μὲν κατὰ τὴν θέσιν, σημείου δὲ κατὰ τὸ μέγεθος πρὸς τὸ πάν λόγον ἔχουσα, ὑπέλεγεν ἐκ τοῦ πάσας τὰς τῶν ὑφάνειων ἀνατολάς <καί> δύσεις καὶ περιπολήσεις καὶ πάλιν ἀνατολάς κατὰ τῶν αὐτοὺς γίνεσθαι τόποις τοῖς ἐπὶ τῶν αὐτῶν οἰκήσεων.

δὴ λοι δὲ τὲτα καὶ τὸ ἀπὸ παντὸς μέρους τῆς γῆς ὑμισμαν"
TROISIÈME PARTIE

ASTRONOMIE

De la forme sphérique de la terre

I. Le monde entier est une sphère et la terre qui est elle-même un sphéroïde est placée au milieu. Que la terre est le centre de l'univers et qu'elle n'en est qu'un point par rapport à la grandeur de l'univers, voilà ce qu'il faut avant tout établir. Un exposé exact de cette doctrine exigerait de trop longues considérations, des écrits trop nombreux; il suffira, pour résumer ce que nous avons à dire, de rappeler les notions sommaires que nous avons transmises Adraste.

Nous dirons donc que le monde et la terre sont sphériques, que celle-ci est au centre du monde et qu'elle n'en est qu'un point; cela résulte de ce que, pour les habitants d'un même lieu, tous les corps célestes se lèvent, se couchent et se lèvent de nouveau aux mêmes points, et qu'ils accomplissent toujours les mêmes révolutions.

La sphéricité du monde est encore démontrée par la raison que, de chaque partie de la terre, notre regard embrasse la moitié du ciel, tandis que l'autre moitié nous la jugeons cachée par la terre, ne pouvant l'apercevoir. D'ailleurs, si nous regardons les points extrêmes du ciel, tous les rayons visuels nous paraissent égaux, et si des astres diamétralement-
μέν, ώς πρός αὐστήσην, τοῦ οὐρανοῦ μετέωρον ύπέρ ἡμᾶς ὁράθαι, τὸ δὲ λοιπὸν ἄφινες ὕπὸ γῆν, ἐπιπροσθοῦσθε ἡμῖν τῆς γῆς, καὶ τὸ <ἐξ> ἀπάσης ὑφεως πάσας τὰς πρὸς τὸν ἑσχάτον οὐρανόν προσπεπτούσας εὐθείας ἦτας δοκεῖν. τῶν τε
5 κατὰ διάμετρον ἄστρων ἐπὶ τῶν μεγίστων κύκλων κατὰ συζυγίας ἅπε τάτερον μὲν ἐπὶ ἀνατολής, τάτερον δὲ ἐπὶ δύσεως. κωνικὸν γὰρ ἡ κυλινδρικὸν ἡ πυραμιδεῖδες ἢ τί ἑτερον στερεόν σχῆμα περά τὸ σφαιρικόν τοῦ παντὸς ἐξωντος, κατὰ τῆς γῆς οὐκ ἂν ταῦτα ἄπνην, ἀλλ’ ἄλλοτε μὲν πλεῖον ἄλλοτε δὲ ἐλάττον τὸν τὸ ὑπέργειον εὑρίσκετο τοῦ οὐρανοῦ καὶ τῶν πρὸς τοῦτον ἀπὸ γῆς εὐθείαν ἄνισον τὸ μέγεθος.

β. τὸ τε τῆς γῆς σφαιρειδεῖς ἐμφανίζονταν ἀπὸ μὲν τῆς ἔστερον αἱ τῶν αὐτῶν ἄστρων ἐπιτολαί καὶ δύσεως ὀρατὰ τοῖς ἰδίων κλίματι, βραδίον δὲ τοῖς πρὸς ἐπιστήραν γυνῶν· καὶ ἡ αὐτή καὶ μία σελήνης ἐκλείψες, ὑπὸ ἓνα βραχύν καὶ τὸν αὐτὸν καιρὸν ἐπιτελομενή καὶ πάσον οἷς δυνατὸν ὅμοι βλεπομένη, διαφόρος κατὰ τὰς ὃρας καὶ ἄλε τοῖς ἀνατολικῶτερον ἐν παραμερήτρια ρήμα τελείοτος τῆς γῆς μὴ πάσον ὃμοιος τοῖς κλίμακιν ἐπιλάμβανος ἥλιον καὶ κατὰ λόγον
10 ἀντιπερισταμένης τῆς ἀπὸ τῆς γῆς σκιᾶς, νυκτὸς τοῦτον συμβαίνοντος.

φαίνεται δὲ καὶ ἀπὸ τῶν ἀρκτικῶν καὶ βορείων ἐπὶ τὰ νότια καὶ μεσημβρινὰ περιφερέσεις. καὶ γὰρ τοῖς ταύτη προϊστά τολλὰ καὶ τῶν αἱ φανερῶν ἄστρων περὶ τὸν μετέωρον ἡμῖν τόλον ἐν τῷ προελθεὶν ἐπὶ τὰ μεσημβρινὰ ἀνατολάς ὀρᾶται ποιούμενα καὶ δύσεως, τῶν δὲ αἱ ἄφανῶν περὶ τὸν ἀποκεκρυμμένον ἡμῖν τόπον ὁμοίως ἀνατέλλοντα τινα καὶ δυόμενα φαίνεται· καθάπερ

3 <ἐξ> Hiller. — 12 Titre dans quelques mss. ὅτι ἡ γῆ σφαιρειδεῖς (que la terre est sphérique). Cf. Chalcidius, LIX : ... tam ortus quam occasus in cois guidem citius fiant, in occiduis vero regionibus tardius... Vel quod lunae defectus, idem ubique codemque momento accedens, diversis temporibus nota-tur, orienti guidem vicinis regionibus tardius, etc. — 27 τόπον] τόλον conjecture Hiller;
ment opposés décrivent un grand cercle, l’un se couche quand l’autre se lève. Si l’univers, au lieu d’être sphérique, avait la forme d’un cône, d’un cylindre, d’une pyramide ou d’un autre solide, il ne produirait pas cet effet sur la terre : une de ses parties paraîtrait plus grande, une autre plus petite et les distances de la terre au ciel paraîtraient inégales.

II. Et d’abord, la terre est sphéroïdale de l’orient à l’occident ; le lever et le coucher des mêmes astres le prouvent bien, ils ont lieu plus tôt pour les habitants des régions orientales, plus tard pour ceux des régions occidentales. Ce qui le montre encore, c’est une même éclipse de lune : elle se produit dans un même espace de temps assez court ; pour tous ceux qui peuvent la voir, elle paraîtra à des instants différents : plus on sera vers l’orient, plus vite on la verra et plus tôt on en aura vu une plus grande partie. A cause de la forme arrondie de la terre, le soleil n’en éclaire pas en même temps toute la surface, et l’ombre que la terre projette se déplace d’après un ordre fixe, le phénomène ayant lieu la nuit.

Il est encore évident que la terre est convexe du nord au midi : en effet, pour ceux qui se dirigent vers le midi, à mesure qu’ils avancent, beaucoup d’étoiles, qui sont toujours visibles pour nous, dans leur mouvement autour du pôle, ont un lever et un coucher. De même que d’autres astres, toujours invisibles pour nous, dans leur mouvement autour du pôle qui nous est caché, ont pour eux un lever et un coucher : ainsi, l’étoile dite Canopus * est invisible dans les contrées plus septentrionales que Cnide * ; mais elle est visible

26 * du navire Argo, l’une des plus brillantes étoiles de l’hémisphère austral.
— 27 Ville de Carie (Asie-Mineure).
καὶ ὁ Κάνωθος λεγόμενος ἀστήρ, τοῖς βορειωτέροις τῆς Κνίδου μέρεσιν ἄφοιν ὄν, τοῖς νοτιωτέροις ταύτης ἦδη φανερὸς γίνεται καὶ ἐπιπλέον ἄει τοῖς μάλλον. ἀνάπαυσιν δὲ τοὺς ἀπὸ τῶν νοτίων ἐπί τὰ βόρεια παραγωγομένους πολλὰ μὲν τῶν ὁπίσθεν, πρότερον ἀνατολικαὶ καὶ ὅστις ποιούμενα, παντάπανόν ἄφοιν γίνεται, τοις δὲ τῶν περὶ τὰς ἀρκτικὰς παραπλησίας ἀνατέλλοντα καὶ ὅμοιον προϊόμεθαν ἀεὶ φανερὰ καθίσταται, καὶ αἰεὶ πλέον τοῖς πλέον προκύπτοντι.

πάντη δὴ περιφερής ὁρωμένη καὶ ἡ γῆ φαρμακὴ ἢ εἰς, ἐτὶ τῶν βάρος ἐγχορτων φύσει ἐτὶ τοῦ μέσου τοῦ παντὸς φερομένων, εἰ νοθείσαμεν τίνα διὰ μέγεθος μέρις γῆς πλέον ἀφετάνα τοῦ μέσου, ὑπὸ τοῦτον ἀνάγκη τὰ ἐλάττωνα περιεχομένα ἐλεθέσθαι καὶ βαρούμενα κατατυπώσθαι καὶ ἀπωθεῖσθαι τοῦ μέσου, μέγας ἢ ἢ ἤν ἄποσγόντα καὶ ἱσοκρατή γενόμενα καὶ ἱσορρο-πήθεστα πάντα εἰς ἱσορροπίαν καταστή, καθάτερο οὖ τε ἁμείθοντες καὶ οἱ τῇ ἐστὶ οὐκαμένε τῶν ἀκτάτων ἀλλοθρεῖσθαι εἰς ἁμείθοντας δὲ τῶν μερῶν τῆς γῆς τοῦ μέσου ἄποσγόντων τὸ σχῆμα ἢ εἰς φαρμακόν.

ἐτὶ τε ἐπεὶ τῶν βαρῶν παντεχόρθεν ἐπὶ τὸ μέσον ἐστὶν ἢ ἢ ῥοθή, πάντων ἢ ἢ εἰς σχῆμαν συνευκόντων, φέρεται ὅ τι αὐτῶν ἐκαστῶν κατὰ καθένον, τουτέστιν ἢς ποιοῦν γωνίας τὰς πρὸς τὴν τῆς γῆς ἑπιφάνειν παρ’ ἐκάστηρ χρῆ φέρεται γραμμῆς, σφαιρικῆς καὶ τοῦτο μηνύει τὴν τῆς γῆς ἑπιφάνειαν.

γ. ἄλλα μὴν καὶ τῆς ἡλίασθες καὶ παντὸς ὁδότος ἢν

23 γαλήνη ὅντος σφαιρικῶν κατὰ τὴν ἑπιφάνειαν γίνεται τὸ σχῆμα. καὶ γὰρ τοῦτο τῇ μὲν ἀισθήτηι διῆλον ἐντευθεὶς ἢ ἢ ἢ γὰρ ἐστις ἢς ὅντος αἰγυμαλοῦ θεωρήῃ τι μετὰ τὴν ἡλίασθαν, ὁδὸν ἢς ἢ δεύδουν ἢς πύργον ἢς πλοῦν ἢς αὐτὴν τὴν γῆν, κύψεις καὶ

24 Titre : ὅτι ἡ ἡλίασθα σφαιρα καὶ ἡ γῆ, ορφώς (que la mer est sphérique comme la terre). Cf. Chalcidius, LXI.
dans les contrées plus méridionales, et elle est toujours de.
plus en plus élevée à mesure qu'on s'éloigne du nord. Au
contraire, quand on va du midi vers le nord, beaucoup d'as-
tres, dont on voyait au midi le lever et le coucher, disparaiss-
sent entièrement, tandis que d'autres, situés dans la région
des Ourses et qui avaient un lever et un coucher, deviennent
toujours visibles; et on en voit d'autant plus qu'on avance
davantage vers le nord.

Puisque la terre paraît convexe de toutes parts, elle doit
être sphérique. D'ailleurs, tout corps pesant se portant natu-
rellement vers le centre, si nous concevions que certaines
parties de la terre soient plus éloignées du centre, à cause
de leur grandeur, il faudrait nécessairement que les petites
parties qui les entourent fussent pressées, repoussées et
eloignées du centre, jusqu'à ce que, l'égalité de distance et de
pression étant obtenue, tout en équilibre soit constitué en
repos, comme deux poutres qui se soutiennent mutuelle-
ment ou comme deux athlètes de même force qui se tiennent
mutuellement embrassés. Si les différentes parties de la terre
sont également éloignées du centre, il faut que sa forme soit
sphérique.

En outre, puisque la chute des corps pesants se fait tou-
jours et partout vers le centre, que tout converge vers le
même point et qu'enfin chaque corps tombe verticalement,
c'est-à-dire qu'il fait avec la surface de la terre des angles
toujours égaux, on doit conclure que la surface de la terre
est sphérique.

III. La surface de la mer et de toutes les eaux tranquilles
est aussi sphérique. On peut le reconnaître de cette manière :
si, placé sur le rivage, on observe un objet dont on est séparé
par la mer, comme une colline, un arbre, une tour, un vais-
seau ou la terre elle-même, puis, si sabaissant on regarde
vers la surface de l'eau, on ne voit plus rien, ou on voit une
moindre partie de l'objet, la convexité de la surface de la
πρὸς τὴν τῆς θαλάττης ἐπιφάνειαιν καταστήσας τὴν ὄψιν ἢ οὐδὲν ὅλως ἢι ἠ ἐλαττὸν ὦφιει τὸ πρὸ τοῦ μεῖζον βλεπόμενον, τῆς κατὰ τὴν ἐπιφάνειαιν τῆς θαλάττης κυρτώσεως ἐπιπροσθούσης τὴν ὄψιν, κἂν τῷ πλοῖσθεν δὲ πολλάκις, ἀπὸ τῆς νεώς μῆτω βλεπομένης γῆς ἢ πλοῖον προύντος, τὸ αὐτὸ τούτῳ ἀναβάντες τούτες ἢι τῶν ἴσττον εἰδόν, ἐφ’ ὑψηλοῦ γενόμενοι καὶ οὖν ὑπερκύψαντες τὴν ἐπιπροσθούσην ταῖς ὦφεσιν κυρτότητα τῆς θαλάττης.

καὶ φυσικῶς δὲ καὶ μαθηματικῶς ἢ παντὸς ϊδάτος ἐπιφάνεια, ἡρεμοῦντος μὲν, σφαιρικὴ δείκνυται ὑώτως. πέρυκε γὰρ ἀπὸ τῶν υψηλότερων ἢι εἰσίτειν τὸ ϊδορ ἢπὶ τὰ κυλότερα ἢείτι δὲ υψηλότερα μὲν τὰ πλέων ἀπέχοντα τοῦ κέντρου τῆς γῆς, κυλότερα δὲ τὰ ἐλαττὸν ὄντες ἃν ὑποθώμεθα τὴν τοῦ ϊδότος ἐπιφάνειαν ὀρθήν καὶ ἐπίπεδον, οὖν τὴν αὐτήν ἢπείτα ἀπὸ τοῦ κέντρου τῆς γῆς, οὖν ἀπὸ τοῦ αὐτοῦ καὶ μέσουν ἀγάγωνον τὴν χβ. ἢπὶ δὲ τὰ ἀκόρα τῆς ἐπιφανείας ἐπιζευγμένον εὐθείας τὰς καὶ γῆς, ὅσον ὦς ἐκατέρτα τῶν καὶ γῆς μεῖζων ἢπίτι τῆς χβ καὶ ἐκάτερον τῶν α γ μειωμέλων πλέων ἀπέγον τοῦ κ ἢπερ τὸ β καὶ υψηλότερον ἢσται τοῦ β. συνφυγόμενον <ἀρα> τὸ ϊδωρ ἀπὸ τῶν α γ ϊδάτος κυλότερον τὸ β μέγρι τοσοῦτο, ἡς ἢαι καὶ τὸ β ἀναπληρούμενον ἢσα απόστιχον τοῦ κ ὅσον ἐκάτερον τὸ τε α καὶ το λ γ. καὶ ὁμοίως πάντα τὰ ἢπὶ τῆς ἐπιφανείας τοῦ κύδοτος σμέια τοῦ κ ἢσον ἢστεχε. ὅσον ϊδατο γίνεται σφαιρική, ὢστε καὶ τὸ πᾶς ὅγκος ὅμοιο γῆς καὶ θαλάττης ἢστι σφαιρικος.

οὐδὲ γὰρ τήν τῶν ὄρων ὑπεροχήν ἢ τὴν τῶν πεδίων χθαμλότητα κατὰ λόγον τοῦ παντὸς μεγέθους ὡς ἀνωμαλίας αἰτίαν ἢκον ἢι τῆς ἢγίσεωτο. τὸ ϊδον γὰρ τῆς γῆς μέγεθος κατὰ τῶν μέγιστον αὐτῆς περιμετροῦμενον κύκλον μυριάδων χεῖ καὶ ἢπι δεισυχλίων σταδίων σύνεγγυς δείκνυσιν Ἑρατοσθέ-
mer masquant l'objet. Et souvent, pendant une navigation, alors que du pont du navire on ne voit pas encore la terre ou un vaisseau qui s'avance, des matelots grimpés au haut d'un mât les aperçoivent, étant plus élevés et comme dominant la convexité de la mer qui faisait obstacle.

On peut démontrer physiquement et mathématiquement que la surface de toute eau tranquille doit être de forme sphérique. L'eau tend, en effet, toujours à couler des parties les plus hautes vers les parties creuses. Or, les parties hautes sont plus éloignées du centre de la terre, les parties creuses le sont moins. La surface de l'eau étant supposée plane, soit $\alpha\beta\gamma$ (une ligne droite de) cette surface. Du centre de la terre, tel que le point x, menons à la base la perpendiculaire $x\beta$ et menons aux extrémités de cette base les droites xz, $x\gamma$. Il est évident que ces deux droites xz, $x\gamma$, sont toutes les deux plus grandes que $x\beta$ et que les deux points z, γ, sont plus éloignés du centre que le point β et, par conséquent, plus élevés que β. L'eau s'écoulera donc des points z, γ, vers le point β moins élevé jusqu'à ce que ce dernier point, entouré de nouvelle eau, soit autant éloigné du point x que z et γ. Pareillement, tous les points de la surface de l'eau seront à la même distance de x; donc l'eau offre la forme sphérique et la masse entière de l'eau et de la terre est sphérique.

Et qu'on ne dise pas que la hauteur des montagnes ou la profondeur des vallées vient contrarier cette thèse et prouver que la terre n'est pas une sphère exacte. Érastosthène nous montre, en effet, que le tour de la terre, mesuré suivant la circonférence d'un grand cercle, a une longueur approximative de 232 000 stades, et Archimède nous apprend qu'une circonférence de cercle, développée en ligne droite, vaut trois
νης, Ἀρχιμήδης δὲ τοῦ κύκλου τὴν περιφέρειαν εἰς εὐθείαν ἐκτεινομένην τῆς διαμέτρου τριπλασίαν καὶ ἔτι τῷ ἐθνῶν μέρει μᾶλλον αὐτῆς [τῆς διαμέτρου] μεῖζον· ὡς· εἰ γὰρ ἡ πάσα τῆς γῆς διάμετρος μωρίδων θ' καὶ ῥηβ' σταδίων ἕνεκα ταῦτας γὰρ τριπλασία καὶ τῷ ἐθνῶν μεῖζον· ἔτι τῶν κε' μωρίδων καὶ τῶν δύσμολων σταδίων περίμετρος ἣν.

<دفاع δὲ σταδίων ἐστὶν ἡ> τῶν ύψηλότατων ὅρων πρὸς τὰ γῆμαλωτάτα τῆς γῆς ὑπεροχὴ κατὰ κάθετον, καθὰ Ἑρα-

τοσθένης καὶ Δικάιαρχος εὐφράκηνας ἐπὶ καὶ ὦρας ἂς δὲ

τάς τὰ ἄποστηματὸν μεγάθεὶς μετροῦται διαμεταίρετα θεωρεῖται. γίνεσαι οὖν ἡ τοῦ μεγίστου ὅρων ὑπεροχὴ ὀκτα-

κυκλιστικῶς ἐγγίστα τῆς ὅλης πρωτοβολῆς τῆς γῆς. ἐὰν δὲ

κατασκευάσωμεν [τάνταθα] ποδιάκαν τινα κατὰ διάμετρον σφαι-

ρας, ἐπεὶ τὸ δακτυλικὸν διάστημα συμπληρώτα ἐν [καὶ] κεγ-

χρυσίας διαμέτρος τὸ μήκος ἐγγίστα δέκα δυσίν [ὑπερμε-

τρόπον τό καὶ ημίσεια], εἰ γὰρ ἡ ποδιάκα τῆς κατασκευασθείσης

σφαιρας διάμετρος κεγχρυσίας διαμέτρος τὸ μήκος ἀναπληρου-

μένη δικοσιαῖος ἡ καὶ βραχὺ ἐλάττωσιν. ὡς τῶν ποὺς ἔχει

δακτυλοὺς ὡς· ὁ δὲ δακτυλος ἀναπληρωται κεγχρυσίας διαμέ-

τρος ἡ'· τὰ δὲ ἦς· ὑποδεχάσαις ἐρ'· τὸ τεσσαρκονοῦν ὅν

μέρος τῆς κεγχρυσίας διαμέτρου <μεῖζον ἠ' ὁ εκτα-

κυκλιστικῶς τῆς ποδιάκας διαμέτρου> τεσσαρκονοῦν γὰρ διακό-

στα ὀκτακυκλίσια.

τὸ δὲ ύψηλότατον ὅρος κατὰ τὴν κάθετον ἐδειγμῇ τῆς ἐλα-

μέτρου τῆς γῆς ὀκτακυκλιστικῶς ἐγγίστα μέρος· ὡς τὸ

τεσσαρκονοῦν μέρος τῆς κεγχρυσίας διαμέτρου μεῖζον λόγον

ἐξεῖ πρὸς τὴν ποδιάκας τῆς σφαιρας διάμετρον, καὶ τὸ συνιστά-

μένον ᾗς στερεῶν ἀπὸ τοῦ τεσσαρκονοῦν μέρους τῆς κεγ-

χρυσίας διαμέτρου πρὸς τὸ ἀπὸ τῆς ποδιάκας ὅμοιον στερεῶν,

<μεῖζον λόγον ἐξεῖ ἡ> τὸ ἀπὸ τῆς δεκασταδικαίας καθέ-

fois le diamètre et à très peu près le septième de ce diamètre; le diamètre de la terre vaudra donc approximativement 80 182 stades. Trois fois ce nombre, plus un septième de ce nombre, donnent, en effet, 252 000 stades.

Or, d'après Ératosthène et Décéarque, la hauteur verticale des montagnes les plus élevées au-dessus des plaines les plus basses est de 10 stades. Ils ont déduit ce résultat d'observations faites avec la dioptre * qui permet de mesurer les hauteurs d'après certains intervalles. La hauteur de la plus grande montagne serait donc à peu près égale à la huit millième partie du diamètre total de la terre. Si nous faisons une sphère d'un pied de diamètre, la largeur d'un doigt étant à peu près égale à 12 diamètres et demi d'un grain de mil, le diamètre de notre sphère égaleraient 200 diamètres de grain de mil ou un peu moins, car le pied vaut 16 doigts; le doigt vaut 12 diamètres de grain de mil, et 16 fois 12 font 192. La quarantième partie du diamètre d'un grain de mil est donc supérieure à la huit millième partie d'un pied, car 40 fois 200 font 8 000.

Mais nous avons vu que la hauteur de la plus grande montagne est à peu près la huit millième partie du diamètre de la terre, donc le rapport de la quarantième partie du diamètre d'un grain de mil au diamètre d'une sphère d'un pied de diamètre est plus grand que le rapport de la hauteur de la plus grande montagne au diamètre de la terre. Et le rapport de la sphère ayant pour diamètre la quarantième partie de l'épaisseur d'un grain de mil, à la sphère d'un pied de dia-

8 Espèce de graphomètre.
του στερεῶν πρὸς τὸ ἀπὸ τῆς διαμέτρου τῆς γῆς ὡμοιον στερεῶν.

τὸ δὲ συνιστάμενον σφαιρικὸν στερεὸν ἀπὸ τοῦ τεσσαρακοστοῦ μέρους τῆς κεγχραμίας διαμέτρου ἐξακισμυριστερακυκλιστὸν ἐπὶ τοῦ ὅλης κέγχρου· τὸ δὲ ἀπὸ τῆς δεκασταδικᾶς καθέτου σφαιρικὸν ὄρος σταδίων ἐστὶ στερεῶν ἐγγυτὰ <φηδ>· ἢ δὲ ὅλη γῆς, σφαιροειδῆς λογιζομένη, στερεῶν σταδίων ἐχει <μυριάδας τριῶν μὲν ἀριθμῶν σ', δευτέρων δὲ σ', πρῶτων δὲ στ', καὶ ἐτο στάδια ματζ', καὶ τὸ τρίτον σταδίου μέρος 10 καὶ τὸ ἐθάνομαι καὶ τὸ ἔνεικστον.>

πάλιν γὰρ ἀποδείκνυται σχῆμα τὸ ὑπὸ τῆς διαμέτρου καὶ τῆς κυκλοῦ περιφερείας εἰς εὐθείαν ἐξακλισμυριστερακυκλιστὸν ὄρθογώνιον τετραπλάσιον εἶναι τοῦ ἐμβαθοῦ τεταρτοῦ μέρους τῆς σφαιρᾶς, ἵσου τῷ ἐμβαθῷ τοῦ κύκλου. διότερ εὐρίσκεται τὸ 15 ἀπὸ τῆς διαμέτρου τετράγωνον πρὸς τὸ ἐμβαθὸν τοῦ κύκλου λόγον ἐχον, ὅτι ὅποιοι τετράγωνον τοῦ ἐμβαθοῦ τετραγώνου τριπλὰ περιφέρειας καὶ ἐπὶ τοῦ ἐθάνατον μεῖξων, ὡμοίων ἐστιν ἡ διαμέτρου τῆς, τοιούτων ἡ περιφέρεια γίνεται κβ' τοῦ δὲ τέταρτον αὐτῆς ε' ε'. ὡστε καὶ ὡμοῖο τὸ τετράγωνον μβ', τοιούτων 20 ὁ κύκλος λη' ε', καὶ διὰ τὸ ἐπιτρέχουν ἢμεστο ὑπελαστικήθεντον ὡμοῖο τὸ τετράγωνον λη', τοιούτων ὁ κύκλος α' τοιοῦτον δὲ ἐν ἐλαχῖστοις καὶ πρῶτος ἀριθμὸς λόγος ὡς το' πρὸς τη' ἀμφότερον γὰρ αὐτῶν μέγιστον κοινῶν μέτρον ἐστὶν ὁ ζ' ἀριθμός, ὡστε τὸν μὲν λη' μετρεῖ τεσσαρακοστεκάκες, τὸν δὲ α' ἐνεδεκά- 25 καὶ δέ ὡστε τοῦ ἀπὸ τῆς διαμέτρου κῦκλου πρὸς τὸν ἐπὶ τοῦ κυκλοῦ κύλινδρον <λόγος ὡς το' πρὸς τη' τὸν δὲ ἐπὶ τοῦ κυκλοῦ κύλινδρον> ἀποδείκνυται Ἀρχιμήδης ἡμιάλιον τῆς ἐν αὐτῷ σφαιρᾶς· γίνεται ἄρα ὡμοῖο <δ> ἀπὸ τῆς διαμέτρου τοῦ.
mètre, est plus grand que le rapport de la sphère de 10 stades de hauteur à la sphère terrestre.

La sphère qui a pour diamètre la quarantième partie du diamètre d'un grain de mil est la 64 000e partie d'un grain tout entier. La montagne sphérique de 10 stades de diamètre vaut à peu près 524 stades cubes et toute la terre supposée sphérique vaut, en stades cubiques, 270 troisièmes myriades, 250 deuxième myriades, 4350 premières myriades, 8297 et la fraction 11/21.

En outre on démontre que le rectangle formé par le diamètre d'une sphère et la circonférence d'un grand cercle, développée en ligne droite, égale 4 fois la surface du quart de la sphère, lequel quart égale la surface du cercle. Le carré du diamètre est à la surface du cercle comme 14 est à 11 ; car la circonférence du cercle égale 3 fois le diamètre plus la septième partie de ce diamètre. Si le diamètre est 7, la circonférence est 22. Le quart de la circonférence est 5 + 1/2. Donc le carré du diamètre étant 49, le cercle ayant ce diamètre est 38 + 1/2; et si nous doublonons pour faire disparaître 1/2, le carré du diamètre étant 98, le cercle ayant ce diamètre sera 77. Or le rapport de ces nombres, exprimé en termes les plus petits et premiers entre eux, est celui de 14 à 11, car la plus grande commune mesure de ces deux nombres est 7 qui est contenue 14 fois dans 98 et 11 fois dans 77. Donc le rapport du cube du diamètre au cylindre circonscrit à la sphère, laquelle est contenue une fois et demi dans le cylindre, d'après Archimède, est aussi égal au rapport de 14 à 11. Ainsi donc quand le cube du diamètre du cercle sera 14, le cylindre circonscrit sera 11 et la sphère 7 + 1/3.

9 Les premières myriades valent 10 000 unités ; les deuxièmes en valent 10 000 fois 10 000 ou 100 000 000, et les troisièmes en valent 10 000 fois 100 000 000 ou 1 000 000 000. Le nombre précédent s'écrit, dans notre système de numération : 270 025 043 508 297 et 11/21.
χύλικον κύδος ι', τοιούτων ο μὲν κύλινδρος ια', ή δὲ σφαιρικά ζ' καὶ τριτοῦ.

διὰ δὲ ταῦτα εὐρίσκεται τὰ σφαιρικὰ στερεὰ τῆς τε γῆς καὶ τοῦ μεγίστου ὅρους τῶν προειρημένων ἀριθμῶν. τὸ ἄρα δεικτικὸ σταδίου ἔχον τὴν καθέτον σφαιρικῶν ὅρος πρὸς τὴν δικήν γῆν πολλῆς ἐλάττων λόγων ἔχει ἤπερ τὸ ἐξαισιμοτετρακτικόκυκλον μέρος τῆς κέγιορος πρὸς τὴν ἀπὸ τῆς ποδοῖας διαμέτρου σφαιρῶν· τὸ δὲ μὴ σφαιρικῶν ὅρος, ἀλλ' οὖν βλέπεται, τοιοῦ ἐλάττων τὸ δὲ τοιοῦτοι μέρος τῆς κέγιορος προστιθέμενον.

10 εξιδοθεν τῇ ποδοῖα σφαιρῆς ή 'ἰδίᾳ ἀφαιροῦμενον οὖν καὶ λανθάνουμεν οὖν ἤντινον ποιήσει διαφοράν. οὐδὲ ἄρα τῶν 1' σταδίων ἔχον τὴν καθέτον υψηλότατον ὅρος ἐστὶ πρὸς λόγων τοῦ μὴ σφαιρικῆς εἶναι τὴν πάσαν τῆς γῆς καὶ θαλάττης ἐπιφάνειαν.

15 ἡ περίμετρος τῆς γῆς ἐστὶ σταδίου κε' Μ β', ἡ δὲ διάμετρος η' Μ ρη' β', τὸ δ' ἀπὸ τῆς διαμέτρου τετράγωνον ΕΔ' Μ ΒΓ' Δ' Ε'. δὲ κύδος φε' ΜΜ ΜΚ' ΜΓ'. τοῦ δὲ κύδου τὸ τεσσαρεκακεντον λα' ΜΜ ΜΓ' ΜΚ' ΜΒ' καὶ ζ' καὶ τεσσαρεκακεντον. <οὐ τὸ ἐπιπλάσιον καὶ τριτη-

μόριον, ἦσον τῷ ὄγκῳ τῆς γῆς, στερεῶν σταδίων ἐστὶ σο' ΜΜΜ

ν' ΜΜ ΜΓ' ΜΚ' ΜΒ' καὶ ἐστὶ τοῦ τριτοῦ σταδίου μέρους, καὶ τοῦ ἐδώδουμον, καὶ τοῦ ἕνεικοστοῦ >.

δ. σφαιρικὴ δὲ ἐστὶν ἡ γῆ καὶ μέσῃ κεῖται τοῦ κόσμου.

15-22 ἡ περίμετρος-καὶ τοῦ ἕνεικοστοῦ] Καταγράφηκε κατακόμβα στοιχεία τούτοις. Το δέ στοιχείο τῆς γῆς ἐστὶ σταδίου κε' Μ β', ἡ δὲ διάμετρος η' Μ ρη' β', τὸ δ' ἀπὸ τῆς δια-

μέτρου τετράγωνον ΕΔ' Μ ΒΓ' Δ' Ε'. δὲ κύδος φε' ΜΜ ΜΚ' ΜΓ'. τοῦ δὲ κύδου τὸ τεσσαρεκακεντον λα' ΜΜ ΜΓ' ΜΚ' ΜΒ' <οὐ τὸ ἐπι-

πλάσιον καὶ τριτημόριον, ἦσον τῷ ὄγκῳ τῆς γῆς, στερεῶν σταδίων ἐστὶ σο' ΜΜΜ

ν' ΜΜ ΜΓ' ΜΚ' ΜΒ' καὶ τριτημόριον.> ἐν νομμίσματι δ' τὸ διάμετρος τῆς γῆς, ταύτης, δύο λόγων, ἐστὶν ἕνεικοστοῦ. Καθὸ δὲ τὸ διάμετρος τῆς γῆς, ταύτης, δύο λόγων, ἐστὶ νόμισμα, τὸ δὲ τὸ διά-

μετροῦ τριτημόριον καὶ τετράγωνον. Τούτων τὸ ὄγκος τῆς γῆς, στερεῶν σταδίων ἐστὶ σο' ΜΜΜ

ν' ΜΜ ΜΓ' ΜΚ' ΜΒ' καὶ τριτημόριον.> Εν νομμίσματι δ' τὸ διάμετρος τῆς γῆς, ταύτης, δύο λόγων, ἐστὶν ἕνεικοστοῦ. Καθὸ δὲ τὸ διά-

μετροῦ τριτημόριον καὶ τετράγωνον. Τούτων τὸ ὄγκος τῆς γῆς, στερεῶν σταδίων ἐστὶ σο' ΜΜΜ

ν' ΜΜ ΜΓ' ΜΚ' ΜΒ' καὶ τριτημόριον.> Εν νομμίσματι δ' τὸ διάμετρος τῆς γῆς, ταύτης, δύο λόγων, ἐστὶν ἕνεικοστοῦ. Καθὸ δὲ τὸ διά-

μετροῦ τριτημόριον καὶ τετράγωνον. Τούτων τὸ ὄγκος τῆς γῆς, στερεῶν σταδίων ἐστὶ σο' ΜΜΜ

ν' ΜΜ ΜΓ' ΜΚ' ΜΒ' καὶ τριτημόριον.> Εν νομμίσματι δ' τὸ διάμετρος τῆς γῆς, ταύτης, δύο λόγων, ἐστὶν ἕνεικοστοῦ. Καθὸ δὲ τὸ διά-

μετροῦ τριτημόριον καὶ τετράγωνον. Τούτων τὸ ὄγκος τῆς γῆς, στερεῶν σταδίων ἐστὶ σο' ΜΜΜ

ν' ΜΜ ΜΓ' ΜΚ' ΜΒ' καὶ τριτημόριον.> Εν νομμίσματι δ' τὸ διάμετρος τῆς γῆς, ταύτης, δύο λόγων, ἐστὶν ἕνεικοστοῦ. Καθὸ δὲ τὸ διά-

μετροῦ τριτημόριον καὶ τετράγωνον. Τούτων τὸ ὄγκος τῆς γῆς, στερεῶν σταδίων ἐστὶ σο' ΜΜΜ

ν' ΜΜ ΜΓ' ΜΚ' ΜΒ' καὶ τριτημόριον.> Εν νομμίσματι δ' τὸ διάμετρος τῆς γῆς, ταύτης, δύο λόγων, ἐστὶν ἕνεικοστοῦ. Καθὸ δὲ τὸ διά-

μετροῦ τριτημόριον καὶ τετράγωνον. Τούτων τὸ ὄγκος τῆς γῆς, στερεῶν σταδίων ἐστὶ σο' ΜΜΜ

ν' ΜΜ ΜΓ' ΜΚ' ΜΒ' καὶ τριτημόριον.> Εν νομμίσματι δ' τὸ διάμετρος τῆς γῆς, ταύτης, δύο λόγων, ἐστὶν ἕνεικοστοῦ. Καθὸ δὲ τὸ διά-

μετροῦ τριτημόριον καὶ τετράγωνον. Τούτων τὸ ὄγκος τῆς γῆς, στερεῶν σταδίων ἐστὶ σο' ΜΜΜ

ν' ΜΜ ΜΓ' ΜΚ' ΜΒ' καὶ τριτημόριον.> Εν νομμίσματι δ' τὸ διάμετρος τῆς γῆς, ταύτης, δύο λόγων, ἐστὶν ἕνεικοστοῦ.
C'est ainsi qu'on trouve les volumes exprimés en nombres de la sphère terrestre et de la plus haute montagne. Une montagne haute de 10 stades, qui serait une sphère, serait beaucoup plus petite par rapport à la terre, que la 64 000e partie d'un grain de mil, par rapport à une sphère d'un pied de diamètre. Or les montagnes ne sont pas sphériques, et, telles qu'on les voit, elles sont beaucoup plus petites. Mais une telle partie d'un grain de mil, qu'elle soit superposée sur une sphère d'un pied de diamètre, ou qu'elle en soit enlevée et placée dans un creux ne produira aucune différence de forme. Les montagnes les plus élevées ayant 10 stades ont le même rapport avec la terre, elles n’empêcheront donc pas que l'ensemble de la terre et de la mer ne soit réellement une sphère.

Le tour de la terre vaut donc 252 000 stades
le diamètre 80 482 — 15
le carré du diamètre 6 429 453 124 st. carrés
le cube 5 15 502 355 788 568 st. cubiq.
et le quatorzième de ce cube... 36 824 596 842 040 et 4/7.

<Le produit de ce nombre par 22/3 est égal au volume de la terre et vaut, en stades cubiques 270 025 043 508 297 et 11/21 communauté.*> 20

IV. La terre est sphérique et placée au centre du monde. Si elle était éloignée de cette position, elle n’aurait point de tout côté la moitié du ciel au-dessus d’elle et l’autre moitié au-dessous. De plus les lignes droites menées de tout point aux extrémités de la sphère céleste ne seraient pas égales. Que le volume de la terre n’ait aucun rapport sensible avec l’étendue de l’univers, qu’elle n’occupe qu’un point dans cet

20 Pour la rectification que nous avons faite des valeurs des différents résultats, voy. la note XVII.
Παραγγελθεῖτα γάρ κατὰ τὴν θετικήν όμως ἀπὸ παντὸς μέρους αὐτῆς τὸ μὲν ἡμιτοῦ τοῦ ὑόρανοῦ ὑποεράνῳ, τὸ δὲ ἡμιτοῦ ὤρ’ αὐτὴν ἔξει, οὐδὲ τὰς ἀπὸ παντὸς σημείου πρὸς τὸν ἐσχάτον ὑόρανον ἡκούσας εὐθείας ὑπερήναι καὶ μὴν ὧτι τοῦ μεγέθους οὐδένα λόγον

5 αἰσθητὸν ἔχει πρὸς τὸ πᾶς ἡ γῆ, σημείον δὲ τάξιν ἐπέγει, ὑήλαι καὶ τὰ τὸν <γνωμόνων> ἄκρα ἐπὶ χρώματος καὶ τόπων πάνων τῶν τῆς ὀικουμένης ὡς κέντρα τῆς ἡλιακῆς ὑποστήθειμα σφαίρας καὶ μηδ’ ἀντιστοὶ αἰσθητώς διὰ τοῦτο ποιούμενα τὴν παράλλαγήν.

εἰ γάρ ἐν μὲν ἐστὶ κέντρον ἀναγκαίος πρὸς τὰς ὄλας σφαίρας,

10 πάντα δὲ τὰ ἐπὶ τῆς γῆς σημεία ὡς τοῦτο ὑπάρχοντα φαίνεται, ὑήλαιν ὡς ὡλη γῆ <σημείου τάξιν ἐπέγει,> πρὸς τὴν ὄλην τοῦ ἡλίου σφαίραν καὶ πολλὰ τοῖς μᾶλλον πρὸς τὴν τῶν ἀπλανόν. ὡςτε καὶ διὰ τοῦτο ἀεὶ τὸ ἡμιτοῦ τοῦ κόσμου θεώρεσθαι ὑπὲρ αὐτῆς [βραγεῖ τινι μοῖραί].

15 καὶ περὶ μὲν σχῆματος τοῦ τε παντὸς καὶ τῆς γῆς, ἐτι δὲ τῆς τάκτης μέσης θέσεως καὶ τοῦ πρὸς τὸ πᾶς αὐτῆς ἄκρη- λου μεγέθους, εἰ καὶ πολλὰ ἐτι ὤν τε λέγειν, ἐξαιρεῖται πρὸς τὴν του εἴσχεξις παράδοσιν τὰ ὡς τοῦ 'Αδράστου τὸν εἰρήμε- νον ὑποδεδειγμένα πρότον. ἐν δὲ τοῖς εἴσχεξις φησι .

Περὶ τῶν ἐν τῇ ἀπλανεὶ σφαίρα κύκλων

εἰς χρομάνθης δὲ τῆς ὄραμας σφαίρας περὶ μένοντας τοὺς ἐκω- τῆς πόλους καὶ τὸν ἐπιζευγγύνα τοῦτος ἢξονα, περὶ δὲν μέσον ἐργύρεσθαι μέση ἡ γῆ, τὰ [δὲ] ἄστρα πάντα συμφερόμενα τάκτη καὶ ἀπλοῖς τὰ κατὰ τὸν ὑόρανον πάντα σημεία γράφει

25 κύκλους παραλλαγέους, τοῦτον ἢσον μὲν ἀπέχοντα ἀλλήλων, πρὸς ὀρθάς δὲ γνωμένους τῷ ἢξονα, ἀτε τοῖς τοῦ παντὸς πόλους

univers, les pointes des gnomons le montrent en tout lieu de la terre habité; elles peuvent en effet être prises pour centre de l'orbite solaire, car en changeant de lieu on n'observe aucun changement sensible. Si donc il y a nécessairement un centre pour l'ensemble de toutes les sphères, tous les points de la terre paraissent être ce centre. Il est donc évident que toute la terre n'est qu'un point par rapport à toute la sphère du soleil et à plus forte raison par rapport à la sphère des étoiles. C'est pour cela que la moitié du monde, ou à peu près, apparaît toujours à nos yeux.

Quoique nous puissions dire beaucoup d'autres choses sur la forme de l'univers et de la terre, sur la position centrale de celle-ci, ainsi que sur sa grandeur peu apparente par rapport à l'univers, ce qu'a démontré Adraste de la manière précédente suffira pour l'exposition de ce qui suit. Voici ce qu'il dit ensuite :

Des cercles célestes

V. La sphère céleste tournant autour des pôles immobiles et de l'axe qui les joint et au milieu duquel est fixée la terre, tous les astres emportés par cette sphère, et tous les points du ciel, décrit des cercles parallèles, c'est-à-dire partout équidistants, perpendiculaires à l'axe, et tracés des pôles de l'univers comme centres. On peut compter les cercles décrits par les étoiles, mais les cercles décrits par les autres points sont innombrables. On a donné à quelques-uns de ces cercles des noms particuliers qu'il est utile de connaître pour rendre compte de ce qui se passe au ciel.
μεταξύ δὲ τοῦ τε ἰσημερινοῦ καὶ τῶν ἀρχικῶν καθ' ἐκτέρων τροπικῶς, θερμώμας μὲν ὡς πρὸς ἡμᾶς ἐπὶ τὰ ἐνθίδε τοῦ ἰσημερινοῦ τεκτόμενος, θεμερινός δὲ ἐπὶ διάπερα, τὴν ἐπὶ τὰ τοῦ νότικε τε καὶ βόρεια πάροδον τοῦ ἥλιου τρέποντος. λοξὸς

"μέγιστος μὲν καὶ αὐτός κύκλος, τῶν μὲν τροπικῶν ἐφαπτόμενος καθ' ἐκτέρου σημείου, τοῦ μὲν θερμοῦ κατὰ καρχίνον, διάπερον δὲ κατ' αἴγακρον, δίγα δὲ τέμνων τὸν ἰσημερινόν καὶ αὐτός ὡς ἐκεῖνον διαχωριστόμενος κατὰ τὰ γχλας καὶ κριόν, ὑφ' ὄν ἡλιος τε φέρεται καὶ ή σελήνη καὶ οἱ λυσποι πλάνητες, φαίνον τοῦ τοῦ Κρόνου προσπρογενόμενος, ως δὲ τυς Ἥλιος, καὶ φαεθόν ὁ τοῦ Διός, ἐπὶ δὲ πυρέως, ὄν ἄρεως κυλούσιν, οἱ δ' Ἡρακλέους, καὶ φωστρόφος, ὃν φασιν Ἀρροδί-
Il y en a un au-dessus de nous, autour du pôle toujours apparent et lui-même toujours visible. On l’appelle cercle arctique, à cause des constellations des ourses qu’il traverse. Un autre, du côté opposé, égal au premier, autour du pôle que nous ne voyons jamais, est lui-même toujours invisible pour nous, on l’appelle cercle antarctique. Celui du milieu, qui est un grand cercle, divise toute la sphère en deux parties égales et s’appelle équinoxial, par ce que pour les régions correspondantes de la terre il y a égalité entre les jours et les nuits ; pour les autres lieux où l’on voit le soleil se lever et se coucher suivant le mouvement général de l’univers, les durées du jour et de la nuit sont égales quand le soleil décrit ce cercle.

Entre le cercle équinoxial et les deux cercles arctiques, il y a d’un côté le tropique d’été situé pour nous en-deçà du cercle équinoxial, et de l’autre côté le tropique d’hiver. Le soleil dans sa révolution se rapproche tantôt de l’un tantôt de l’autre. Entre ces deux cercles s’étend en effet obliquement le zodiaque.

της, τούτον δὲ καὶ ἐωτερόφρον καὶ ἑπτέρον ὑμοῦξι ν, πρὸς δὲ τούτοις στιλβοῦν, ὅν καλοῦσίν Ἱρμοῖ. ξ. λέγεται δὲ τις κύκλος ὁρίζων, ὁ διὰ τῆς ἡμετέρας ὑψίως ἐκδηλώμενος καὶ κατ᾽ ἐπιπρόσθεσιν τῆς γῆς <εἰς> ίσα δικαίων ὡς πρὸς ἀκύθεσιν τοῦ ὄλου οὐρανοῦ, τουτέστι τὸ τε φανερὸν ὑπὸ γῆς ἡμισφαίριον καὶ τὸ ἄρανες ὑπὸ γῆς, μέγιστος ὁμοίος καὶ τοὺς μεγίστους διαρθρομοῦν τὸν τε ἡσιμερινὸν καὶ τὸν ξυδικακὸν ὃν καὶ τῶν κατὰ διάμετρον άκτρον κατά συνεφίξαν ἢ ἰπτέρον μὲν ἐπὶ ἄνατολῆς ὀρίζει, θάτερον δὲ ἐπὶ ὁδύσεως. διαφερε δὲ ὀυτὸς ὁμός καὶ τὸν μεσημβρινὸν. γ. ἦστι γὰρ τις καὶ μεσημβρινὸς καλοῦμενος μέγιστος κύκλος, γραφόμενος μὲν διὰ τῶν πόλων τοῦ παντὸς ἀμφιτέρων, ὥρθες δὲ νοούμενος πρὸς τὸν ὁρίζοντα, καλείται <δὲ> μεσημβρινὸς οὖν ἐπειδὴ κατὰ μέσην ἡμέραν ἐπὶ τούτῳ γίνεται μετέωρος ᾧ ἡμίος. καλοῦσι δὲ ἐνιοῦ τούτον καὶ κύλουρον, ἐπειδὴ <τῷ> πρὸς τὸν ἄρανες πόλων μέρος αὐτοῦ ἐρ᾽ ἡμῖν ἐστὶ τάξιν. θ. ἄλλῳ δὲ μὲν ἡσιμερινὸς καὶ οἱ ἐκτέρωθιν τοῦτον τροπικοὶ δεδομένοι καὶ ἄρατοτές τοῖς μεγάλεσθε καὶ ταῖς θέσεις. δεδοθαι δὲ λέγεται τῇ θέσει σημεῖα τε καὶ γραμμαί, ἃ τὸν αὐτὸν ἢ τὸν ἐπέχει οὖ ν ἐγέθει δεδομένα γιορία τε καὶ γραμμαί καὶ γιορία λέγονται, οἷς δυνάμεα ήτα πορίσασθηκαί, δὲ τοῦ ἡσιμερινοῦ κύκλου καὶ οἱ ἐκτεταθεῖν τροπικοὶ ἢ τὸν αὐτὸν ἐπέγυντο τάτους ἀρατοτές εἰσι, καὶ ἵππους αὐτοῖς οὖν τε πορίσασθηκαί, τοῦ μὲν ἡσιμερινοῦ τὸν τὸν ξυδικακὸν καὶ τὸν ὁρίζοντα καὶ τὸν μεσημβρινὸν, τῷ δὲ ἡσιμερινοῦ τὸν θερινὸν καὶ τῷ θερινοῦ τὸν χειμερινὸν ὀχύρως διὰ τούτῳ ἢ ἐστὶ δεδομένοι, ὅτι οὐκ ἐρ᾽ ἡμῖν ἐστὶ τοιοῦτε ἢ τηλικοῦσθε ὑπο—

VII. On appelle horizon le cercle qui borne notre vue et divise, ainsi qu'on le voit, la terre faisant obstacle, le ciel tout entier en deux parties égales: l'une au-dessus de la terre est l'hémisphère visible, l'autre au-dessous est l'hémisphère invisible. Comme c'est aussi un grand cercle de la sphère, il coupe en deux parties égales les grands cercles tels que l'équinoxial et le zodiaque. Si deux astres sont diamétralement opposés, quand l'un se lève l'autre se couche. L'horizon partage aussi le méridien en deux parties égales.

VIII. Car il y a un autre grand cercle, nommé méridien, qui passe par les deux pôles du monde et que l'on conçoit perpendiculaire à l'horizon. On le nomme méridien par ce que le soleil le coupe au milieu du jour, étant au point le plus élevé de sa course au-dessus de l'horizon. On le nomme quelquefois colure*, parce qu'une de ses parties, celle qui est du côté du pôle invisible, est cachée pour nous.

IX. L'équinoxial et les deux tropiques situés de part et d'autre sont des cercles donnés et fixes de grandeur et de position. On dit que des points et des lignes sont donnés de position, quand ils occupent toujours le même lieu; on dit que des surfaces, des lignes, des angles, sont donnés de grandeur, quand on peut trouver des grandeurs égales. Or l'équinoxial et les deux tropiques placés de part et d'autre ont toujours la même position, sont toujours fixes, et on pourrait trouver des cercles égaux: le zodiaque, l'horizon et le méridien étant égaux à l'équinoxial, et le tropique d'été étant égal au tropique d'hiver et réciproquement. C'est pour cela qu'ils sont toujours donnés; il n'est pas en notre pouvoir de les rendre tels ou tels; ils sont naturellement tels; ils sont donnés, nous ne les donnons pas tels.

15 Colure de κόλος, o5, ov, tronqué et οὐρά, queue.
τη ἡπεὶ ἀστρολογίας

στήσασθαι αὐτοὺς, ἀλλὰ τῇ φύσει ὑποκείμενοι τοιούτοι καὶ δεδομένοι, καὶ μὴ ἡμεῖς δῷμεν.

οὐ δὲ ἐφ' ἡμίν ἐστὶ δῷναι αὐτὰ ἡ τοια τοια εἶναι, τάτα τῇ [δὲ] φύσει οὐκ ἐστὶ δεδομένα. φύσει οὖν δεδομένοι τοὺς ἐστὶν ὑψοστῶτες καὶ ἀραρότες ὁ τ' ἰστημερυνός καὶ οἱ ἐκατέρωθεν καὶ τῇ θεσεῖ καὶ τοῖς μεγάλεσθαι. οὐ δὲ ἤρωικός τῷ μὲν μεγάλεσθαι θέται καὶ τῇ κατ' αὐτῶν τοῦ οὐρανοῦ θέσει, τῷ δὲ πρὸς ἡμᾶς οὐ δῆδοται τῇ θέσει μεταπίπτει γὰρ ὡς πρὸς ἡμᾶς, διὰ τὴν ἐν τῷ παντὶ λάξισθαι ἀλλοτρίῳ ἀλλιώς ἴστάμενοι

ὑπὲρ ἡμᾶς.

μεσθημερινός δὲ καὶ ὁρίζων τῷ μὲν μεγάλεσθαι δεδομένοι, μέγιστοι γάρ, τῇ δὲ θέσει μεταπίπτοντες καὶ ἐκατον κλίμα τῆς γῆς, ἄλλοι παρ' ἄλλους γνώμενοι οὐ συγγράφτει τοῖς ἐπὶ τῆς γῆς ὁ αὐτός ὁρίζων, οὕτω πάντως τῷ αὐτῷ μεσοπράξισμα,

οὔθ'/ ἐκάστῳ ἐστὶν οὐ <αὐτὸς> μεσθημερινός. οἱ μέν τοῖς πόλοις, ὁ τε ἀρχικός καὶ ὁ ἀντικήκοντες, οὕτω τοῖς μεγάλεσθαι δῆδονται οὐτε τοῖς θεσεῖς κατὰ δὲ τὴν διαφορὰν τῶν νομισμάτων καὶ βορειοστέρων κλιμάτων παρ' οἷς μὲν μείζονες, παρ' οἷς δὲ ἐλάκτονες ὀρφωνται, καὶ κατὰ μέσην μένοι τὴν γην, ποτέ γε κατὰ τὴν ὑπὸ τοῦ ἰστημερυνὸν λεγομένην ζώνην διὰ καθὼς ἀκοιχητόν, οὐθ'/ ὄλοις γίνονται, τῶν πόλων ἁμαρτέρων ἐκεῖ φαινομένων καὶ τοῦ ὁρίζοντος δὲ αὐτῶν ἐκπιπτοντος. εἰσὶ δὲ οὗ καὶ τὴν σφαίραν ἀρήν κινεῖται, πάντων τῶν παραλλήλων ὁρθῶν γενομένων ὡς πρὸς ἑκείνους τούς ὄποιος

τῆς γῆς.

1. ἐν τοῖς οἷς ἄλλοι κύκλων ἐκκεντούν ὑπῆς ἐστὶν κύκλος ὑπὸ μιᾶς ἐρημομείζον τετεινομένος. οὐ δέ λεγόμενος ζῳδικός ἐν πλάτει τυντε φαίνεται καθάπερ τυμπάνῳ κύκλος, έφ' οὐ καὶ εἰσδελαποεῖται τὰ ζῷδια. τούτω δὲ οὗ μὲν διὰ μέσου λάγηται

τῶν ζωδίων, ὅτις ἐστὶ καὶ μέγιστος καὶ τῶν τροπικῶν ἐφαπ-

26 Titre : peri τοῦ ζῳδικοῦ. Cf. Chaldéus, LXVII.
Quant à ceux qu'il est en notre pouvoir de rendre tels ou tels, ils ne sont pas naturellement donnés. Ceux qui sont naturellement donnés, c'est-à-dire qui sont fixes, et qui existent par eux-mêmes, sont l'équinoxial et les cercles situés de part et d'autre, donnés de grandeur et de position. Le zodiaque est un cercle donné de grandeur et de position par rapport au ciel, mais par rapport à nous, il n'est pas donné de position. Pour nous, en effet, il n'est pas fixe, à cause de son obliquité dans l'univers, qui nous le montre changeant de place.

Le méridien et l'horizon sont aussi donnés de grandeur, car ce sont des grands cercles de la sphère céleste, mais ils changent de position suivant le climat et sont différents dans les différents lieux de la terre. Nous n'avons tous en effet ni le même horizon, ni la même ligne méridienne, ni le même méridien. Quant aux cercles arctique et antarctique qui sont voisins des pôles, ils ne sont donnés ni de grandeur ni de position* : suivant la différence des climats plus septentrionaux ou plus méridionaux, on les voit plus grands ou plus petits. Mais pour la région moyenne de la terre, c'est-à-dire pour la zone qui se trouve sous la ligne équinoxiale et qu'on ne peut habiter à cause de la chaleur, il n'en est pas de même : les deux pôles apparaissent aux extrémités de l'horizon, et on dit quelquefois que la sphère est droite par ce que dans cette région de la terre tous les cercles parallèles sont perpendiculaires à l'horizon.

X. Chacun des autres cercles est un véritable cercle terminé par une seule ligne ; mais celui qu'on appelle zodiaque montre une certaine largeur, comme le cylindre d'un tambour ; des figures d'animaux sont imaginées sur ce cylindre. On appelle cercle du milieu des signes le grand cercle qui tou-

17. On appelait cercle arctique dans chaque lieu le parallèle limite des étoiles toujours visibles dans ce lieu, et cercle antarctique le parallèle limite des étoiles toujours invisibles.
Περὶ τῶν ἀπλανῶν

5 "οι μὲν οὖν πολλοὶ καὶ ἀπλανεῖς ἀστέρες τῇ πρώτῃ καὶ μεγίστῃ καὶ τῷ πάν ἐξωθεὶν περιεχοῦσι σφαιρὰ συμπεριφέρον- ται μίαν καὶ ἄπλην ἐγκύκλιον κίνησιν, ὡς ἐνεστηριγμένοι τευτῇ καὶ ὑπ᾽ αὐτῆς φερόμενοι, δέστι τὸ <μίαν> καὶ ἂεί τῆν αὐτήν ἐν τῇ σφαιρῇ διαφυλάττοντες καὶ τὴν πρὸς ἀλλή- λοις τάξειν ὁμοίαν, μηδὲ ἤγινον έτέραν μεταβολὴν ποιούμενοι μήτε σχήματος ή μεταναστάσεως μήτε μεγέθους ή γραμμάτως.

Περὶ τῶν πλανῆτων

13 οὐκ ἂν αὐτῶν πάντως ἀστέρες καλοῦμενοι πλάνηται συναποφέρονται μὲν ὑπὸ τοῦ παντός τῆν ἀπὸ ἄνω λόγῳ ὥστιν φοράν καὶ ἠ ἐκάστην ήμέραν, καθὼς καὶ οἱ ἀπλανεῖς, φαίνονται δὲ καὶ ἀκόμη ήμέραν πολλαὶ καὶ ποικιλὰς ἄλλας ποιούμενοι κινήσεις. ηὗ τῷ γὰρ τὰ ἐπομένων τῶν ξυριῶν μετηκι καὶ οὐκ εἰς τὰ προηγούμενα κατὰ τὴν ἴδιαν πορείαν, ἀντιφερόμενοι <τῷ> παντὶ τῇ κατὰ μήκος αὐτῶν λεγομένην φοράν, καὶ ἀπὸ τῶν βορείων ἐπὶ τὰ νότια καὶ ἀνάπαλιν τρέπονται, τὴν κατὰ πλάτος ποιούμενοι μετάβασιν, ἀπλῶς δὲ ἄπαν τοῦ θερινοῦ τροπικοῦ πρὸς τὸν γεωμερινὸν καὶ ἀνάπαλιν φερόμενοι διὰ τὴν τοῦ ξυρικοῦ λόξωσιν τούτως ὑφ᾽ ὁμοίως ἑκατέρωται.

καὶ ἐν αὐτῷ τῷ πλάτει τοῦ ξυρικοῦ ποτὲ μὲν βορειότεροι

che les deux tropiques en un point de chacun d’eux, et coupe le cercle équinocialement en deux parties égales. Les deux cercles qui limitent de part et d’autre la largeur du zodiaque sont plus petits que le cercle du milieu.

Des étoiles

XI. La plupart des astres sont fixes ; ils sont emportés ensemble par un mouvement circulaire unique et simple, avec la première sphère qui est la plus grande, comme s’ils lui étaient fixés et s’ils étaient mus par elle. Ils ont toujours la même position relative sur la sphère, conservent entre eux le même ordre et n’éprouvent aucun changement de forme ni de mouvement, de grandeur ni de couleur.

Des planètes

XII. Le soleil, la lune et les autres astres qu’on nomme errants sont emportés avec l’univers dans le mouvement diurne, d’orient en occident, de même que les étoiles fixes. Mais en dehors de ce mouvement, ils paraissent chaque jour en avoir plusieurs autres. Car, par un mouvement qui leur est propre, ils vont aux signes qui les suivent (dans le mouvement diurne) et non aux signes qui les précèdent, entraînés en sens contraire de l’univers, dans une course qu’on appelle mouvement en longitude. De plus, ils ont un mouvement en latitude, du nord au midi et réciproquement, tout en accomplissant leur course en sens contraire du mouvement de l’univers. Les observateurs attentifs les voient emportés du tropique d’été au tropique d’hiver et réciproquement, à travers l’obliquité du zodiaque.

Et dans la largeur du zodiaque, on les voit tantôt plus au nord du cercle du milieu, tantôt plus au midi ; les uns s’abaissent plus, les autres moins. En outre ils varient de grandeur, étant tantôt plus éloignés, tantôt plus rapprochés de
τοῦ δὲ μέσου φαινόμενοι καὶ ύψοῦσθαι λεγόμενοι, ποτὲ δὲ νοτιώτεροι καὶ ταπεινοῦμενοι, καὶ τοῦτο οἱ μὲν πλείον, οἱ δὲ ἐλαττον, ἄτι δὲ καὶ τοῖς μεγέθεσι διαλλάττοντες, διὰ τὸ ποτὲ μὲν ἀπογεώτεροι, ποτὲ δὲ σύνεγγυς ἡμῖν ἐν τοῖς βάθεις φέρεσθι.

5 διὰ δὲ τούτῳ καὶ τὸ τάχος τῆς κινήσεως διὰ τῶν χρόνων ἀνώμαλον φαίνονται πιοῦμενοι, τὰ ἐνα διαστήματα μὴ ἐν ἑστι χρόνοις παραλλάττοντες, ἄλλα δὲ τὸν μὲν ὅταν καὶ μέγιστοι δοκοῦσι διὰ τὸ προσείωτεροι καθίστασθαι, βραδύτερον δὲ ὅταν καὶ μικρότεροι διὰ τὸ γίνεσθαι ἀπόγευοι.

10 τὸ δὲ ἐν αὐτῷ τῷ χρονικῷ πλάστος τῆς μεταβάσεως ἢ μὲν ἡλιος βραχύς τι παντάπασιν ὁράται, τὸ πάντων περὶ μίαν μοῖραν τῶν τῆς ἡ δὲ σελήνη, καθὼς ὁ ἀρχικός φασι, καὶ ὁ φωσφόρος πλεῖστον, περὶ γὰρ μοῖρας ἢ τεῖ στιλβὸν δὲ περὶ μοίρας ἢ πυρέως δὲ καὶ φαέθων περὶ μοίρας ἡ φαινόν δὲ περὶ μοίρας γ'. ἄλλα σελήνη μὲν καὶ ἡλιος ἄτιν ἕτερον τοῦ διὰ μέσου ἐν τοῖς χρόνοις κατὰ πλάστος φαίνονται χωρεῖν, τῶν δὲ ἀλλ' ἐκαστὸς οὐκ ἔτην, ἄλλ' ἐν τινι μὲν βορειώτατος, ἐν τινι δὲ νοτιώτατος γίνεται.

20 τοῦ δὲ τῶν χρόνων κύκλον κατὰ τὸ μῆκος ἀπὸ σημείου ἕτη 25 εἰπέτοις ἵδρομοι ἡλιος ἐισίν, ἄτι περὶ τοῦτον ὅρμουνοι · διὸ καταλαμβάνουσι τε αὐτὸν καὶ καταλαμβάνονται πυρῶς δὲ ὅλιγον δεῖν διετία, καὶ φαέθων μὲν σύνεγγυς ἐτείς ὅδεκα, φαινόν δὲ παρ' ὅλιγον ἐτείς λ'.

25 διὸ καὶ τὰς πρὸς τὸν ἡλίον συνόδους καὶ φάσεις καὶ χρύσως 30 ψεις, διὸ καὶ αὐτὰς ἀνατολάς καλοῦσι καὶ δύσεις, οὐ γὰρ ὁμοίως

11 παντάπασιν ὁράται] παντάπασι φέρεται Η. Martin.
la terre dans les profondeurs de l'espace. C'est pour cela que la vitesse de leur mouvement à travers les signes parait inéquale : ils ne parcourent pas des espaces égaux dans des temps égaux ; ils vont plus vite quand ils paraissent plus grands à cause de leur moins grand éloignement de la terre, ils vont moins vite quand ils paraissent plus petits à cause de leur plus grand éloignement.

La distance parcourue sur le zodiaque, est faible pour le soleil, car elle est à peu près d'une division sur 360. Pour la lune, comme les anciens astronomes l'ont dit, et pour Vénus, elle est plus grande, car elle est de 42 divisions environ. Mercure en parcourt environ 8, Mars et Jupiter 5 environ et Saturne à peu près 3. La lune et le soleil paraissent s'écarter également chacun en latitude du cercle du milieu des signes. Les autres planètes ne s'en écartent pas également, elles sont plus septentrionales dans quelque signe, plus méridionales dans quelqu'autre.

Quant à la longueur du cercle des signes, d'un point fixe à ce même point, la lune, allant vers les signes suivants et non vers les signes précédents, la parcourt en 27 jours et un tiers, le soleil en une année qui vaut approximativement 365 jours et un quart; Vénus et Mercure vont d'un mouvement inégal, mais peu différent de durée, et pour tout dire ils ont la même vitesse que le soleil, puisqu'on les voit toujours à côté de lui, le suivant tantôt et tantôt le précédant. Mars achève sa course en un peu moins de 2 ans, Jupiter en 12 ans environ et Saturne en un peu moins de 30 ans.

Les conjonctions avec le soleil, les apparitions et les disparitions, qu'on appelle les levers et les couchers, ne sont pas les mêmes pour toutes les planètes. La lune, en effet, après sa conjonction avec le soleil, ayant un mouvement
τάντας ποιοῦνται. σελήνη μὲν γὰρ μετὰ τὴν πρὸς τὸν ἅλιον σύνοδον, ἐπειδὴ θάττον αὐτοῦ τὴν εἰς τὰ ἐπόμενα πουεῖται κίνησιν, ἂι ἐστερικὰ πρῶτως φαινομένη καὶ ἀνατέλλουσα, ἔφα κρύπτεται καὶ δύνει. φαίνων δὲ καὶ φαίνουσα καὶ πυρότες ἀνά-παλιν ἐπειδὴ βράδιον ἥλιον τὸν τῶν ζωφῶν ἀνώστους εἰς τὰ ἐπόμενα κόλπον, οἷον αὐτοῖ καταλαμβανόμενοι ὑπ' αὐτὸ καὶ παριέμενοι, ἂι ἐστιν αὐτὸ δύναντος [πᾶς] ἐφοί ἀνατέλλουσιν.

ι. ὁ φωσφόρος δὲ καὶ στίλβων ισόδρομοι ὄντες ἥλιῳ καὶ περί αὐτὸν ἂι βλεπόμενοι, καταλαμβανόμενοι αὐτόν καὶ κατα-

λαμβανόμενοι ὑπ' αὐτὸ, ἐκατέρως ἐστιν αὐτὸ ἀνατελαντες ἐστὶν πάλιν κρυπτόντα, ἐφοὶ δὲ φανέντες ἐφοί δύνανται καὶ ἀπαλίζονται. τῶν γὰρ ἄλλων πλανωμένων ἅπα τοῦ ἡλίου πάν ἀπόστημα ἄφιστομένων καὶ κατὰ διάμετρον αὐτὸ ποτε γινομέ

νοι, οἱ δύο οὕτω ἂι περί τὸν ἡλίον ὀρῶνται, στίλβων μὲν

κ' τοῦ μοίρας, τουτέστιν ἐγγυτα δύο μέρη ζωφᾶς, τὸ πλεί-

στον ἀνατολικότερον ἢ δυσμικότερον αὐτοῦ γινόμενος, ὃ ἐκ τῆς Ἀφροδίτης περὶ ν' μοίρας πρὸς ἀνατολικῆς ἢ ὅπειρες ἀφιστα-

μενος.

ι. ἀνατολή δὲ λέγεται πλευσαμής: κυρίως μὲν καὶ κοι-

νως ἐπὶ τε ἡλίου καὶ τῶν ἄλλων ἄστρων ἡ πρώτη ἀναφορά ὑπὲρ τοῦ ὀρίζοντα: ἄστερον δὲ πρῶτον ἐπὶ τῶν ἄλλων ἡ πρώτη φαίνει ἐκ τῶν τοῦ ἡλίου αὐγῶν, ὅτι καὶ κυρίως <φαίης> ὀνομάζεται: λοιπὴ δὲ ἢ καλουμένη ἀκρόνυχος, ἐπειδὴ ἡ ἡλίου ὀρίζοντος τὸ κατὰ διάμετρον ἄστρων ἐπὶ τῆς ἀνατολῆς βλέπη-

ται: καλεῖται δὲ ἀκρόνυχος, ἐπειδὴ ἢ τοιαῦτα ἀνατολὴ γίνε-

ται ἄκρας νυκτὸς, τουτέστιν ἀργυρομένης. παραπλησίως δὲ καὶ ὅπειρες κοινώς μὲν ἡ πρώτη κάθοδος ἢ ὅπο τοῦ ὀρίζοντα: τρό-

8 Τίτρες: περὶ τῶν ἡλίου ἱσοδρόμων (des astres qui ont un mouvement égal à celui du soleil). Cf. Chalcidius, LIX. — 15-16 τὸ πλείστου... γινόμενος]. On lit dans Chalcidius: vel ad aquilonem vel nonnullum ad austrum propen-

sion. Si cette version est exacte, il faut dans le texte: τὸ πλείστον βαρειότερον ἢ νοτιότερον αὐτοῦ γενόμενος (très souvent plus septentrional ou plus méridi-

plus rapide que lui vers les signes qui suivent, apparaît
d'abord et se lève le soir, tandis qu'elle disparaît et se cou-
che le matin. Inversement Saturne, Jupiter et Mars qui arri-
vent moins vite que le soleil aux signes suivants sont pré-
cédés et devancés par lui, c'est-à-dire que ces planètes se
 couchent toujours le soir et se lèvent le matin (aprèrs la con-
jonction).

XIII. Vénus et Mercure qui ont un mouvement égal à celui
du soleil, paraissent toujours auprès de lui ; tantôt ces deux
astres le suivent, tantôt ils le précèdent ; tantôt ils paraissent
le soir et disparaissent aussi le soir, tantôt ils paraissent à
l'aube naissante et disparaissent avec le jour. Tandis que les
autres planètes s'éloignent du soleil, de tout intervalle, jus-
qu'à ce qu'elles lui soient diamétralement opposées, ces deux
astres au contraire sont toujours vus auprès de lui. Mercure
s'en écarte de 20 degrés environ, c'est-à-dire à peu près de
deux tiers de signe, soit vers l'orient, soit vers l'occident ;
Vénus s'en écarte de 50 degrés environ à l'orient et à l'oci-
dent.

XIV. Le lever se fait de plusieurs manières : d'abord pro-
prement et communément, pour le soleil et les autres astres,
par leur élévation au-dessus de l'horizon ; ensuite pour ceux-
ci par leur éclat commencé à se distinguer des rayons du
soleil, ce qui est encore proprement une manière de se lever.
Reste encore le lever appelé lever à la nuit tombante, qui se
produit à l'orient après le coucher du soleil, dans la partie
du ciel diamétralement opposée. On l'appelle « ἀκρόνυγγος »
parce qu'il se fait à une extrémité de la nuit, c'est au com-
mencement. Pareillement le premier coucher est la descente
au-dessous de l'horizon. Ensuite il y a le coucher produit
par la diffusion de l'éclat de l'astre dans les rayons lumineux
du soleil ; on l'appelle aussi proprement une disparition.
Reste encore le coucher dit coucher de la pointe du jour,
quand le soleil se levant, un astre disparaît dans la partie de
l'horizon diamétralement opposée.

15
πον δὲ ἄλλον ὁ πρώτος ἀφανισμὸς ἀστρον τινὸς ὑπὸ τῶν τοῦ ἡλίου αὐγῆς, ἦτε καὶ κυρίως κρύφις τάλιν προσκηρομένη· λοιπὴ δὲ καὶ ἀκρόνυχος, ἐπειδὴν ἡλίου ανατέλλοντος τὸ κατὰ διάμετρον ἄστρον ἀντικαταστάθη.

8 τῶν δὲ διὰ τὰς τοῦ ἡλίου αὐγῆς λεγομένων ἀνατολῶν καὶ ὅστεων, τούτους φαύσεων καὶ κρύφεων, αἱ μὲν εἰσὶν ἑξαί, αἱ δὲ ἐστέρια. ἐφ᾽ ὑμῖν ἐστὶν ἀνατολὴ ἄστρον, ἐπειδὴν ἐκφεύγον τὰς τοῦ ἡλίου αὐγῆς προανατέλλουν αὐτοῦ πρῶτος ὀραθῆ, καθάπερ καὶ ἴ τοῦ κυνὸς ἐπτολῆ λέγεται ἐσπερία.

10 δὲ, ἐπειδὴν μετὰ τὴν ὄστην τοῦ ἡλίου πρῶτος φαυνῇ, καθάπερ τὴν σελήνην ταῖς νεομηνίαις φαμέν ἀνατέλλειν. παραπλησίως δὲ καὶ ὁστείς ἔξαι μὲν, ἐπειδὴν ταῖς ἐμπροσθιν ἡμέραις τι προανατέλλοι ἡλίου συνεγράτακτος αὐτῷ πρῶτος ἀφανισθῆ, καθάπερ ἴ σελήνη ἐσπερία δὲ, ἐπειδὴν ἐπικατακυριομένῳ τινὶ συνεγράτας ὁ ἡλίος πρῶτος διὰ τὰς αὐγής ἀφανές αὐτὸ καταστήσῃ.

Περὶ θέσεως τῶν πλανωμένων

<καὶ περὶ τῆς τῶν ἀστρων συμφωνίας>

16 τὴν δὲ κατὰ τόπον τῶν σφαιρῶν ἡ κύκλων θέσιν 20 τέ καὶ τάξιν, ἐν οἷς καίμενα φέρεται τὰ πλανώμενα, τινὲς μὲν τῶν Πυθαγορείων τοιάνδε νομίζουσιν· προσγεώτατον μὲν εἶναι τὸν τῆς σελήνης κύκλων, δεύτερον δὲ ὑπέρ τούτον <τὸν τοῦ> Ἐρεμοῦ, ἐπεὶ τὸν τοῦ φωσφόρου, καὶ τέταρτον <τὸν> τοῦ ἡλίου, εἴτε τὸν τοῦ ᾿Αρεως, ἐπεὶ τὸν τοῦ Διός, τελευ- 25 τάξιν δὲ καὶ σύνεγγυς τοῖς ἀπλανέτει τὸν τοῦ Κρόνου· μέσον εἶναι βούλομενοι τὸν τοῦ ἡλίου τῶν πλανωμένων ὡς ἡμέραι- κώτατον καὶ οἶκον καρδίαν τοῦ πνεύματος. μημύη δὲ ταῦτα καὶ ᾿Αλέξανδρος ὁ Ἀῖτωλος, λέγων οὕτως.

Parmi les levers et les couchers dépendant du soleil et de ses rayons, c'est-à-dire parmi les phénomènes d'apparition et de disparition, les uns se font le matin, les autres le soir. Le lever de l'astre est au matin, lorsque l'astre précédant les rayons du soleil paraît avant lui à l'orient, comme le lever du Chien. Le lever est au soir, quand l'astre commence à paraître après le coucher du soleil, comme nous l'avons dit de la lune nouvelle. Pareillement le coucher est au matin quand l'astre, qui les jours précédents se levait avant le soleil, comme la lune, cesse de paraître à son approche; le coucher est au soir, quand le soleil étant tout près d'un astre à l'occident, celui-ci est invisible à cause du rayonnement voisin.

De l'ordre des planètes et du concert céleste

XV. Relativement à la position et à l'ordre des sphères ou des cercles sur lesquels sont emportées les planètes, voici l'opinion de certains Pythagoriciens. Le cercle de la lune est le plus rapproché de la terre, celui de Mercure est le deuxième au-dessus, puis vient celui de Vénus, celui du soleil est le quatrième, viennent ensuite ceux de Mars et de Jupiter, celui de Saturne est le dernier et le plus rapproché des étoiles. Ils veulent, en effet, que le cercle du soleil tienne le milieu entre les planètes, comme étant le cœur de l'univers et le plus apte à commander. Voici ce que déclare Alexandre d'Étolie:
καὶ γὰρ τοῦτο Πιθαγόρειον, τὸ καθ' ἀρμόνικν ἐκφεύγει τὸν κόσμον καὶ κατὰ τοὺς τῶν ἡρμοσμένων καὶ συμφώνων φθόγγων λόγους διεστῶτα τὰ οὐράνια τῇ βούμη καὶ τῷ τάχει τῆς φορᾶς ἡρμοσμένους καὶ συμφώνους φθόγγους ἀποτελεῖν. οὔτε καὶ ἐν τοῖς ἑρεξείς φησιν Ἀλέξανδρος.

καὶ μὲν οὖν ὑπάτη τε βαρεῖα τε μεσσοῦ ναείν ἀπλανέων δὲ σφαῖρα συνημμένῃ ἔπλετο νήτη· μέσσην δὲ ἡλίου πλαγιῶν θέσιν ἐστηθεν ἄστρων· τοῦ δὲ ἀπὸ δὴ ψυχρός μὲν ἔχει διὰ τάσσαρα κύκλος·

κεῖνον δὴ ἡμίτονον φαινόν ἀνίκητο χαλασθείς, τοῦ δὲ τόσον φαέθων ὅσον ὅρμισεν Ἰταύρος ἦλιος· ἡλίους δὲ ὑπὸ τούτο τῶν τερψύμβροτος ἤσχει, ἂγίλης δὲ ἡλίου τρυπμίτονον Κυθέρεια· ἡμίτονον δὲ ἦπο τῷ στείλων φέρεθ' Ἐρμείακο.

τόσον δὲ χροσθείσα φύσιν πολυκαμέτα μήν· κέντρου δὲ ἡκάλιον θέσιν διὰ <πέντε> ἐλάχις γνών·

« Les sphères sont de plus en plus élevées ;
« la lune divine est la plus proche de la terre ;
« la seconde est Stilbon, astre de Mercure inventeur de la lyre ;
« vient ensuite Lucifer, astre brillant de la déesse de Cythère ;
« au-dessus est le soleil trainé par des chevaux, et qui occupe le quatrième rang ;
« Pyroïs, astre du cruel Mars de Thrace, est le cinquième ;
« Phaéton, astre brillant de Jupiter, est le sixième ;
« et Phénon, astre de Saturne, près des étoiles, est le septième.
« Les sept sphères donnent les sept sons de la lyre
« et produisent une harmonie, (c'est-à-dire une octave), à cause des intervalles qui les séparent deux à deux. »

D'après la doctrine de Pythagore, le monde étant, en effet, harmonieusement ordonné, les corps célestes qui sont distants deux à deux selon les proportions des sons consonants, produisent, par leur mouvement et la vitesse de leur révolution, les sons harmoniques correspondants. C'est pour cela qu'Alexandre s'exprime ainsi dans les vers suivants :

« La terre au centre donne le son grave de l'hypate ;
« la sphère étoilée donne la note conjointe ;
« le soleil placé au milieu des astres errants donne la mèse ;
« la sphère de cristal donne la quarte par rapport à lui ;
« Saturne est plus bas d'un demi-ton ;
« Jupiter s'écarte autant de Saturne que du terrible Mars ;
« le soleil, joie des mortels, est d'un ton au-dessous ;
« Vénus diffère d'un trihémiton du soleil éclatant ;
« Mercure roule d'un demi-ton inférieur à Vénus ;
« vient ensuite la lune qui donne à la nature des teintes si variées ;
« enfin, la terre au centre donne la quinte par rapport au soleil ;
αὖτι πεντάξωνος ἀπ’ ἡρός εἰς φλογόν εἰρ πῷρ ἁμοσθεῖτ' ἀκτές τυρώς κραυρῆθ' τε πάγνας ὦμανον εἴξατον τόν τον ἐσχῆσα τὸν διὰ πασῶν τοῖς τοι ηερήνα. Δίδα παῖς ἤρμοσεν Ἡμῆς, ἐπτάτων κλήροιν, θεομήττορός εἰκόνα κόσμου.

ἐν δὲ τούτοις τῷ μὲν τάξιν τῶν σφαιρῶν ἥν βεβούληται μεμήνυσεν, τῷ δὲ διάστασιν αὐτῶν καὶ τῇ ἄλλῃ σχεδόν πάντα φαίνεται εἰκή πεποιηθείσην. τῇ γὰρ λύμαν εἴςαρθρόν λέγων εἰκόνα κόσμου συντήρουσα τόν Ἡμῆς καὶ ἐν τῇ διὰ πασῶν ἡρμοσμένην συμφορά τὸ πάν εννεάρθρον συνίστησιν, ἐξ μέντοι τῶν περιέχον.

καὶ τὸν μὲν τῆς ὑπάτης φλόγην ἀποδίδωσι τῇ γῇ, ὡμέν βεβοτάτα τῶν ἄλλων ἐστὶν ἀὐτὴ καὶ λέγει ἐπὶ τοῦ μέσου ἐστὶν ἄκινητος, ὧνοι ὄλοι ποιεῖ φλόγην τὸν δὲ τῆς συνημμένης νῆς τῇ τῶν ἀπλακών ἀποδίδωσι σφαίρα, καὶ τούτων μεταξὺ τῆς τῆς ἀποδίδοσι σφαίρα, καὶ τούτων μεταξὺ τῆς τῆς μέσης ἀποδίδωσι τῷ ἁλώ, τῆς ὑπάτης οὔτε πρὸς τὴν μέσην διὰ πέντε συμφωνουσῆς, ἀλλὰ διὰ τεσσάρων, οὔτε πρὸς τὴν συνημμένην νῆται διὰ πασῶν, ἀλλὰ πρὸς τὴν διεξευγμένην.

τὸ τῶν σύστημα οὔτε κατὰ διάκονον γένος ἁμορξέται, οὔτη γὰρ τρισμετονίκιον ἀκούθετον οὔτε πλεῖον ἐνος ἢμιτόνα κατα τὸ ἐξῆς ἐν τούτῳ μελωθεῖται τῷ γένει, οὔτε μην κατὰ χρώματα, τάλιν γὰρ ἐν χρώματι τῶν ἀκούθετος οὐ μελωθεῖται. Εἰ δὲ μικρὸν ἐξ ἁμορξῖν λάγει τῷ τῶν γενοῦν εἶναι τὸ σύστημα, τὸ τε πλεῖον διόν κατὰ τὸ ἐξῆς ἢμιτόνα τάττεσθαι οὐδὲ ὅλος ἐστὶν ἐμιμελεῖς, ἀλλὰ ταῦτα μὲν τοῖς ἁμορχίς μουσικῆς ἐστὶν ἀδηλα.

Astronomie

« elle a cinq zones, des zones brumeuses à la zone torride,
« s'accommodant à la chaleur la plus intense, comme au
froid le plus glacial.
« Le ciel qui comprend six tons complète l'octave.
« Le fils de Jupiter, Mercure, nous représente une Sirène
« ayant une lyre à sept cordes, image de ce divin monde

Dans ces vers, Alexandre a indiqué pour les sphères l'ordre
qu'il a voulu. Il est évident qu'il a imaginé arbitrairement
les intervalles qui les séparent et presque tout le reste. Il dit,
en effet, que la lyre à sept cordes, image de l'univers, a été
composée par Mercure, et qu'elle donne les consonances
du l'octave; puis il établit l'harmonie du monde avec neuf
sons qui ne comprennent cependant que six tons.

Il est vrai qu'il attribue à la terre le son de l'hypate, comme
étant plus grave que les autres; mais celle-ci étant immobile
a centre, ne rend absolument aucun son. Puis, il donne le
son de la nète conjointe à la sphère des étoiles et place entre
les deux les sept sons des planètes. Il attribue le son de la
âme au soleil. L'hypate ne donne pas avec la mèse la con-
sonance de quinte, mais celle de quarte, et ce n'est pas avec
la nète des conjointes qu'elle donne la consonance d'octave,
mais avec la nète des disjointes.

Le système n'est pas conforme au genre diatonique, puisque
dans ce genre le chant ne comporte ni un intervalle indé
composé de trihémiton, ni deux demi-tons de suite. Il n'est

7 Voici donc, d'après Alexandre, l'ordre des sphères et les intervalles des
sons rendus par ces sphères :

<table>
<thead>
<tr>
<th>Sphère des étoiles donnant la nète.</th>
<th>demi ton</th>
<th>quart.</th>
</tr>
</thead>
<tbody>
<tr>
<td>de Saturne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>de Jupiter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>de Mars</td>
<td></td>
<td></td>
</tr>
<tr>
<td>du Soleil donnant la mèse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>de Vénus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>de Mercure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>de la Lune</td>
<td></td>
<td></td>
</tr>
<tr>
<td>de la Terre donnant l'hypate</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sphère des étoiles donnant la nète.</th>
<th>demi ton</th>
<th>quint.</th>
</tr>
</thead>
<tbody>
<tr>
<td>de Saturne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>de Jupiter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>de Mars</td>
<td></td>
<td></td>
</tr>
<tr>
<td>du Soleil donnant la mèse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>de Vénus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>de Mercure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>de la Lune</td>
<td></td>
<td></td>
</tr>
<tr>
<td>de la Terre donnant l'hypate</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th>Sphère des étoiles donnant la nète.</th>
<th>ton</th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>de Saturne</td>
<td></td>
<td></td>
</tr>
<tr>
<td>de Jupiter</td>
<td></td>
<td></td>
</tr>
<tr>
<td>de Mars</td>
<td></td>
<td></td>
</tr>
<tr>
<td>du Soleil donnant la mèse</td>
<td></td>
<td></td>
</tr>
<tr>
<td>de Vénus</td>
<td></td>
<td></td>
</tr>
<tr>
<td>de Mercure</td>
<td></td>
<td></td>
</tr>
<tr>
<td>de la Lune</td>
<td></td>
<td></td>
</tr>
<tr>
<td>de la Terre donnant l'hypate</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Sphère des étoiles donnant la nète.	trihémiton

de Saturne	
de Jupiter	
de Mars	
du Soleil donnant la mèse	
de Vénus	
de Mercure	
de la Lune	
de la Terre donnant l'hypate	

<table>
<thead>
<tr>
<th>Sphère des étoiles donnant la nète.</th>
<th>ton</th>
</tr>
</thead>
<tbody>
<tr>
<td>de Saturne</td>
<td></td>
</tr>
<tr>
<td>de Jupiter</td>
<td></td>
</tr>
<tr>
<td>de Mars</td>
<td></td>
</tr>
<tr>
<td>du Soleil donnant la mèse</td>
<td></td>
</tr>
<tr>
<td>de Vénus</td>
<td></td>
</tr>
<tr>
<td>de Mercure</td>
<td></td>
</tr>
<tr>
<td>de la Lune</td>
<td></td>
</tr>
<tr>
<td>de la Terre donnant l'hypate</td>
<td></td>
</tr>
</tbody>
</table>
'Ερατοσθένης δὲ τὴν μὲν διὰ τῆς φορᾶς τῶν ἀστρῶν γινομένην ἁρμονίαν παραπλησίως ἔνδεικνυσ τὴν μέντοι τάξιν τῶν πλανωμένων οὐ τὴν αὐτὴν, ἀλλὰ μετὰ σελήνην ὑπὲρ γῆς δεύτερον φησὶ φρέσκιν τὸν ἥλιον. φησί γὰρ ὡς 'Ερατοσθένης ἔτι νέος, εργασάμενος τὴν λύραν, ἐπετεια πρῶτος εἰς τὸν οὐρανὸν ἀνυών καὶ παραμείδων τὰ πλανάσθαι λεγόμενα, θεωράς τὴν διὰ τὴν βύθην τῆς φορᾶς αὐτῶν γινομένην ἁρμονίαν τῇ ὑπ' αὐτοῦ κατεσκευασμένη λύρᾳ <ὦμολογεῖ∙ ἐν δὲ τοῖς ἐπετεία φαίνεται ὁ ἀνήρ οὗτος τὴν μὲν γην ἐκ ἁκίνητον, ἐν ἑ' δὲ φθόγγοις ποιεῖ ὑπὸ τὴν τῶν ἀπλυκὸν σφαῖραν τὰς τῶν πλανωμένων ἑπτά, καὶ τὰς κυνῶν περὶ τὴν γην καὶ τὴν λύραν ποιούμενος ὁκτάχορδον ἐν τῇ διὰ πατῶν συμφωνία ὁ μουσικώτερος Ἀλέξανδρος.

οἱ μέντοι μαθηματικοὶ τὴν τάξιν τῶν πλανωμένων οὕτε τεῦ- την < οὕτε τὴν > αὐτὴν πάντες τιθέασιν, ἀλλὰ μετὰ μὲν τὴν σελήνην τάττουσι τὸν ἥλιον, ὑπὲρ δὲ τούτον ἔνιοι μὲν τὸν στῆ- θοντα, ἐκτὸς τὸν φωσφόρον, < ἄλλοι δὲ τὸν φωσφόρον, > ἐπειτα τὸν στῆθοντα, τοὺς δὲ ἄλλους ὡς ἔξηρται.

Τὰ ἐν τῇ Πολιτείᾳ περὶ τοῦ Παρμυλὸν μῦθον

15. Ἀπὸ τῶν δὲ ἐπὶ τέλει τῆς Πολιτείας, ποτρέπτων ἐπὶ δικαιοσύνην καὶ ἀρετὴν, μῆθον τινα διέξεισι [καὶ] περὶ τῆς τῶν οὐρανῶν δικαιοσύνης, λέγον ἄρον ἐκτὸς τού ἡλίου ὁποῖον οὗτοι κινοῦν, ἐτέραν δὲ ἡλιακήν καὶ ἀτρακτον, τοὺς δὲ

pas non plus chromatique, car dans le genre chromatique la mélodie ne comprend pas le ton indécomposé. Si l'on dit que le système est formé des deux genres, je répondrai qu'il n'est pas mélodieux d'avoir plus de deux demi-tons de suite. Mais tout cela manque de clarté pour ceux qui ne sont pas initiés à la musique.

Ératosthène expose, d'une manière semblable, l'harmonie produite par la révolution des astres, mais il ne leur assigne pas le même ordre. Après la lune qui est au-dessus de la terre, il donne la seconde place au soleil. Il dit, en effet, que Mercure, encore jeune, ayant inventé la lyre, monta d'abord au ciel, et qu'en passant près des astres qu'on nomme errants il s'étonna que l'harmonie produite par la vitesse de leurs révolutions fût la même que celle de la lyre qu'il avait imaginée.... Dans des vers épiques, cet auteur parait laisser la terre immobile et veut qu'il y ait huit sons produits par la sphère étoilée et par les sept sphères des planètes qu'il fait tourner autour de la terre ; c'est pour cela qu'il fait une lyre à huit cordes, comprenant les consonances de l'octave. Cette explication vaut mieux que celle d'Alexandre.

Les mathématiciens n'établissent ni cet ordre, ni un même ordre parmi les planètes. Après la lune, ils placent le soleil, quelques-uns mettent au-delà Mercure, puis Vénus, d'autres y mettent Vénus, puis Mercure. Ils rangent les autres planètes dans l'ordre que nous avons dit.

Du mythe du Pamphylien dans la République

XVI. Platon, à la fin de la *République*, voulant exhorter à la justice et à la vertu, raconte une fable dans laquelle, parlant de l'arrangement des corps célestes, il dit qu'un axe traverse le pôle comme une colonne ; il ajoute qu'il y a un autre axe du fuseau, avec des boules creuses s'emboîtant les unes dans les autres. Ces boules ne sont autres que les sphères portant les sept planètes ; une dernière sphère, celle des
τινας περὶ τούτον κούλους ἐν ἀλλήλους ἡμοιομένους σφροῦλους
tὰς τὸν ἄστρον σφαίρας, ζ’ μὲν τῶν πλανωμένων, ἐκτὸς δὲ
μίκην τῶν ἄξιων ἐντὸς αὐτῆς περιέχουσιν τὰς ἄλλας· ὁμαλοὶ
δὲ τὴν τάξιν τῶν σφαιρῶν διὰ τε τοῦ μεγέθους τῶν ἄστρων
ἐκάστου καὶ διὰ τοῦ χρόνους ἐκάστου καὶ ἐτὶ διὰ τοῦ τάχους
tῆς ἐπὶ τὰ ἐναντία τῷ παντὶ φοράς, λέγον ποιώς·
ἐπειδὴ δὲ τοὺς ἐν τῷ λειμώνι ἐκάστους ἐπτά ἡμέραι γενοῦτο,
ἀναστάντας ἐνυπῆθην δεῖν τῇ ὁγδόῃ ἐκπορεύεσθαι, καὶ ἀφικνεῖ
σθαι τῇ
τετρατείχῳ θεῖαν καθορίζειν ἁνωθεν διὰ παντὸς τοῦ ὀυραρ
νοῦ καὶ γῆς τεταμένον φῶς εὐθύο, οἷον κίσσα, μᾶλλον τῇ ἐρι
ἐμφερές, λαμπρότερον δὲ καὶ καθαρότερον, εἰς ὁ ἀφικνεῖσθαι
προελθόντας ἡμερησίαν ὅδον, καὶ ἱεῦν αὐτόθι κατὰ μέσον τὸ
φῶς ἐκ τοῦ οὐραρνοῦ τὰ ἁκρὰ τῶν δεμών τεταμένα· εἶναι
γὰρ τοῦτο τὸ φῶς σύνωσιμον τοῦ οὐραρνοῦ, καὶ τὸ ὑποζώματα
tῶν τριήρων, οὕτω πάσαν συνέγον τὴν περιφέρεια· ἐκ δὲ τῶν
ἀκρῶν τεταμένον ἀνάγκης ἁτραχνόν, δι’ οὗ πάσας ἐπιστρέφεσθαι
tὰς περιφερές· οὐ τὴν μὲν ἡλικάτην καὶ τὸ ἁγικτρόν εἶναι
ἐξ ἀδάμαντος, τὸν δὲ σφροῦλου μικτὸν ἐκ τούτου καὶ ἄλλων.

τὴν δὲ τοῦ σφροῦλου φῶς εἶναι τοιάδε· τὸ μὲν σχῆμα
20 οὐκινερ τοῦ ἔνθαδε· νοῆται δὲ δεῖ ἐξ ἐν ἐλεγε τοιώντος ἀυτὸν
εἶναι· ὁστερ γὰρ ἐν ἐν ἐνι μεγάλῳ σφροῦλῳ κούλῃ καὶ ἐξε
γυμμένῳ διαμερεῖς ἄλλος τουστος ἐλάττων ἐγκέιοτο ἀριστήν
καθάπερ οἱ κάδου εἰς ἄλλῆλους ἀριστοτεῖς· καὶ οὕτω δὲ τρί
τον ἄλλον καὶ τέτραν καὶ ἄλλους τέταρας. ὡκτὸ γὰρ εἶναι
25 τοὺς σύμπαντας σφροῦλους ἐν ἄλληλοις ἐγχειμένους, κύκλους
ἀνωθεν τὰ γείλη φαίνοντας, νότον τυχεγέζης ἕνος σφροῦλου
ἀπεργαξομένους περὶ τὴν ἡλικάτην· ἐκείνην δὲ διὰ

2 ἐκτὸς| ἐκτικο. — 8 ἐκπορεύεσθαι| πορεύεσθαι: Platon Rp. p. 616 B. —
11 ἐμφερές| πορεύερι Platon, loc. cit. — ἀφικνεῖσθαι| ἀφικνέσθαι: Platon, id. —
18 καὶ ἄλλοι καὶ ἄλλοι γενόν Platon, p. 616 C.
étoiles, enveloppe toutes les autres. Il montre l'ordre de ces sphères, par rapport à la distance de chacun des astres, à leur couleur et à la vitesse de leur mouvement en sens contraire de celui de l'univers. Voici ce qu'il dit :

« Après que chacune de ces âmes eût passé sept jours dans la prairie, il leur avait fallu en partir le huitième et se rendre, en quatre jours de marche, en un lieu d'où l'on voyait une lumière s'étendant sur toute la surface du ciel et de la terre, droite comme une colonne, assez semblable à l'arc-en-ciel, mais plus éclatante et plus pure. Il leur avait fallu encore un jour de marche, pour arriver là où l'on voit, au milieu de cette bande lumineuse, les extrémités des attaches fixées au ciel. Cette bande est le lien du ciel et embrasse toute sa circonférence, comme les ceintures des trirèmes (pour empêcher la charpente de se disjoindre). Aux extrémités du lien était tenu le fuseau de la Nécessité, c'est lui qui donne le branle à toutes les révolutions des sphères. La tige et le crochet de ce fuseau étaient de diamant ; le fuseau était formé de la même substance et d'autres matières précieuses.

« Voici comment il était fait : il ressemblait pour la forme aux fuseaux d'ici-bas; mais, d'après la description donnée par le Pamphylie, il faut se le représenter contenant dans sa concavité un autre fuseau plus petit qui en reçoit lui-même un troisième, comme de grands vases ajustés les uns dans les autres. Il y en a ainsi un troisième, un quatrième, et quatre autres encore. C'étaient donc en tout huit fuseaux, placés les uns dans les autres, dont on voyait d'en haut les bords circulaires et qui présentaient tous la surface courbe continue d'un seul fuseau autour de la tige passant par le centre du premier. Les bords

4 Platon, République, X, p. 616 B.
κυλίσθαι δὲ στρεφόμενον τοῦ ἀτρακτον ὦλον μὲν τὴν κυτῆ
φορὰν τῷ κόσμῳ, ἐν δὲ ὄλῳ περιφερομένῳ τοῖς ἑντὸς ἐπτά
κύκλως τὴν ἐναντία τοῦ ὦλο ἤρεμα περιάγεσθαι, αὐτῶν δὲ
tούτων τέχνητα μὲν λέγει τὸν ὄγδοον, δευτέρους δὲ καὶ ἄρι
άλληλοις ἱσοτεχιῶς τὸν τε ἐβδομὸν καὶ τὸν ἑκτὸν καὶ τὸν
πέμπτον τρίτον δὲ φορὰ λέγει, ὅν φασι φαλάσθαι ἐπαναχω
κλοῦμενον <τὸν τέταρτον> μᾶλλον τῶν ἄλλων· τέταρτον δὲ
πέμπτον τρίτον καὶ πέμπτον τὸν δευτέρον, στρέφεσθαι δὲ αὐτῶν
ἐν τοῖς τῆς ἀνάγκης γόνασιν. ἐπὶ δὲ τῶν κύκλων αὐτοῦ ἀνωθεν
ἐρ' ἐκάστου βεβηκέναι Σειρήνη συμπεριφερομένην, φονήν μίαν
ϊείσαν, ἕνα τόνον· ἐκ πατῶν ὀκτὼ οὕτω ἀφρονίζει συμφωνεῖν.

14 τῷ κόσμῳ manque dans Platon. — 15 περιάγεσθαι] περιφέρεσθαι Platon. —
mots τὸν τέταρτον se trouvent dans Platon, ils manquent dans les ms. de
Théon; et les mots κάθα τῶν ἄλλων qui se trouvent dans Théon man-
circulaires de ce fuseau extérieur étaient les plus larges,
puis ceux du sixième, du quatrième, du huitième, du
septième, du cinquième, du troisième et du second allaient
e en diminuant de largeur selon cet ordre.

Les bords du plus grand fuseau (sphère des étoiles)
étaient de différentes couleurs, le bord du septième (sphère
du soleil) était d'une couleur très éclatante, celui du hui-
tième (sphère de la lune) empruntait du septième sa cou-
leur et son éclat. La couleur des cercles du second et du
cinquième (Saturne et Mercure) était presque la même et
ils étaient plus jaunes que les autres; le troisième (Jupiter)
avait une couleur très blanche ; celle du quatrième (Mars)
était un peu rouge. Enfin, le sixième (Vénus) occupait le
second rang pour l'éclat de sa blancheur 5.

Le fuseau extérieur tout entier faisait sa révolution dans
le même sens que l'univers, et, dans l'intérieur, les sept
fuseaux concentriques se mouvaient lentement en sens con-
traire; le mouvement du huitième était le plus rapide, ceux
du septième, du sixième et du cinquième étaient moindres
e d'une vitesse égale; le quatrième qui a un mouvement
rétrograde plus rapide que celui des autres fuseaux est le
troisième pour la vitesse, comme il leur parut; le troisième
n'avait que la quatrième vitesse, et le second n'avait que la
cinquième. Le fuseau tournaient sur les genoux de la Néces-
sité. Sur chacun de ces cercles était assise une Sirène qui
tournaient avec lui et faisait entendre un son toujours le
même. De tous ces sons, au nombre de huit, résultait une
harmonie parfaite (c'est-à-dire une octave complète).

14 Grou, dans sa traduction de la République, a fait un contre-sens qui a été reproduit par les autres traducteurs français : Cousin, Saisset, Bastien. Il dit « le second surpassait en blancheur le sixième », il y a : ἡ σύντεταν ἐι
λευκότατη τοῦ ἐκστο, mot à mot : le sixième est le second pour la blancheur. Et en effet Vénus est l'astre le plus brillant après le soleil.
ταύτα μὲν οὖν καὶ ὁ Πλάτων ἦν τὴν ἐξήγησιν ἐν τοῖς τῆς Πολυτείας ποιομέθεα ὑπομνήμασιν. κατεσκευάστηκε δὲ ἡμῖν καὶ σφυροποίηκα κατὰ τὰ εἰρημένα· καὶ γὰρ αὐτὸς φησιν ὁ Πλάτων ὅτι τὸ ἄνευ τῶν διὰ θέσεως μιμημάτων [τῶν] τὰ τοιαῦτα ἀδέλευκα ἐκδιδάσκειν μᾶταις πόνοις. ἔτι δὲ τῶν κύκλων φησιν ἐφεστάναι Σειρῆνας. οὐ μὲν αὐτοὺς <φασὶ> λέγεσθαι τοὺς πλάνης, ἀπὸ τοῦ σειριάζειν· κοινώς τε γὰρ, φησίν ὁ Ἀδραστος, πάντας τοὺς ἀστέρας οἱ ποιηταί σειρίους καλούσιν, ὡς Ἰθυκος·

φλεγέθων, ἕπερ διὰ νῦκτα μακρὰν σειρία σκαμφύνωντα.

καὶ κατὰ διαφορὰν ἔνιοι τοὺς λαμπροὺς καὶ ἐπιφυγεῖς, ὡς Ἀρατὸς τὸν τοῦ κυνὸς ὃξα σειριάν φησι, καὶ ὁ τραγικὸς ἐπὶ τινος τῶν πλακῶτον·

τί ποτ' ἄρα ὁ ἀστήρ ὡς πορθεῖει σειρίος.....

ἔνιοι δὲ Σειρῆνας οὐ τοὺς ἀστέρας λέγεσθαι φασίν, ἀλλὰ κατὰ τὸ Πυθαγορικὸν τοὺς ὑπὸ τῆς τοῦτων φοράς γυνομένους ἢχους καὶ φθόγγους ἡρμοσμένους καὶ συμφώνους, ἐξ δὲν μίαν ἡρμοσμένην ἀποτελείσθαι φωνήν.

〈Περὶ τῆς τῶν πλανωμένων κινήσεως〉

υ. τῶν δὲ πλανωμένων, φησιν ὁ Ἀδραστος, τὰ μὲν ἐστὶν ἀεὶ ὑπολειπτικά, ὡς ἄλος καὶ σελήνη· ταύτα γὰρ οὐδέποτε εἰς τὰ προηγούμενα τῶν ξυμιῶν μεταβάλει, ἀλλὰ πάντοτε ὑράται μεταβαίνοντα εἰς τὰ ἐπόμενα· διότερον οὐδὲ στηρίγμοις ὡς οὐδὲ ἀναποδίσμοις ποιεῖται. τὰ δὲ καὶ προηγεῖται καὶ ὑπολείπεται, καθάπερ τὰ ἄλλα· διότερον ἀναγκαῖος καὶ στηρίζοντά ποτε φαίνεται καὶ ἀναποδίζοντα.

20 Titre dans quelques mss.: τί ἐστιν ὑπὸλειψις καὶ προήγησις, στηρίγμος καὶ ἀναποδίσμος (du mouvement contraire et du mouvement en avant, de la station et de la rétrogradation).
Nous expliquons dans les Commentaires de la République cette exposition de Platon. Nous avons aussi construit une Sphère d'après ses explications. Platon dit, en effet, qu'on ferait un travail inutile si on voulait exposer ces phénomènes sans des images qui parlent aux yeux. Il dit que sur les cercles sont assises des Sirènes, c'est ainsi que quelques-uns désignent les planètes elles-mêmes, du mot « σείρηξις », briller *. Du reste, d'après Adraste, les poètes nomment souvent astres brillants « σειρίους » toutes les étoiles. Ainsi, on lit dans Ibycus : étincelant comme les « σειρίον » qui brillent dans une longue nuit.

D'autres n'appellent particulièrement ainsi que les étoiles brillantes et remarquables. Aratus se sert du verbe σειρίων pour indiquer qu'une étoile de la gueule du Chien brille d'un vif éclat *, et un poète tragique a dit d'une planète : Quel est donc cet astre brillant « σειρίος » qui passe au dessus de nos têtes ? Quelques auteurs prétendent que les astres ne peuvent pas être pris pour des Sirènes, mais que, suivant la doctrine pythagoricienne, des sons et des accords sont produits par leurs révolutions, d'où résulte une harmonie 20 parfaite.

Du mouvement des planètes

XVII. Pour les planètes, dit Adraste, il y en a qui sont toujours laissées en arrière, tels sont le soleil et la lune qui ne vont jamais vers les signes qui précèdent, mais qu'on voit toujours aller vers ceux qui suivent; aussi ces planètes n'ont-elles jamais de stations ni de rétrogradations. Il y en a d'autres qui se meuvent vers les signes précédents et vers les signes suivants, ce sont toutes les autres planètes, c'est

υ. ἕστι γὰρ ὑπόλειψις μὲν φαντασία πλάνητος ὡς εἰς τὰ ἐπά-
μενα τῶν ξυδίων καὶ πρὸς ἄνατολας ἀπόντος, ὡς φησιν ὁ
"Αδραστος, ὡς δὲ ὁ Πλάτων φησίν, οὐ φαντασία, ἀλλὰ τῷ
όντι μετάβασις πλάνητος εἰς τὰ ἐπόμενα ξυδία ἐπὶ ἄνατολας
ἀπιόντος κατὰ τὴν ἱδίαν κίνησιν, οἷον ἀπὸ Καρκίνου εἰς
Λέοντα.

9. προήγησις δὲ ἕστι φαντασία πλάνητος ὡς ἐπὶ τὰ προ-
γούμενα καὶ ἐπὶ δυσμᾶς μεταβαίνοντος, οἷον ἀπὸ Καρκίνου εἰς
Διούμοιο.

10. στηριγμός δὲ ἕστι φαντασία πλάνητος ὡς ἐπὶ πλέον
ἐστάτος καὶ μένοντος παρὰ τινὶ τῶν ἀπλανῶν.

κα. ἀναποδισμός δὲ ἕστι φαντασία πλάνητος ὑποστροφῆς ἀπὸ
στηριγμοῦ ὡς ἐπὶ τὰ ἐναντία τῇ πρὸςθεία κίνησις. πάντα δὲ
ταῦτα ἦμεν φαίνεται γίνεσθαι, οὐ μὴν οὕτως ἐπιτελεῖται ὁ
τούτοι δ' αὐτὸν τὸ κατὰ ἱδίον τινὸς κύκλου ἦ ἐν ἱδίῳ σφάρᾳ
φερόμενον ἐκαστὸν τῶν πλανώμενον κατωτέρω τῶν ἀπλανῶν
ἡμῖν διὰ τὴν ἐπιπρόσθεσιν δοκεῖν κατὰ τὸν ξυδικών φέρεσθαι
κύκλον ἑπάνω κείμενον, ὡς καὶ περὶ τούτων διορίζει ὁ "Αδρα-
στος εἰς τὸ τὴν ὄμφασιν τῶν περὶ τοὺς πλάνητας ὑποθέσεων

20. φανερῶν γίνεσθαι αἰς ἔπειτα τὰ φαινόμενα.

κβ. φησὶ δ' ὅτι ὁ μὲν πᾶς κόσμος τουτότας τε καὶ ἐκ
tοσοῦτον καὶ τοιοῦτοις συνεστηκός οὖν καὶ ὅτινες διειλομέθα,
φερόμενος τε φορὰν ἐγκύκλιο τοῦ σφαιρικοῦ σχῆματος
οἷς ὀλίγον ὑπὸ τοῦ πρῶτου <κινεῖται> · ὅθεν καὶ κατασκευάσθη τοῦ

21. βελτίστου καὶ ἀριστοῦ γάρν, πρὸς δὲ τὴν γράμμαν διαρίθμησις
καὶ τὴν τῶν περιγειών καὶ ἀπογειῶν μεταβολὴν ἐγένετο ἢ
τῶν πλανώμενον φορὰ ποικίλη τῆς ἑκ συνεστηκύσα, ὡςτε ἀκο-
λουθεῖν αὐτῇ τὸ ἐνταῦθα · ταῖς γὰρ τούτων τροπισὶς προσον-

21. Titre : per ἀγαλλητῆς ἀκαδικομείσεως καὶ τῆς ὑπὸ τελέμην ἀπαξίας (de l'ordre dans l'univers et du désordre dans le monde sublunaire). — 24 <κι-

κεῖται> H. Martin.
pour cela qu’elles paraissent nécessairement tantôt s’arrêter et tantôt rétrograder.

XVIII. Le mouvement contraire est, d’après Adraste, celui d’une planète qui semble toujours aller vers les signes qui suivent à l’orient. Mais, d’après Platon, ce n’est pas une apparence, c’est, en réalité, le mouvement propre d’un astre qui va à l’orient dans les signes suivants, par exemple, du Cancer dans le Lion.

XIX. Le mouvement en avant est le mouvement d’une planète qui semble aller vers les signes précédents à l’occi-
dent, par exemple, du Cancer aux Gémeaux.

XX. La station est l’état d’une planète qui semble s’arrêter et rester quelque temps près de quelqu’une des étoiles fixes.

XXI. La rétrogradation est le retour apparent d’une planète de sa station en sens contraire de son premier mou-
vement. C’est ainsi que cela paraît se produire, mais ce n’est qu’une apparence : la cause est que chaque planète se mou-
vant au-dessous des étoiles, dans un cercle ou dans une sphère qui lui est propre, nous semble, à cause de la résis-
tance, emportée, relativement à la zone zodiacale qui est au dessus ; et, comme l’explique Adraste, ce ne sont là que des hypothèses différentes sur les planètes, hypothèses ren-
dues vraisemblables par l’accord avec les phénomènes.

XXII. Il dit que le monde tel qu’il est, composé des parties si nombreuses et si diverses que nous avons distin-
guées, se mouvait d’un mouvement circulaire et propre à sa forme sphérique, et que ce mouvement a été communiqué par un premier moteur ; c’est pourquoi ce monde a été arrangé, grâce à une cause supérieure et la meilleure. Le mouvement des planètes a été diversement disposé pour le calcul du temps et leur retour au périgée et à l’apogée, de sorte que ce qui se fait ici-bas suit complètement ce mou-
vement. C’est, en effet, par les révolutions des astres qui vien-
ment ou s’en vont que sont aussi changées toutes choses ici-
των καὶ ἀπιόντων συμμεταβάλλει καὶ τάνταθα παντοῖος. τῶν
μὲν γὰρ ἀπλακῶν ἄπλη καὶ μία φορὰ κύκλῳ, τεταγμένη τε
καὶ ὀμαλῆ. τῶν δὲ [ἄλλων] πλανωμένων κυκλικῇ μὲν, οὐ
μὴν ἄπλη δοκεῖ καὶ μία, οὐδὲ ὀμαλῇ καὶ τεταγμένη. τῶν δὲ
5 ὑπὸ σειλήγην καὶ περὶ ἡμᾶς καὶ μέχρις ἡμῶν πάσα μεταβολὴ
cαὶ κίνησις καὶ, καθάπερ φησίν.
ένθα κότας τε φόνος τε καὶ ἄλλων ἰχνεα κηρῶν.
καὶ γὰρ γένεσις καὶ φθορὰ περὶ πάντα τάνταθα καὶ αὐξήσις
καὶ μείωσις ἀλλοιώσις τε παντοῖα καὶ ἡ κατὰ τόπον ποικίλῃ
10 φορὰ. τούτων δὲ, φησίν, αὐτὰ τὰ πλανῶμενα τῶν ἀστρῶν.
tαύτα δὲ λέγω τις ἂν οὐκ ὡς τῶν τιμιωτέρων καὶ θείων καὶ
αιδίων ἀγεννήτων τε καὶ ἀφθάρτων ἔνεκα τῶν ἱεράτων καὶ
ἀνητῶν καὶ ἑπτάρχων πεφυκότων, ἄλλα ὡς ἑκείνων μὲν διὰ τὸ
κάλλιστον καὶ ἀριστον καὶ μικραρχώτατον ἀεὶ οὕτως ἑγόντων,
15 τῶν δὲ ἑνταύθα κατὰ συμβεβηχὸς ἑκείνως ἑπομένων.

ἔνα μὲν γὰρ ἢ ἐν κύκλῳ τοῦ παντὸς ἀεὶ ὀμοία φορὰ γίνη-
tαι, οἷον ἐνέργεια τις οὕτα καὶ ζωὴ τοῦτον θεία, μένειν ἐπὶ
tοῦ μέσου τὴν γῆν ἀνάγκη, <ἡ> περιενεγκεῖτο τὸ κύκλῳ
φερόμενον. εἰ δὲ ἀνάγκη μένειν κάτω τὴν γῆν, ἀνάγκη καὶ
20 τὸ πῦρ τῶν ἑκαντὸν ταύτῃ κατέγειν τόπον, ὑπὸ τὴν κύκλῳ
φορητήν αἰθέριον οὐσίαν καὶ τυπᾶσαμενον. τοῦτον δὲ οὕτω διε-
στηκότων ἀνάγκη καὶ τάλλα στυμεῖα, ὑσώρ καὶ ἀέρα, κατὰ
λόγου τῶν μεταξὺ τῶν ἐπέγειν. τούτων δὲ ὄντων ἀνάγκη καὶ
μεταβολὴ εἶναι τῶν ἑνταύθα, διὰ <τὸ> τὴν ὑλὴν αὐτῶν
25 οὐδοῦ εἶναι τρεπτὴν καὶ [ταύτα] ὑπονόμεις ἐγένει ὑπεναντίας.
ἐγγίνεται δὲ ἡ μεταβολὴ τῇ ποικίλῃ φορᾷ τῶν πλανωμένων.
εἰ γὰρ ὀμοῖος τοῖς ἀπλακῶς καὶ ταῦτα ἑφέρετο κατὰ παραλ-
λήλων, ἀεὶ ὀμοίας οὕτως τῆς τῶν ὀλων καὶ πάντων καταστά-

bas. Le mouvement circulaire des étoiles est simple et unique, il est régulier et uniforme; le mouvement des planètes est, il est vrai, circulaire; mais il ne paraît ni simple et unique, ni uniforme et régulier. Et dans le monde sublunaire, autour de nous et jusqu'à nous, tout est changement et mouvement, et comme dit le poète:

Ici-bas on ne voit que l'envie et le meurtre,
Et tous les autres maux.

Il n'y a, en effet, que génération et corruption, accroissement et décroissance, altération en tout genre et changement de lieu. Les planètes, dit Adraste, sont la cause de tous ces phénomènes. On dira que ces choses existent, non comme ce qu'il y a de plus précieux, de divin, d'éternel, de non engendré, d'incorruptible, causé par ce qui est moindre, mortel et périssable, mais bien qu'elles sont ainsi à cause de ce qu'il y a de meilleur, de plus beau, de plus heureux, et que ce qui est ici-bas ne suit que par accident la marche des choses supérieures.

Pour que le mouvement de l'univers qui résulte d'une force active et d'une cause divine, soit circulaire et toujours semblable à lui-même, il faut que la terre occupe le centre autour duquel se produisit le mouvement. Et s'il faut qu'elle soit en dessous, il faut aussi que le feu occupe le lieu opposé vers l'essence éthérée qui se meut en cercle. Entre les deux éléments ainsi séparés, il faut que les autres, l'eau et l'air, soient en proportion. Cela étant, il faut encore qu'il y ait changement de toutes choses ici-bas, parce que la nature des choses est profondément changeante et qu'elles sont soumises à des forces contraires.

Le changement se fait par le mouvement varié des planètes; en effet, si celles-ci étaient emportées suivant des cercles parallèles par le même mouvement que les étoiles fixes, la disposition de tous les corps étant universellement

σεως, ούχ δὲ τῶν ἐνταύθα ἐτεροίωσις ἢ μεταβολή τις ἢν. νῦν δὲ τροπικὰ καὶ ἰσθμιάς πρόσωδοι τε καὶ ἄγομορφότερα κατὰ τε ύφος καὶ πλάτος μάλιστα μὲν ἴλου καὶ σελήνης, οὐ μὲν ἄλλα καὶ τῶν ἄλλων, τὰς τε ὁράς διαφόρους ἐπιτελοῦσί καὶ τὴν ἐνταύθα πάσχειν ἐργάζονται μεταβολήν καὶ γένεσιν καὶ ἄλλοιοισιν. δὲ δὲ ποικίλη τῆς φοράς τῶν πλανωμένων φαινομενίας γίνεται διὰ τὸ κατ’ ἑαυτὸν τινῶν κύκλων καὶ ἐν ἑαυτῶς σφαιράς ἐνδεδεμένα καὶ τὰ ἐκεῖνον κυνούμενα δοκεῖν ἡμῖν γέρεσθαι διὰ τῶν ξυρισμῶν, καθά πρῶτος ἐνόπθην Πυθαγόρας, τῇ κατὰ ταῦτα τετεκμηρένη ἀπλὴ καὶ ὁμοληθὰ κύτων φορὰ κατὰ συμβαθηχίας ἐπιγενομένης τινῶς ποικίλης καὶ ἀνωμάλου κινήσεως.

κυρίως περὶ δὲ τῆς θέσεως τῶν σφαιρῶν ή κύκλων ἄτις σύντης τὰ φαινόμενα διέξειοι ταῦτα.

φωσικὸν μὲν καὶ ἀναγκαῖον, καθάπερ τὰ ἀπλανητικά καὶ τῶν ἄλλων οὐρανίων ἔκκλειστον ἀπληθή καὶ μίαν καθ’ αὐτό φοράν ὀμαλοὺς φέρεσθαι καὶ εὐστάκτους, δῆλον δὲ φημὶ τούτο γενήσεται, ἐκατ’ ἑαυτῶν στηρίσασθαι τῶν κόσμων νοήσαμεν τὰ πλανώμενα ὑπὸ τῶν ξυρισμῶν, ἀκίνητον ὅταν καθ’ υπόθεσιν, κυνούμενα· οὕτως γὰρ οὐκέτι ποικίλη καὶ ἀνώμαλος, ἀλλ’ εὐστάκτους ἡ κινήσεως αὐτῶν ἐπιτελομένης φανερώστηκε, ὡς ἐπὶ τῆς περιγροφωρικῆς τῆς Πλατωνικῆς ύπὸ ἡμῶν ἐπίστευναι.

τῆς δ’ ἀλληγόριας οὐκοτρίτης αὐτῶν κινήσεως καὶ ποικιλῆς αὐτίκα ἡ διητήτη κινήσεις, τῆς ἀπλανήσεως σφαιρῶς ἀπὸ ἀνατολῆς ἐπὶ δύσιν φερομένης περὶ τῶν διὰ τῶν πόλων ἀξονα καὶ συμπεριγροφωρικής τῆς οὐκείας ὑμίν τὰ πλανώμενα καὶ πάντας γραφομένης τοὺς κύκλους καθ’ ὃν φέρεται τὰ ἀπλανητικά συμβαθηχίας, αὐτὰ δὲ τὰ πλανώμενα κατὰ τὴν ἑαυτήν κίνησιν οὕτω ἀκατολήνον ἑκατολήνον φέρεσθαι ἐν ἀνίκους χρόνος ὑπὸ τῶν ξυρισμῶν λειασμομένον κατὰ τῶν τριῶν συμβαθηχίας, χρειαζόμενον κατὰ τὰ πλανώμενα δ’ ἀπλανήσεως καὶ περιγροφωρικῆς τῆς Πλατωνικῆς υπὸ ἡμῶν ἐπίστευκαν.
la même, il n’y aurait ici-bas aucun changement, aucune vicissitude. Or, les solstices et les équinoxes, les mouvements en avant et les retours, en hauteur et en latitude, surtout du soleil et de la lune, mais aussi des autres planètes, amènent les différentes saisons et produisent ici-bas toutes les transformations, toutes les générations et toutes les altérations. L’aspect varié que présente la révolution des planètes, provient de ce que, fixées à des cercles propres ou à des sphères propres dont elles suivent le mouvement, elles sont emportées à travers le zodiaque, ainsi que Pythagore l’a compris le premier, par une révolution réglée, simple et égale, mais d’où résulte, par accident, un mouvement apparent varié et inégal.

XXIII. Voici ce que dit Adraste de la position des cercles ou des sphères, position qui rend compte des apparences. Il est naturel et nécessaire que, comme les étoiles fixes, chacun des autres corps célestes soit emporté uniformément et régulièrement, d’un mouvement simple et qui lui est propre. Je dis que cela sera évident, si, par la pensée, supposant le monde immobile, nous imaginons que les planètes se meu- vent au-dessous du zodiaque immobile par hypothèse; leur mouvement alors ne paraîtra plus varié et inégal, mais il paraîtra s’accomplir régulièrement comme nous l’avons montré par la construction de la Sphère de Platon.

Un double mouvement est la cause du mouvement varié apparent dans un sens et dans l’autre : la sphère étoilée est emportée d’orient en occident autour de l’axe qui passe par les pôles, et dans le mouvement rapide qui lui est propre, elle entraîne les planètes et décrit les parallèles que suivent les étoiles; d’un autre côté, les planètes, par un mouvement plus lent qui leur est propre, sont emportées du couchant au levant, dans des temps inégaux, sous le zodiaque oblique aux trois cercles parallèles, le tropique d’hiver, l’équinoxiaxial et le tropique d’été. Ce mouvement s’accomplit autour d’un autre axe, perpendiculaire au zodiaque, et qui s’écarte de l’axe des
μερινοῦ ὑπερμερινοῦ θερινοῦ, περὶ ἔτερον ἄξονα τὸν πρὸς ὀρθάς, ὄντα τῷ ἥξιωμαχῷ, πεντακισεκακοῦν πλευρὰν ἀπέχοντα τοῦ τῶν ἀπλανῶν ἄξονος. τὸν δὲ τῶν πλανωμένων ἄξονα ὁ Πλάτων ἥλιακάτων καὶ ἄρακτον καλεῖ.

κ. λέγεται δὲ, φησὶν Ἀδραστος, ὁμαλῶς μὲν κινεῖσθαι τὸ τὰ ἵστα διαστήματα ἐν ἅπασι γρόνοις διενώνειν, ἀλλὰ μὴ τοτε μὲν ἀνιέναι ὅτε δὲ ἐπιτείνειν ἔκαστον τὸ αὐτοῦ τάχος.

κε. εὐτάκτως δὲ ἐστὶ κινεῖσθαι τὸ μὴ ποτὲ μὲν ἐσταθεῖν ποτὲ δὲ ἀνακάμπτειν, φέρεσθαι δὲ ἐπὶ τὰ αὐτὰ ἰχθυί ὁμοίως. δοκεῖ δ' ἡμῖν τὰ πλανώμενα πάντα μὲν ἀνομαλίας ἕνια δὲ καὶ ἀπεξίας μετέχειν, τοις οὖν ἡ τῆς τοιαύτης φαντασίας αἰτία: πρώτη μὲν τὸ ἐν ἐτέρων σφαιραῖς καὶ ἐν ἐτέρωι κύκλωι ὄντα, καὶ δὴν φέρονται, δοκεῖν διὰ τοῦ ἥξιωμαχοῦ φέρεσθαι, καθά ἐδή προείρηται.

<Περὶ τῆς τοῦ Ἡλίου κινήσεως>

κς. κατὰ συμβεβηκός δε, ὡς προείρηται, καὶ τοῖς ἄπληθὶ τὴν ἱδίαν ποιούμενοι χίνησιν οἱ ζ', πλείονες κύκλους γράφονται καὶ διαφόρους. δηλοῦ ὅτι τοῦτο ἄν ήμῖν καὶ ἐρ' ἐνῶς γένοιτο σκοτοποιόνιος τοῦ φανερωτάτου καὶ μεγίστου τῶν πλανομένων Ἡλίου. ἔστω ἥξιωμαχος μὲν ὁ ἀβγός κέντρων δὲ αὐτοῦ καὶ τοῦ παντός, περὶ δὲ λέγεται ἐρημείσθαι μέση <ή> γῆ, τὸ θ', καὶ διὰ τοῦτο πρὸς ὀρθάς ἀλλήλας αἱ αὐτῇ β' διάμετροι καὶ τὸ μὲν ἄν ἀρχῆς τοῦ Κρυοῦ, τὸ δὲ β Κρακίνου, πάλιν δὲ τὸ μὲν γ τοῦ Ζωγοῦ, τὸ δὲ δ' Αἰγοκέρω.

XXIV. Le mouvement est uniforme quand les espaces parcourus en temps égaux sont égaux, sans jamais augmenter ni diminuer de vitesse.

XXV. Le mouvement est régulier, quand le mobile n'a ni station, ni rétrogradation, mais est emporté dans le même sens toujours également. Or, toutes les planètes nous paraissent avoir quelque chose d'inégal, certaines même quelque chose de désordonné. Quelle est donc la cause d'une semblable apparence? La principale est que se trouvant sur des sphères ou sur des cercles différents par lesquels elles sont emportées, elles paraissent se mouvoir sur le zodiaque, comme nous l'avons déjà dit.

Du mouvement du soleil

XXVI. Comme conséquence, ainsi qu'il a été dit plus haut, les sept planètes, qui ont cependant un mouvement propre simple, décrivent plusieurs cercles différents. Cela deviendra clair pour nous, si nous considérons la plus brillante et la plus grande de ces planètes, le soleil. Soit $\alpha \beta \gamma \delta$ le zodiaque, θ le centre de ce cercle et de l'univers, qui est en même temps celui de la terre, et soient $\alpha \gamma$, $\beta \delta$ deux diamètres perpendiculaires passant par ce point. Soit le point α au commencement du Bélier, β au commencement du Cancer, puis γ au commencement de la Balance et δ au commencement du Capricorne.

1 L'angle au centre du pentédécagone régulier vaut le quinzième de 360° ou 24°; l'angle des deux axes vaut donc 24°, d'après Théon. Cet angle n'est pas constant, mais sa variation est de moins d'une demi-seconde par année; il vaut maintenant 23° 27.
φαίνεται δὴ ὁ ἦλιος κατὰ τὸ α γενόμενος ἱστημερίαν ἐκρινὴν ποιεῖται, κατὰ δὲ τὸ β τροπῆς θερινῆς, καὶ κατὰ μὲν τὸ γ' μετωπωρινὴν <ἱστημερίαν κατὰ δὲ τὸ θ τροπῆς χειμερινῆς>, ἓστας δὲ οὕσας τὰς α β β γ' δα περιμερείας τεταρτημορικάς 5 ἀνωμάλως ἐν ἀνίσους χρόνους διεξάγον. ἀπὸ μὲν γ' ἱστημερίας ἐκρινῆς ἐπὶ τροπῆς θερίνης ἐν ἡμέραις παραγίνεται λδ' σ', ἀπὸ δὲ θερινῆς τροπῆς ἐπὶ ἱστημερίαν μετωπωρινὴν ἡμέραις λβ' σ', ἀπὸ δὲ μετωπωρινῆς ἱστημερίας ἐπὶ τροπῆς χειμερινῆς ἡμέραις τη' <η'">, λοιπὸν ἀπὸ τροπῆς χειμερινῆς ἐπὶ τὴν ἐκριν. 10 νὴν ἱστημερίαν ἡμέραις η' ιη", ὡστε τὸν ἄλλον κύκλον ἐνιαυτῷ διανύειν, ἡμέραις ἐγγίστα τέξι' σ", καὶ κατὰ τῶν Διδύμων τὴν ἄρχην βραδύτατα κυνούμενος, κατὰ δὲ τὴν ἄρχην τοῦ Τοξίτου τάχυτα, μέσα δὲ κατὰ τὴν Παρθένου καὶ τῶν Ιγμῆς.

φυσικὸν δέ, ὁς φαίην, καὶ ἀναγκαῖον ἀπαντᾷ τὰ θεῖα ὁμο- 15 λώς κινεῖται καὶ εὐτάκτως · δὴλον οὖν ὡς ἐπὶ τινος ἱδίου κύκλου φερόμενος ὁμολόγος καὶ εὐτάκτως ἡμῖν ἀπὸ τοῦ θ' ὀρώ- σαι ἐπὶ τοῦ αβγ' δοκεῖ φέρεται ἀνωμάλως. εἰ μὲν οὖν ὁ κύκλος αὐτοῦ περὶ τὸ αὐτὸ κέντρον ἦν τῇ παντὶ, λέγει δὲ περὶ τὸ θ', τοὺς αὐτούς λόγους διακρίνουμεν ὑπὸ τῶν αγ' β' 20 διαμέτρων, ὑπὸ τὴν ἱστητήτα τῶν περὶ τὸ κέντρον γονιών καὶ

3 <ἱστημερίαν ... χειμερινῆς> H. Martin. — 9 <η"> H. Martin.
Le soleil se trouve en α à l'équinoxe de printemps, en β au solstice d'été, en γ à l'équinoxe d'automne, et en δ au solstice d'hiver; il parcourt irrégulièrement, dans des temps inégaux, les quatre arcs égaux $\alpha\beta$, $\beta\gamma$, $\gamma\delta$, $\delta\alpha$. En effet, il va de l'équinoxe du printemps au solstice d'été en 94 jours 1/2, du solstice d'été à l'équinoxe d'automne en 92 jours 1/2, de l'équinoxe d'automne ou solstice d'hiver en 88 jours 1/8 et du solstice d'hiver à l'équinoxe de printemps en 90 jours 1/8, de sorte qu'il parcourt annuellement le cercle entier en 365 jours 1/4 environ; sa plus petite vitesse est en entrant dans les Gémeaux, sa plus grande dans le Sagittaire; dans la Vierge et les Poissons il a une vitesse moyenne.

Il est naturel et nécessaire, comme nous l'avons dit, que toutes les créatures divines (les astres) aient un mouvement uniforme et régulier. Il est donc clair que le soleil ayant un cours régulier et uniforme, sur un cercle qui lui est propre, paraîtra se mouvoir irrégulièrement pour nous qui le regardons du point 0 sur son cercle $\alpha\beta\gamma\delta$. Si donc ce cercle avait le même centre que celui de l'univers, c'est-à-dire le point 0, il serait divisé dans les mêmes rapports par les diamètres $\alpha\gamma$, $\beta\delta$, nous resterions encore embarrassés en présence de cette
τήν ὁμοίωτητα τῶν περιφερείων τῆς αὐτῆς ἄν παρεῖχεν ἁπο-
ρίαν. ὅμοιον δὲ ὃς ἔτερος κινούμενος καὶ οὗ περὶ τὸ θ' κέν-
τρον αὐτοῦ ἔστι τῆς τοιαύτης ἐμφάσεως. ἦτοι οὖν ἐντὸς αὐτοῦ
περιλήψει τὸ θ', ἣ δὲ αὐτοῦ ἐλεύθεται, ἥ ἐκτὸς αὐτοῦ
ἀπολείψει. διὰ μὲν οὖν τοῦ θ' τὸν ἡλιακὸν ἔργεσθαι κύκλον,
ἀμφότερον· καὶ γὰρ αὐτὸς ἄν ὁ ἡλιος ἐπὶ γῆν παρεῖχεν,
καὶ τοῖς μὲν ἐπὶ θάλασσας γῆς ἀπῆλθεν ἡμέρα, τοῖς δὲ
ἀλλοις ἀπεὶ νῦς ἦν· καὶ οὕτω ἀνατέλλον ὅτι δύνατον οὕτος
περὶ τὴν γῆν ἐργάζεσθαι ἐφαίνετο ἄν ὁ ἡλιος· ἄπερ ἄτοπα.

λείπεται οὖν ἡ ἐκτὸς περιλαμβάνεσθαι τὸ θ' ὑπὸ τοῦ ἡλια-
κοῦ κύκλου· ἡ ἐκτὸς ἀπολείπεσθαι. ὅταν ἄποθετον, ἤ
φησί, παυθήσεται τὰ φαινόμενα, καὶ ἐνετείθην ἡ διαφορὰ τῶν
μαθηματικῶν ἐλεγχθῆσεται ἄτοπος οὕτω, τῶν μὲν κατὰ ἐκκέν-
τρον, μονὸν λειψάνων φέρεθαι τὰ πλανώμενα, τῶν δὲ κατ'

ἐπίκυκλων, τῶν δὲ περὶ τὸ αὐτὸ κέντρον τῇ ἀπλανεῖ. ἐπιθυμε-
γήσανται γὰρ τοὺς τρεῖς γράφοντες κύκλους κατὰ συμβαθηκός,
καὶ τὸν περὶ <τὸ> τοῦ παντὸς κέντρον καὶ τὸν ἐκκέντρον· ἦν

ἐν τοίς ἡλιακοῦ κύκλου, φησί, μὴ μέντοι γε ὡς κέντρον,

ἐκκέντρος ἡ τοιαύτη λέγεται πραγματεία, ἦν δὲ ἐκτὸς ἀπο-

λείπεσθαι, κατ' ἐπίκυκλον.
égalité des angles au centre et de la similitude des arcs. Il est donc évident que la cause de cette apparence est un mouvement différent qui ne s'effectue pas autour du centre 0. Le point 0 sera intérieur à la circonférence, ou il sera sur la circonférence elle-même, ou il sera extérieur. Or il est impossible que la circonférence solaire passe par le point 0, car le soleil rencontrerait la terre dont les habitants auraient les uns toujours le jour, les autres toujours la nuit; il n'y aurait ni lever ni coucher et on ne verrait point le soleil tourner autour de la terre, ce qui est absurde.

Il reste donc à supposer le point 0 à l'intérieur ou à l'extérieur du cercle solaire. A quelque hypothèse que l'on s'arrête, les apparences seront expliquées, c'est pour cela qu'on peut considérer comme vaines les discussions des mathématiciens qui disent que les planètes ne sont emportées que sur des cercles excentriques, ou sur des épicycles, ou autour du même centre que la sphère étoilée. Nous démontrerons que les planètes décritent par accident ces trois sortes de cercles, un cercle autour du centre de l'univers, un cercle excentrique ou un cercle épicycle. Si nous supposons que le point 0 est à l'intérieur du cercle solaire, mais non au centre, on dit que le cercle est excentrique; si le point 0 est extérieur, il y a épicycle.
<Περὶ ἐκκεντροῦ>

ὑποκείσθω πρῶτον ἐκκεντρὸς εἶναι ὁ τοῦ ἥλιου κύκλος ὁ ἐξηκ, παρεγκεκλιμένος οὕτως, ὡς ἔχειν τὸ αὐτὸ κέντρον ὑπὸ τῇ εἰς περιφέρεια, οὗν τὸ μ, καὶ διαφυγμένον εἰς ἕκατο μέρη τὰ ὧν καὶ τὴν μὲν εἰς περιφέρειαν εἶναι ἦδε ζ', τὴν δὲ ζη λβ' ε' καὶ τὴν ηκ τῇ η'', τὴν δὲ καὶ ζη η''.

φανερὸν οὖν ὡς ἐπὶ μὲν τοῦ ε ἡγεμόνος ἡμῖν ἀπό τοῦ θ ἐπὶ εὕθειας ὁρῶσιν ἐπὶ τοῦ α εἶναι δόξει, τὴν δὲ εἰς διελθών, μεγίστην οὕσπι τῶν εἰς τέσσαρα τετραμένου τοῦ ιδίου κύκλου,

10 ἡμέραις λδ'' ζ', ὡστονπερ ἢν καὶ αὕτη <μοριῶν>, ὁμαλῶς, καὶ γενόμενος ἐπὶ τοῦ ζ, ἡμῖν ἐπὶ τοῦ β φυνῇσται, καὶ δόξει τὴν αβ διεληλυθέναι, τεταρτημοριαίον τοῦ ξυφικοῦ κύκλου, οὗ ταῖς υἱοῖς ἡμέραις, ἀνωμάλως.

πάλιν δὲ τὴν ζη περιφέρειαν, δευτέραν μεγάλει τοῦ

10 <μοριῶν> H. Martin, <μοριῶν> Hiller.
XXVI bis. Supposons d'abord que le cercle excentrique solaire soit $\xi\eta\chi$, placé de manière à avoir son centre sous l'arc $\varepsilon\zeta$, au point μ par exemple. Supposons encore que le cercle soit divisé en 365 parties et $1/4$, que l'arc $\varepsilon\zeta$ en contienne 94 $1/2$, $\xi\eta$ 92 $1/2$, $\eta\chi$ 88 $1/8$ et $\varepsilon\zeta$ 90 $1/8$. Il est évident que, lorsque le soleil sera en ε, il nous paraîtra en ξ, à nous qui le verrons du point θ, suivant une ligne droite. Puis parcourant régulièrement l'arc $\varepsilon\zeta$, qui est la plus grande des quatre divisions de son propre cercle, dans l'espace de 94 jours $1/2$, autant de jours qu'il y a de divisions dans l'arc, il parviendra en ζ; là il nous paraîtra en β et il nous semblera avoir parcouru irrégulièrement en un nombre de jours différent (du quart de 365 et $1/4$) l'arc $\alpha\beta$ qui est le quart du zodiaque.

De même lorsqu'il aura parcouru l'arc $\xi\eta$, le second de $\xi\eta$ son propre cercle en grandeur, dans l'espace de 92 jours $1/2$ qui correspondent au nombre des divisions de l'arc, il se
ιδίου κύκλου, περιμελθών ὁμολογῶν ἐν ἡμέραις ἦς ε', ὡσ' νεπερ ἀν αὐτῆ μοιρῶν, καὶ γενόμενος ἐπὶ τοῦ ἡ, ἡμῖν ἐπὶ τοῦ γ' φανήσεται, καὶ δόξει τὴν β', τεταρτημορικάν τοῦ ζωδίων κοῦ καὶ ἵση τῇ πρόσθεν ἐν ἐλάσσοσιν ἡμέραις διεληλιθέναι.

καὶ ἀνομάλως. παραπληγίως δὲ τὴν τις διατορευθεῖς, ἐλαγχόστιν ὤσιν τῶν εἰς πέτσαρα τοῦ ἱδίου κύκλου, μοιρῶν τη' ἦ', ἐν ἡμέραις τοσάκτισι καὶ γενόμενος ἐπὶ τοῦ κ', τοῖς ἁπ' τοῦ θ' ὁρώσι φανήσει μὲν ἐπὶ τοῦ δ', δόξει δὲ τῇ την γ', τεταρτημορικάν καὶ ἵση ταῖς πρόσθεν, ἐλαγχόστις ἡμέραις διεληλιθέναι.

καὶ κατὰ λόγον λοιπῆν τὴν καὶ πορευθῆς ἡμέραις ἦ', ὡς τοις καὶ μοιρῶν ἡ', καὶ ἀποκαταταττές ἐπὶ τὸ ε', δόξει τῇ δια διηνυκέναι, τεταρτημορικάν καὶ ἵσην, ἐν ἡμέραις ἦ', καὶ ἐπὶ τὸ α' σημεῖον ἀποκαθιστάσθαι, καὶ τὸν ἐσωτερικὸν κύκλον διατορευθεῖσα ὁμολογῶν τῶν ζωδίων ἀνομάλως δόξει διεληλιθέναι. εἰς ὡς ἐπιζευγγείας μεταξύ τῶν κέντρων τῆς θ' ἐκδόλωμεν τῇ' ἐκτέρνα ἐπ' εὐθείας, ἐπειδὴ τοῦ ε' κύκλου κέντρου τὸ μ', ἵση ἐσται ή μν <τῇ> με. ὡστε κατὰ μὲν τὸ ν γενόμενος ο' ἑλίας ἀπογειότατος ἐν εἴναι, καὶ

ἡμῖν ἀπὸ τοῦ θ' ὁρώσι τὸ μέγεθος ἐλάχιστοι δόξει καὶ βραδύτατα κινούμενος, ὀπερ φαίνεσται ποιών κατὰ τὴν πέμπτην ἡμίσειαν μάλιστα μοίραν τῶν Διδύμων κατὰ δὲ τὸ ε' γενόμενος προσγειότατος τοι καὶ δίκω τούτο μέγιστος τῆς φάσει καὶ τάχιστα κινούμενος δόξει . ἀτικά πάλιν φαίνεται ποιώμενος

κατὰ τὴν ε' ἡμίσειαν μοίραν τοῦ Τοξότου εὐλόγως τοι καὶ περὶ τὰς αὐτὰς μοίρας τῶν τοῖς Ἐρμόν καὶ τῆς Παρθένου μέσως τῷ μεγέθει καὶ τῷ τάχιστα φέρεσθαι δοκεῖ. καὶ οὕτω τάντα, φησί, σωληνήσεται τὰ φαινόμενα.

εὑρίσκεται ο' έξης κύκλος τῇ βέστε καὶ τῷ μεγέθει
dιαδύμενος. ἡμήθωσαν γὰρ διὰ τοῦ μ' ταῖς αγρ' παράλληλοι πρὸς ὀρθὰς ἀλληλείποις αἱ ὀποὶ ρη, καὶ ἐξεύρησαν αἱ

trouvera en τ et il nous paraîtra en γ, il nous semblera qu’il a parcouru irrégulièrement en moins de jours, l’arc βγ, quart du zodiaque, égal au précédent. Paréillement lorsqu’il aura parcouru l’arc τξ, la plus petite des quatre divisions du cercle, en 88 jours 1/8, nombre égal aux divisions de l’arc, il sera en x et il nous paraîtra en ξ, à nous qui l’observerons du point θ, il nous semblera avoir parcouru l’arc γξ égal aux précédents en un nombre moindre de jours.

Enfin, pour la même raison, lorsqu’il aura parcouru xζ en 90 jours 1/8, nombre de jours égal au nombre des divisions de l’arc, et qu’il sera revenu en ζ, il nous semblera qu’il a parcouru, en 90 jours 1/8, l’arc ζη égal aux autres, et qu’il est revenu en ζ. C’est pour cela que parcourant uniformément son cercle, il semblera parcourir irrégulièrement le cercle zodiacal. Or si joignant les centres θ, μ, par une ligne droite, nous prolongeons cette ligne de part et d’autre, nous aurons μν = μξ, puisque μ est le centre du cercle ζξ. Ainsi donc le soleil en ν sera à sa plus grande distance de la terre et pour nous qui sommes au point θ, il nous paraîtra avoir le minimum de grandeur et de vitesse; ce phénomène paraît se produire vers le 5° degré 1/2 des Gémeaux. Arrivé en ξ il sera à sa plus petite distance de la terre et il paraîtra avoir le maximum de grandeur et de vitesse; ce dernier fait semble se produire au 5° degré 1/2 du Sagittaire. Et avec raison il paraît avoir une grandeur et une vitesse moyenne, quand il occupe les mêmes degrés dans les Poissons et dans la Vierge. C’est ainsi que seront expliquées toutes les apparences.

Le cercle εξτχ est donné de position et de grandeur. Menons, en effet, par le point μ les droites σπ, ρτ respectivement parallèles aux droites αγ, βδ, perpendiculaires entre elles et joignons ζμ, με. Le cercle εξτχ étant divisé en 365 parties et
ΤΑ ΠΕΡΙ ΑΣΤΡΟΛΟΓΙΑΣ

ζύμ με. ὀδύλον οὖν ὅτι τοῦ ἐξηχ. κύκλου διαφεβεύοντος εἰς ἡμέρας τε ἤ' ἢ μὲν ἐξηχ. περιφέρεια τοιούτων ἔσται ἡμερῶν ποι' ἤ'. ἦδ' ἀρά ἐκατέρω τῶν εἰς την προς σα. αἰ ὀδύλον τῷ πρὸς τοῖς περι-
φέρεια ἄν καὶ ἤ' ἦ' τοιούτων ὑπάρχουσι. ἦ δοθεῖσαι ἀρά γενίσκῃ υπὸ ομν ἢτο ἔσται τῇ ἡμ. ὧμι. ἔσται ἀρά ὁ λόγος τῆς μὲν πρὸς μῆθ, τοιτέτοι μὲν πρὸς θη. ὁδομένου. δέδοται ἀρά τό μὲν τρίγλως τῷ εἴδει. καὶ δοθεῖν τῷ 3
κέντρον τοῦ παντός πρός ἐκατέρω τῶν ν ἐς τιμεῖς. τοῦ μὲν γάρ μέγιστον ὀρίζει ἀπόστημα, τό δὲ ἐκάθεμον. καὶ ἔστω ἦ μὲν θμ. μεταξύ κέντρου τοῦ παντός καὶ τοῦ ἑλιακοῦ κύκλου. δέδοται ἀρά τοις ἐξηχ. κύκλος τῇ θέσει καὶ τῷ μεγέ-
θεί. εὐρίσκεται ἦδ' ἔσται τῆς περὶ ἀποστημάτων καὶ μεγεθῶν

πραγματείας ὁ λόγος τῆς θη. ὁδομένου ὃσ ἆν πρὸς κο'. τοιῶν μὲν τῆν κατὰ ἐκείνην πραγματείαν παραδίδωσιν, σώζουσιν τὰ φανόμενα.

〈Περὶ τοῦ ἑπίκυκλου〉

tῆν δὲ κατ' ἑπίκυκλον τοιῶν λέγουσιν εἶναι. ἔστω πάλιν

ἄφωνος. μὲν ὁ ἀργ. ἑλιακὸς ὃς κύκλος ὁ ἐξηχ. ἐκτός ἀποικίας ἐκατοῦ τῷ 0 ἦ ἔστι τοῦ παντὸς κέντρον. φερμομένης ἢ τῆς τῶν ἀπλανῶν σφαιράς ἀπὸ τῆς β' ἀναπλοῦν ἐπὶ τὸ ημεσοφάνη καὶ ἀπὸ τοῦ α ἐπὶ τῆν ὁ ὄνο. ἢ ἐξηχ. κύ-
κλος ἦτοι ἠρμήνευτο ἢ καὶ κύκλος κυνηθῆται. φερμομένου περὶ

κύκλον τοῦ ἑλιακοῦ. ἀλλ' εἰ μὲν ἠρμήνευτο, ὁδύλον ὃς ὁ ἑλιακός ὄυς δύνατον οὕτω ἀνακέλλων φανήτησιν. ἀλλ' ἤτ' ὁτις μὲν ὑπὲρ ὑμ. ἠμέραν ποιεῖ· τοῖς δὲ ὡς πρὸς ἡμῖν ὑπὸ ἡμ. νῦκτα, καὶ μᾶ περιστροφῇ τοῦ παντὸς δόξει τάντα παροδεύειν τὰ ζῳδία. ἀπερ ἔστιν ἀτοπία.

2 ἠμέραν] μέρος conj. J. D. Voy. p. 252 l. 3. — 3 ἠμέραν] μέρον conj. J. D. —
1/4, il est évident que l'arc $\xi \eta$ en contiendra 187 et l'arc $\eta \xi$ 178 et 1/4; mais les arcs $\xi \eta$, $\tau \eta$, sont égaux, ainsi que les arcs $\rho \zeta$, $\sigma \tau$; de plus chacun des arcs $\sigma \tau$, $\tau \rho$, $\rho \sigma$, $\sigma \tau$ est représenté par 91 divisions $+ 1/4 + 1/16 \pi$. L'angle $\phi \mu \nu$ est donc donné, il est égal à l'angle $\theta \mu \tau$. De même l'angle $\rho \mu \nu = \nu \mu \theta$, donc le rapport de $\mu \tau$ à $\nu \tau$, c'est-à-dire de $\mu \tau$ à $\theta \tau$, est donné et le triangle $\mu \tau \theta$ est donné de forme. Mais le centre θ de l'univers est aussi donné par rapport aux deux points ν et ξ, car l'un de ces points est à la plus grande distance de la terre et l'autre à la plus petite. La ligne droite $\theta \mu$ joint les centres de l'univers et du cercle solaire. Le cercle $\xi \eta \chi \zeta$ est donc donné de position et de grandeur. On trouve par la considération des distances et des grandeurs que le rapport de la droite $\theta \mu$ à $\mu \nu$ est à peu près celui de 1 à 24. Telle est l'hypothèse sur le cercle excentrique, hypothèse qui explique toutes les apparences.

Du cercle épicycle

XXVI ter. Voici maintenant le raisonnement au moyen de l'épicycle. Soit encore le zodiaque $\alpha \beta \gamma \delta$ et le cercle solaire $\xi \eta \chi$ qui laisse à l'extérieur le centre θ de l'univers. La sphère étoilée se mouvant du levant β au méridien α, puis du point α au couchant δ, ou le cercle $\xi \eta \chi$ sera immobile ou il se mouvrà lui-même pendant que le soleil tournera autour de lui. S'il est immobile, il est clair que le soleil ne paraîtra ni se lever ni se coucher; mais il produira toujours le jour pour ceux qui sont au-dessus de la terre et toujours la nuit pour ceux qui sont au-dessous, par rapport à nous, et, dans une seule révolution (diurne) de l'univers, il paraîtra parcourir tous les signes. Ce qui est contraire aux faits.

4 Car $91 + 1/4 + 1/16$ est le quart de $365 + 1/4$. 17
κινηθήσεται οὖν καὶ αὐτὸς· κινούμενος δὲ ἦτοι ἐπὶ τὰ αὐτὰ τῷ παντὶ οἰσθήσεται ἢ ὑπεναντίως· καὶ ᾖτι ἐπὶ τὰ αὐτὰ τῷ παντὶ, ἦτοι ἱσταχώς ἢ θάττον αὐτοῦ ἢ βραδύτερον. ἀλλ' εἰ μὲν ἱσταχώς, ἄγχυστων τῶν θζ' θελ ἑραπτομέ-νων τοῦ ζε' κύκλου, ὁ ἡλίος ἐν τῇ ναλ περιφερείᾳ τοῦ ζῳδιακοῦ ἄφθονο δέξει ἀναπτομένης· ἐπὶ μὲν γὰρ τοῦ ζε' γενό-μενος κατὰ τὸ ν ψαρνήσεται, ἐπὶ δὲ τοῦ ε' κατὰ τὸ α', μετα-θάς δὲ ἐπὶ τὸ κ' κατὰ τὸ λ', καὶ τὴν μὲν ζε'κεν περιφέρειαι διανύσεις, τὴν ναλ δέξει πεπορεύσθαι ἐπὶ τὰ προχούμενα τῶν ζῳδιών· τὴν δὲ κη' διαλύουσα δέξει τὴν λαν ἐπὶ τὰ ἑπόμενα ἔνθιρνακτίναι τὰν πάλιν οὐ φαίνεται· οὐκ ἄρα ἐξ' θαλ' κύκλου ἱσταχώς ἐπὶ τὰ αὐτὰ τῷ παντὶ συμπεριενεχθήσεται. ἀλλ' μήν οὐδὲ ἢ'πττον, ἐπεὶ καὶ οὕτως προφθάνων προχείρεται δέξει τῶν ἀπλανών καὶ ἀνάπτυξιν τὸν ζῳδιακὸν διανυσεῖν, οὕν ἀπὸ Κρινοῦ εἰς Ἰήθυας καὶ Ἰδρονοῦ· ἀπερ οὐ φαίνεται.

ὅλον οὖν ὃτι ἐξ' θαλ' κύκλου ἦτοι ἐπὶ τὰ αὐτὰ τῷ παντὶ, βραδύτερον μέντοι, κινηθήσεται, καὶ διὰ τοῦτο ὑπολειπόμενος εἰς τὰ ἑπόμενα δέξει μεταβαίνειν, ἢ κατ' ἑαυτὸν [εἰ] μὲν ὑπ-
Le cercle se mouvra donc lui-même, et, se mouvant, il se portera dans le même sens que l'univers ou en sens contraire. S'il tourne dans le même sens, c'est avec une vitesse égale, ou plus grande ou plus petite. Supposons qu'il se mue avec la même vitesse, tirez les droites $\theta \xi \gamma$, $\theta \lambda$, tan-5gentes au cercle $\varepsilon \zeta$, le soleil paraîtra toujours aller et venir dans l'arc $\nu \zeta \lambda$ du zodiaque. En effet, arrivé en ζ, il paraîtra en γ; lorsqu'il sera en ε, il paraîtra en α, et transporté en ζ il paraîtra en λ. Lorsqu'il aura parcouru l'arc $\zeta \xi \alpha$, il paraîtra avoir décrit l'arc $\nu \zeta \lambda$ vers les signes qui précèdent. Puis lors-10qu'il aura parcouru l'arc $\nu \zeta \xi$, il paraîtra se porter par l'arc $\lambda \nu \zeta$ vers les signes suivants. Or cela ne se passe pas ainsi, le cercle solaire $\varepsilon \xi \gamma \alpha$ ne se porte donc pas dans le même sens que l'univers avec la même vitesse. Il n'a pas non plus une vitesse plus grande, car alors il paraîtrait devancer les étoiles et parcourir le zodiaque en sens contraire, c'est-à-dire du Bélier aux Poissons et au Verseau. Ce qui n'est pas.

Il est donc évident que le cercle $\varepsilon \xi \gamma \alpha$ se meut dans le même sens que l'univers, avec une vitesse moindre, c'est pour cela qu'il paraît être laissé en arrière et passer dans les signes.
εναντίως τῷ παντὶ οἰσθήσεται, συναπενεγρήσεται δὲ τῷ παντὶ πρὸς ἡμέραν ἐκάστην κρατούμενος τὴν ἀπ’ ἀνατολήν ἐπὶ δύσεις—καὶ γὰρ οὕτως εἰς τὰ ἐπώμενα φανήσεται μετιῶν καὶ οἶον ὑπολειπόμενος.

5 τῶς οὖν σώσει τὰ φαινόμενα; ἐστοι κέντρον τοῦ ἡλιακοῦ κύκλου τὸ μ, καὶ γεγράφω κέντρῳ μὲν τῷ θ, διαστήματι δὲ τῷ θμ, κύκλος τὸ μονῆς, καὶ ὑποχείσθω ὁ εξῆς κύκλος νῦν συναποφέρεσθαι μὲν τῷ παντὶ τῇ ἀπὸ τῶν ἀνατολῶν ἐπὶ δύσεις φοράν, ἦτοι δὲ διὰ βραχυτῆτα ὑπολειπόμενος, 10 ἢ καὶ φερόμενος ὑπεναντίως τῷ παντὶ, δ καὶ μάλλον ὄσχει τῷ Πλάτωνι, ὡστε τὸ μὲν κέντρον κατὰ τοῦ μονῆς κύκλου φερόμενον ὁμαλῶς περιπορεύεσθαι αὐτὸν ἐναυτῷ, καὶ ἐν τῷ "αὐτῷ> χρόνῳ τὸν ἡλιον διανύειν τὸν ἐαυτοῦ κύκλον, ὁμοίως φερόμενον ὁμαλῶς. πάλιν ὁ ἡλιος κατὰ τοῦ εξῆς κύκλου 15 ἦτοι ἐπὶ τὰ αὐτὰ τῷ παντὶ ἐνεγρήσεται, ἢ ὑπεναντίως, ἐπὶ τὰ αὐτὰ δὲ τῷ ἕδιῳ κύκλῳ, οἶον ἀπὸ τοῦ θ ἐπὶ τὸ ε καὶ ἀπὸ τοῦ ε ἐπὶ τὸ ζ. λέγω δὲ ὅτι τοῦ εξῆς κύκλου περι—

13 "αὐτῷ> H. Martin. — 15 "ἐπὶ τὰ αὐτὰ δὲ> H. Martin.
suivants, de sorte qu'il paraît avoir un mouvement propre, contraire à celui de l'univers, tout étant emporté chaque jour dans le même sens, du levant au coucher. C'est ainsi qu'il paraîtra passer dans les signes suivants, étant en quelque sorte laissé en arrière.

Comment donc ce cercle rendra-t-il compte de ces apparences? Soit μ le centre du cercle solaire. Décrivons le cercle μνξ du centre θ avec le rayon θμ, et supposons que le cercle εζητ est emporté d'orient en occident en même temps que l'univers et qu'il est laissé en arrière à cause de sa moindre vitesse, ou bien qu'il se meut dans un sens contraire à celui de l'univers, ce qui paraît plus probable à Platon *, de sorte que le centre, emporté régulièrement sur le cercle μνξ, le parcourt dans l'espace d'un an, et que le soleil, dans ce même laps de temps, achève aussi sa propre révolution, d'un mouvement régulier. En outre, le soleil sera porté sur le cercle εζητ ou dans le même sens que l'univers ou en sens contraire, c'est-à-dire dans le même sens que son cercle propre, du point x au point ε et du point ε au point ζ.

13 Cf. Supra, III xviii.
φερομένου κατά τοῦ μονῆς ὑπεναντίος τῷ παντὶ ὁ ἥλιος ἐπὶ τοῦ εὐκλείου ἐνεχθῆσται ἐπὶ τά αὐτά τῷ παντὶ καὶ σώσει τὰ φαινόμενα.

ἐννέαγθῳ γὰρ πρότερον ὑπεναντίως μὲν τῷ παντὶ ἐπὶ τά αὐτὰ <ὁδὲ> τῷ ἐκατοτοῦ κύκλῳ, οἷον ἀπὸ τοῦ ε ἐπὶ τῷ ζ ἢ ἀπὸ τοῦ ζ ἐπὶ τῷ η ἢ ἀπὸ τοῦ η ἐπὶ τῷ ξ ἐπὶ τοῖς ἐπὶ τοῦ ἑ γενόμενος πλείστον ἀφέστηκεν ἡμῶν, δήλον ὅτι το ξ κατὰ τὴν ε ἡμίσειν μορφὰν ἐστὶ τῶν Διὸμοιων - ἔσται οὖν τὸ γ περὶ τὴν ε ἡμίσειν μορφὰν τοῦ Ἰοσότου - καὶ τὸ μὲν 10 μ, τοῦ ἡλιακοῦ κύκλου κέντρον, τεταρτημοριαίον ἐννέαγθῳ περιφέρειαν τοῦ μονῆς κυνὸμενον ὁμαλῶς, τὴν μο, καὶ τὸν ε ἕκκλη κυκλῶν μετεννοηγέτο ἐπὶ τὸν λπ ὀ δὲ ἡλίου ἐπὶ τὰ αὐτὰ τοῦτος φερόμενος ὁμοίως τεταρτημοριαίον ἐννέαγθῳ περιφέρειαν τοῦ ε ἕκκλη τὴν ε ἐσται οὖν ἐπὶ τοῦ π, 15 φανήσεται δὲ ἡμῖν ἐπὶ τοῦ σ, καὶ τὴν ε τεταρτημοριαίον τοῦ ἄδειου κύκλου διειλθῶν δοξεί τοῦ ζωδίακου μείζονα η ὁμοίων περιπέπτει τὴν α β καὶ ἀπὸ τοῦ α ταχέως ἀπείναι.

πάλιν δὲ τὸ ὁ ἐννέαγθῳ κέντρον τεταρτημοριαίον περιφέρειαν τὴν ὁ ν, καὶ καθεστασίω τὸν λπ κυκλῶν ἐπὶ τὸν φ υ.

20 ὁ δὲ ἦλιος τεταρτημοριαίον κεκινήσθω περιφέρειαν τὴν πτ ἐσται οὖν ἐπὶ τοῦ υ, φανήσεται δὲ ἡμῖν ἐπὶ τοῦ γ, καὶ ἐννέαγθῳ δοξεί τὴν σγ τοῦ ζωδίακου ἐλάττωνα η τεταρτημοριαίον καὶ προσνέα τῷ γ βραδέως. πάλιν ὁ τὸ τεταρτημοριαίον μεταβά λα περιφέρειαν τὴν νε, μετεννοηγέτο τὸν 25 κύκλων ἐπὶ τὸν χψ. ο δὲ ἦλιος τεταρτημοριαίον ἐνεχθῆς περιφέρειαν ἐστω ἐπὶ τοῦ ψ φανήσεται δὲ ἀρα κατὰ τὸ ω καὶ δοξεί διεκθεθήναι τὴν γ, ἐλάττωνα <ν>, τεταρτημοριαίοις, καὶ βραδέως ἀπείναι τοῦ γ.

λοιπὸν δὲ τὸ μὲν ξ κέντρον, τεταρτημοριαίον ἐλθὼν περιφέρειαν τὴν ξμ, ἀποκαθεστάσκετο τὸν ψ χ κύκλων ἐπὶ τὸν εξηκ, καὶ αὐτὸς δὲ ὁ ἦλιος, διειλθῶν ὁμοίων τὴν περιφέρειαν τὴν ψμ, ἀποκαθεστάσθω ἐπὶ τὸ ε, φαινόμενος κατὰ τὸ α καὶ ἐννι
Or je dis que le cercle \(\xi \gamma x \) étant emporté sur le cercle \(\mu \nu \xi \),
d'un mouvement contraire à celui de l'univers, le soleil se
mouvra sur le cercle \(\xi \gamma x \) dans le même sens que l'univers et
expliquera ainsi les apparences.

Supposons d'abord qu'il soit emporté par un mouvement
contraire à celui de l'univers, mais dans le même sens que
son cercle, c'est-à-dire de \(\varepsilon \) en \(\xi \), de \(\xi \) en \(\eta \), de \(\eta \) en \(x \). Puis-
que parvenu en \(\varepsilon \) il sera le plus éloigné de nous, il est clair
que \(z \) est dans le cinquième degré et demi des Gémeaux \(^5\),
donc \(\gamma \) sera dans le cinquième degré et demi du Sagittaire \(^*\).

Supposons que le point \(\mu \), centre du cercle solaire, décrive
d'un mouvement régulier l'arc \(\mu \nu \), quart de la circonférence
du cercle \(\mu \nu \xi \), et que le cercle \(\xi \gamma x \) soit transporté en \(\lambda \pi \), le
soleil, emporté régulièrement dans le même sens, décrira
l'arc \(\xi \) de la circonférence du cercle \(\xi \gamma x \). Il sera donc au 15
point \(\pi \) et il nous apparaîtra en \(\pi \), et lorsqu'il aura décrit
l'arc \(\xi \), quart de son propre cercle, il paraîtra avoir parcouru
l'arc \(z \beta \pi \), plus grand que le quart du zodiaque, et s'être éloi-
gné rapidement du point \(z \).

Le centre \(\sigma \) décrira ensuite l'arc \(\sigma \nu \), quart de la circonfé-
rence, le cercle \(\lambda \pi \) viendra et \(\varphi \nu \), et le soleil aura parcouru
l'arc \(\pi \pi \), quart de la circonférence, il sera donc en \(\nu \), nous
apparaîtra en \(\gamma \) et semblera avoir parcouru l'arc \(\sigma \gamma \), moindre
que le quart du zodiaque et s'être rapproché lentement du
point \(\gamma \). Le point \(\nu \) ayant parcouru le quart \(\nu \xi \) de la circon-
férence, son cercle sera porté en \(\gamma \psi \), et le soleil ayant décrit
le quart de la circonférence sera au point \(\psi \), il apparaîtra
au point \(\omega \) et semblera avoir décrit l'arc \(\gamma \omega \), moindre que le
quart de la circonférence, et être venu lentement du point \(\gamma \).

Enfin le centre \(\xi \), décrivant l'arc \(\xi \mu \), quart de la circonfé-
rence, rétablira le cercle \(\psi \gamma \) sur \(\xi \gamma x \), et le soleil lui-même,
ayant décrit un arc semblable \(\psi \gamma \), reviendra en \(\varepsilon \) et apparaî-

νέχθαι δόξει τὴν ὁδὸ τοῦ ἔφοδου μείζονα περιφέρειαν, καὶ ταχύνειν ἐπὶ τὸ α. ὡστε δήλον ὅτι φερόμενος οὕτως τὰχιστὰ μὲν δόξει κινεῖται περὶ τοὺς Διδύμους, βραδύτατα δὲ περὶ τὸν Τοξότην - φαίνεται δὲ τοῦναντῖον - οὐχ ἀρα, τοῦ κύκλου αὐτοῦ φερομένου κατὰ τὸν μονὸς ἐγκεντρον κύκλου ἐπὶ τὰ ἑναντία τῷ παντὶ, καὶ αὐτὸς ὁ ἤλιος ἐπὶ τοῦ ἐπικύκλου ἐπὶ τὰ αὐτὰ μὲν τούτῳ κινηθῆσεται, ὑπεναντίος δὲ τῷ παντὶ.

λείπεται οὖν, τοῦ ἐπικύκλου φερομένου ὑπεναντίως τῷ παντὶ, τὸν ἤλιον κατὰ τοῦ ἐπικύκλου φέρεσθαι ἐπὶ τὰ αὐτὰ τοῖς ἀπλανεῖσιν - οὕτως γὰρ σωθήσεται τὰ φαινόμενα. ὅσον ἐννέχθω τὸ μὲν κέντρον τοῦ ἐπικύκλου τεταρτημοριάσαι περιφέρειαν περὶ ἐγκεντρον κύκλου τὴν μο, καὶ μεταγγείτω τὸν ἐπικύκλου ἐπὶ τὸν λπ - δὲ ἤλιος ἐπὶ τοῦ ἐπικύκλου τὴν ἐκ όμοιαν.

ἔσται οὖν ἐπὶ τοῦ λ, φανάρεται δὲ ἡμῖν ἐπὶ τοῦ σ, τεταρτημοριάσαι τοῦ ἱδίου κύκλου κινηθεὺς περιφέρειαν - ἐπὶ δὲ τοῦ ἔφοδου δόξει ἐλάττωνα ἐννέχθαι τὴν αὐτοῦ καὶ βραδέως ἀπεργομένος τοῦ α σημείος.

πάλιν τὸ ὁ κέντρον μεταβεβηκέτω τεταρτημοριάσαι τὴν οὖν,
tra en α. Alors aussi il semblera avoir décrit un arc $\omega \alpha$ du zodiaque plus grand que le quart de la circonférence et s’être hâté d’arriver en α. Il est donc évident que dans son mouvement il paraîtra avoir une plus grande vitesse dans les Gémeaux et une moindre dans le Sagittaire. C’est cependant le contraire qu’on observe. Tandis que le cercle solaire est emporté sur la circonférence du cercle concentrique $\mu \nu \xi$, en sens contraire de l’univers, le soleil ne peut donc pas se mouvoir sur l’épicycle dans le même sens que ce cercle et en sens contraire de l’univers.

Il reste à examiner le cas où l’épicycle ayant un mouvement contraire à celui de l’univers, le soleil se meut sur l’épicycle dans le même sens que les étoiles fixes. C’est ainsi que seront expliquées les apparences. En effet, supposons que le centre de l’épicycle décrive l’arc $\mu \alpha$, quart de la circonférence du cercle concentrique, et qu’il transporte avec lui l’épicycle en $\lambda \pi$, le soleil aura décrit sur l’épicycle l’arc semblable $\varepsilon \alpha$, il sera donc en λ et il nous apparaîtra en π, ayant parcouru un arc égal au quart de son propre cercle; mais sur le zodiaque il semblera avoir parcouru l’arc plus petit $\alpha \pi$, avec une vitesse faible à partir du point α.

Puis le centre ν décrira le quart $\nu \psi$ de la circonférence et
καὶ οὐ ἦλθος ὁμοίαν τοῦ ἐπικύκλου τὴν λπ. ἦσσαν δὲ ἐπὶ τοῦ οὐ, φανήσεται δὲ κατὰ τὸ γορί, καὶ δόξει κεκινηθῆ αυτοῦ ζῳδιακοῦ τὴν σβγ., μείζονα τεταρτημοριαίας, ταχύων ἐπὶ τὸ γορί. ἐπενε-
νέγ'θω τὸ ν ἐπὶ τὸ δεκατεταρτημοριαίαν τὴν νς καὶ τὸν υς,
κύκλον ἕφημοκετω τῷ γορί. οὐ δὲ ἦλθος, κινηθεὶς ὁμοίαν ταῖς πρόβεσιν τὴν υς περιφέρειαν, ἐστιν ἐπὶ τοῦ γορί. φανήσεται δὲ κατὰ τὸ ω, καὶ δόξει διελθεῖ οὐκ ἔτεκεν τὴν γορί τοῦ ζῳδιακοῦ περιφέρειαν μείζονα τεταρτημοριαίας, καὶ ταχέως ἀπίνει τοῦ γορί ἐπὶ τὸ δεκατεταρτημοριαίαν.

10 λοιπὴν ἢ ἔτος κέντρον ἔλθον τὴν ξυ κινήσει ἀποκαθεστά-
κέτω τὸν ἐπίκυκλον τὴν εξηκ., καὶ αὐτοῦ οὐ ἦλθος, ἐνεγ'θεὶς ὁμοίαν λοιπὴν τὴν γορί, ἀποκαθεστάθω ἐπὶ τὸ ε, φανήσεται δὲ κατὰ τὸ α', δόξει δὲ [ὁ κατὰ τὸ α'] τοῦ ζῳδιακοῦ διελθεῖ οὐκ ἔτεκεν τὴν ὁμοίαν τεταρτημοριαίας καὶ
15 βραδέως προσινεῖ τῷ α', ὡστε κατὰ τήν δε τὴν ὑπόθεσιν σωθῇ-
στατι τὰ φανάρια ἢ βραδύτατον μὲν γάρ δόξει κινητῆς καὶ
μικρότατος εἰναι κατὰ μέγεθος ὁ ἦλθως περὶ τὴν ε' ἐλεύθερον
tὸν Διδύμων, τάχιστα δὲ φέρεσθαι καὶ μέγιστος εἰναι περὶ τὴν
αὐτὴν μοίραν τοῦ Τοξίτου καὶ ταύτα εὐλόγους ἢ ἀπὸ μὲν
gάρ τοῦ τοῦ μεταβαίνων ἐπὶ τὸ καὶ τοῦ κύκλου αὐτοῦ κινουμένου ἀπὸ τοῦ μ ἐπὶ τὸ ο, ἀντιφέρομενος τῷ ἐκτων κύκλω... ἢ ἐπὶ τῷ τοῦ ἐπικύκλου μεταβαίνοντος ἀπὸ τοῦ ο ἐπὶ τὸ ν,

20 συντρέχων αὐτῷ τὴν ἐπὶ τοῦ ζῳδιακοῦ φοράν ἐπιτείνειν δέδει τῇ κινήσει ἐπὶ ταύτα γινομένην τῃ τον τινά

23 συμβαίνουσαν, καὶ παραπλησίως ἀπὸ τοῦ ν φερόμενος ἐπὶ τὸ ν.

φοράν ἐπὶ τοῦ ἐπικύκλου μεταβαίνοντος ἀπὸ τοῦ ν ἐπὶ τὸ ν, ὁ προθάνον τὸν ἐκτον κύκλων καὶ ἐπὶ τοῦ ζῳδιακοῦ δόξει ταχύ-

25 νεί. ἀνάπαλιν δὲ ἀπὸ τοῦ ν παραγνόμενος ἐπὶ τὸ ν, τοῦ ν μεταβαίνοντος ἐπὶ τὸ ν, μ. ἀντιφέρομενος τῷ ἐκτον κύκλω

28 βραδεῖαν φαίνεται ποιούμενος τὴν ἐπὶ τοῦ ζῳδιακοῦ φοράν.

εὐρίσκεται δὲ πάλιν τὸ μέγεθος τοῦ ἐπικύκλου καὶ ὁ λόγος

29 ἢ ἐπὶ τὸ Ἡ. Ματιν.
le soleil décrira l’arc semblable λπ de l’épicycle, alors il sera en ν et paraîtra en γ. Il semblera avoir parcouru, en augmentant de vitesse vers γ, l’arc du zodiaque ε∂γ, plus grand qu’un quart de circonférence. Que ν soit transporté en ξ, l’arc νξ étant le quart de la circonférence et que le cercle νρ s’applique sur le cercle χι, le soleil décrivant l’arc υρ semblable aux précédents sera en χ, et paraîtra en ω; il semblera avoir parcouru l’arc γω du zodiaque, plus grand qu’un quart de circonférence, et être passé rapidement de γ en δ.

Le centre parcourant l’arc restant ξυ, l’épicycle χι reviendra en εξτχ et le soleil, décrivant l’arc semblable χι qui reste sera rétabli en ε. Il apparaîtra en α et semblera avoir parcouru l’arc ωα, plus petit qu’un quart de circonférence, et s’être lentement approché de α. C’est ainsi que suivant cette hypothèse, toutes les apparences s’expliquent, car le soleil paraîtra se mouvoir plus lentement et être plus petit, vers le cinquième degré et demi des Gémeaux et se mouvoir plus rapidement et être plus grand, vers le même degré du Sagit- taire. Ce qui est conforme aux apparences. Car il passe du point ε au point x, tandis que le centre du cercle passe lui-même de μ, en ω, ayant un mouvement contraire (à celui de son propre cercle)

Allant en π, pendant que l’épicycle passe de ω en ν, le soleil, qui va dans le même sens que lui, paraîtra s’avancer sur le zodiaque d’un mouvement en quelque sorte concordant avec le sien. Pareillement transporté de ν en ψ, pendant que l’épicycle passe de υ en ξ, il paraîtra augmenter de vitesse sur le zodiaque, comme s’il devançait son propre cercle. Au contraire, en passant de γ en ψ pendant que l’épicycle passe de ε en μ, le soleil, transporté en sens contraire du mouvement de son propre cercle, paraîtra accomplir lentement sa marche sur le zodiaque.

On peut trouver la grandeur de l’épicycle et le rapport de la distance des centres au diamètre ετ de l’épicycle εζ. Ce
τού μεταξὺ τῶν κέντρων πρὸς τὴν επικύκλιον επίμετρον ὑπεναντῖς τῷ πρόσθεν, ὡς καὶ πρός ἐν, διὰ τῆς περὶ ἀπόστημάτων καὶ μεγεθῶν πραγματείας· μέγιστον μὲν γὰρ ἀπόστημα τοῦ ἴλιον τὸ θεῖον ἐλάχιστον δὲ τὸ θεῖον ἢ δὲ ὑπεροχὴ τοῦ μεγίστου πρὸς τὸ ἐλάχιστον διάμετρος γίνεται τοῦ ἐπικύκλιου· κατ' ἐπίκυκλον γὰρ καὶ ἡ τοιχώτη γίνεται πραγματεία, ἐπειδὴ ὁ εἶχε τού πλανομένου κύκλου καθ’ ἐτέρου τινὸς ἐγκέντρου [ὁμοκέντρου] φέρεται κύκλου, οἷον τοῦ μονοῦ.

10 ἂλλ' ὅτι μὲν καθ' ἐκκέντρων τὴν ὑπόθεσιν, τὴν κατ' ἐκκέντρων καὶ τὴν κατ' ἐπίκυκλων, σώζεται τὰ φαινόμενα, δείκνυσιν ἐκ τούτων. Ἡ Ἰππαρχος δὲ φησιν ἄξιον εἶναι μαθηματικῆς ἐπιστάσεως ἵδειν τὴν αἰτίαν δὲ ἣν τοσοῦτον διαφέρουσας ὑποθέσεις, τῇ τέ τῶν ἐκκέντρων κυκλῶν καὶ τῇ τῶν ὑμικέντρων καὶ τῶν ἐπίκυκλων, τὰ αὐτὰ φαίνεται ἀκολουθεῖν. δείκνυσι δὲ ὁ Ἀδραστος πρῶτον μὲν πῶς τῇ κατ' ἐπίκυκλον ἔπεται κατὰ συμβεβήκως ἢ κατὰ ἐκκέντρον· ὡς δὲ ἐξείω φήμη, καὶ τῇ κατὰ ἐκκέντρον ἢ κατ' ἐπίκυκλον.

2 <διάμετρον> H. Martin. — 14 <τῇ> H. Martin.
rapport inverse du précédent *, car il est égal au rapport de 24 à 1, s’obtient par la considération des distances et des grandeurs. La plus grande distance du soleil à la terre est δ, la plus petite est γ et la différence de ces deux distances est égale au diamètre de l’épicycle. Telle est l’explication au moyen de l’épicycle, le cercle εδ de la planète se mouvant sur un cercle concentrique qui est μνξ.

Adraste montre ainsi que les phénomènes sont expliqués dans l’une et l’autre hypothèse, celle de l’excentrique et celle de l’épicycle. Hipparque a fait remarquer qu’elle est digne de l’attention du mathématicien, la recherche de l’explication des mêmes phénomènes à l’aide d’hypothèses si différentes, celle des cercles excentriques et celle des cercles concentriques et des épicycles. Adraste a montré que l’hypothèse de l’excentrique est une conséquence de celle de l’épicycle ; à dire vrai, l’hypothèse de l’épicycle est aussi une conséquence de celle de l’excentrique.

1 Cf. p. 257, l. 12.
ἐστω γὰρ ξυδιακὸς μὲν ὁ ἀβγός, κέντρον δὲ τοῦ παντὸς
τὸ θ, ἦλιον δὲ ἑπίκυκλος ὁ ἐξηχ, κέντρον δὲ αὐτοῦ τὸ μ.
καὶ γεγράφθω κέντρον μὲν τὸ θ, διαστήματι δὲ τῷ θ, ἦλιο
κύκλος ὁ μονε. λέγω ὅτι, τοῦ μ κέντρου κινούμενου περὶ
τῶν μονε ἐπὶκυκλον ὑμόκεντρον ὑμαλώς, ὑπεναντίως τῷ παντὶ,
καὶ συναποφέοντας τὸν ἑπίκυκλον, ὁ ἦλιος ἐν τῷ ἔλιον δια-
νών τὸν εὐν ἑπίκυκλον ὑμαλώς, ἐπὶ τὰ αὐτὰ δὲ τῷ παντὶ,
γράφει καὶ τὸν ἑκκέντρον ὡς ὄντα τῷ μονε ἑκκέντρον. διήγ-
θωσαν γὰρ αἰ αγ βδ διάμετροι τοῦ ξυδιακοῦ πρὸς ὀρθῷς
ἀλλήλας, ὡστε τὸ μὲν α ἔσχειον περὶ τὴν ἑ ζ μοῖραν τῶν
Διδύμων εἶναι, τὸ δὲ γ περὶ τὴν αὐτὴν τοῦ Τοξότου, καὶ κέν-
τροις τοῖς ὁ ν ἐγράφθωσαν τῷ εξηχ ἑπικυκλῳ ὅσοι κύκλοι οἱ
λπ ψφ ψφις διάμετροι πρὸς ὀρθῆς τῇ βδ
αἰ λπ ψφ, καὶ ἐπεξεύθυνω ἢ λγ.
λέγω ὅτι αἰ λγ, ὡς ἦσαν τέ εἴτε καὶ παράλληλοι ἢ ἢ ἄρα
Soit, en effet, $\alpha \beta \gamma \delta$ le zodiaque, θ le centre de l'univers, $\xi \zeta \eta \xi$ l'épicycle du soleil et μ son centre. Décrivons, du centre θ, avec le rayon $\theta \mu$, le cercle $\mu \nu \xi$; je dis que le centre μ parcourant uniformément la circonférence du cercle homocentrique $\mu \nu \xi$, d'un mouvement contraire à celui de l'univers et emportant avec lui l'épicycle, il arrivera que le soleil, parcourant dans le même temps l'épicycle $\xi \eta \xi$, d'un mouvement uniforme et dans le même sens que l'univers, décrira aussi l'excentrique égal au concentrique $\mu \nu \xi$. Menons, en effet, les diamètres du zodiaque $\alpha \gamma$, $\beta \delta$, perpendiculaires entre eux, de manière que le point α soit sur le cinquième degré et demi des Gémeaux et γ sur le même degré du Sagittaire, et des centres α, ν, ξ, traçons les cercles $\lambda \tau \tau$, $\nu \varphi \gamma$, $\gamma \psi \zeta$, égaux à l'épicycle $\xi \eta \xi$ et les diamètres $\lambda \pi$ et $\psi \gamma$ des cercles $\lambda \tau \tau$ et $\gamma \psi \zeta$, perpendiculaires au diamètre $\beta \delta$; tirons enfin la droite $\lambda \gamma$.

Les droites $\lambda \gamma$, $\alpha \xi$, sont égales et parallèles entre elles.
έκατέρα τῶν λατ. συ. έκατέρα τῶν οὗ θέλει αἱ εἰσιν ἐκ τοῦ κέντρου τοῦ μονού κύκλου. καὶ ἔπει ἦσση ἡ θεσσαλία, ἢ έστε ἔτει ἦσση καὶ ἡ θυμοῦ ἐστίν ἢ ἐστὶν ἄρα καὶ ἡ ἀπειρούση ἀποκαθεστησαί τοῖς εἰς συ. έστει ἦσση ἐκ τοῦ κέντρου τοῦ μονού κύκλου. ἐδείγμα ἔτει καὶ ἔκατερα τῶν λατ. συ. ἦσση ἀκτή ἐκ τοῦ κέντρου τοῦ μονού κύκλου. τέσσαρες ἄρα αἱ συ. συ. συ. συ. έστει ἀλλήλαις εἰσὶ καὶ πρὸς ὅρθιας. ὁ ἄρα κέντρῳ μὲν τῷ σ, διαστέματα δὲ τοῖς μῆκος γραφόμενος κύκλῳ ἢ ἀκτή διὰ τῶν εἰς καὶ σημεῖον, καὶ ἢς έστει ἦσση τῷ μονού κύκλῳ, καὶ ὅποιόν εὐθείας ἐξ εἰς τέσσαρες ἐξακολουθήσετε. γεγραφθεὶς οὖν καὶ ἐστὼ ὁ ἐλυγμός οὗτος δὲ ἦσση ἀποκαθεστήσατος, τὸ μὲν ἀποκαθεστησαί ἐγείρον ὑπὸ τὸ α, ετέρος ἀκτής τῶν. Διδύμων, τὸ δὲ προσεγείροταν ὑπὸ τὸ γ, ετέρος ἀκτής τοῦ Τοξύτου.

λέγω δὴ ὅτι ἦλιος, φερόμενος, ὡς ὑπετέθη, κατὰ τοῦ ἐχθῆς ἐπικύκλου, κατὰ συμβεβηκὸς γράφει καὶ τῶν εἰλικρίνεις. ἐννεάχθεις γὰρ τὸ μὲν κέντρῳ τοῦ ἐπικύκλου τὴν μονερίῳ, ἃ�ον περιφερείαν τεταρτημοριαίαν. καὶ ὁ ἦλιος ἄρα, ἐν τῷ αὐτῷ γράμμα ἐνεγράφης ὁμοιός τοῦ ἐπικύκλου τὴν εξ, ἔστει ἐπὶ τοῦ λ, καὶ ἀπὸ τοῦ ε ἔπλοπ ως τεταρτημοριαίαν γράφας περιφερείαν τοῦ ἐκκέντρου τοῦ εἰλ. τάλιν τὸ ἐκ κέντρῳ περιφερείαν τοῦ κύκλου ἐννεάχθεις τεταρτημοριαίαν τὴν οὖν περιφέρειαν, ὁ δὲ ἦλιος ὁμοίως τοῦ ἐπικύκλου τὴν λτ. ἔστει ἄρα ἐπὶ τοῦ ν, καὶ κατὰ συμβεβηκὸς γράφει τοῦ ἐκκέντρου ὁμοίως περιφέρειαν τὴν λω. ὁμοιώς οὖ τοῦ ν διαπεριβλήθης τὴν νῦ, ὁ ἦλιος τοῦ ἐπικύκλου διελύστηκεν ὁμοίως τὴν νύ. ἔστει δὴ ἐπὶ τοῦ γ, κατὰ συμβεβηκὸς γράφας καὶ τὴν οὖν ὁμοίως περιφερείαν τοῦ ἐκκέντρου. λυτὸν δὲ τοῦ ξ διελθόντος τὴν ξυμ., καὶ ὁ ἦλιος ἐξανύσας <τὴν> γς ἀποκαθεστησαί ἐπὶ τὸ

11 <ἔστει> H. Martin.
Les droites $\lambda \tau$ et $\sigma \chi$ sont donc respectivement égales aux
droites $\theta \theta$ et $\theta \xi$ qui sont des rayons du cercle $\mu \nu \xi$; et puisque
la droite $\theta \nu$ est égale à $\theta \lambda$, elle sera aussi égale à chacune des
droites $\mu \nu$, $\mu \xi$. Mais on a $\theta \nu = \theta \mu$, donc on a aussi $\nu \tau = \sigma \xi$, or
$\theta \tau = \theta \nu$, et la droite $\theta \nu$ est commune; donc $\sigma \nu = \theta \nu$. Chacune
des deux droites $\varepsilon \tau$ et $\sigma \nu$ est donc égale au rayon du cercle
$\mu \nu \xi$; mais on a montré que chacune des droites $\lambda \tau$, $\sigma \chi$, est
egale au rayon de ce cercle, les quatre droites $\varepsilon \tau$, $\sigma \lambda$, $\sigma \nu$, $\sigma \chi$,
sont donc égales et perpendiculaires entre elles; donc le cercle décrit du centre σ, avec un rayon égal à l'une de ces
droites, passera par les points ε, λ, ν, χ, sera égal au cercle
$\mu \nu \xi$ et sera divisé en quatre parties égales par les diamètres
$\varepsilon \nu$, $\lambda \chi$. Décrivons ce cercle et supposons que ce soit $\varepsilon \lambda \nu \chi$. Il
sera excentrique; le point qui se projette en α, au cinquième
degré et demi des Gémeaux, sera le plus éloigné de la terre, et
le point qui se projette en γ, au cinquième degré et demi
du Sagittaire, en sera le plus rapproché.

Je dis que le soleil, mu, comme on l'a supposé, sur l'épicycle $\varepsilon \eta \xi$, décira naturellement l'excentrique $\varepsilon \lambda \nu \chi$. En effet,
que le centre de l'épicycle décira l'arc $\mu \nu$, quart de la circon-
férence, le soleil dans le même temps décira l'arc semblable
$\varepsilon \chi$ de l'épicycle, viendra en λ et arrivera de ε en λ ayant
parcouru le quart $\varepsilon \lambda$ de l'excentrique. Que le centre décire de nouveau le quart $\nu \nu$ de la circonférence, le soleil parcourra
l'arc semblable $\lambda \tau$ de l'épicycle; il sera donc en ν et décira
par conséquent l'arc semblable $\lambda \nu$ de l'excentrique. Pareille-
ment, pendant que le point ν décira l'arc $\nu \xi$, le soleil par-
courra l'arc semblable $\nu \varphi$ de l'épicycle, il sera donc en χ,
ayant décrit par conséquent l'arc semblable $\nu \chi$ de l'excen-
trique. Enfin, pendant que le point ξ parcourra l'arc $\xi \mu$, le
soleil ayant décrit l'arc $\chi \xi$ reviendra en ε. Il décira donc
aussi dans le même temps l'arc semblable restant $\varepsilon \chi$ de
l'excentrique. Ainsi, en parcourant uniformément tout l'épicycle, pendant que celui-ci est emporté sur le con-
δείκνυται δὲ τὸ αὐτὸ καὶ ὦτως. ἔστω ξυμικάκος μὲν ὁ ἄβγα, ἡλίου δὲ ἐπίκυκλος ὁ ἐξχ, τὸ μὲν κέντρον ἐγὼν ἐπὶ τοῦ μονχ ἱμενον, ὡς ἔστιν ὁμόκεντρος περὶ τὸ θ κέντρον τοῦ παν- τός. καὶ ἐστὶ τὸ ε σημεῖον ἀπογειώτατον ὅπο τὴν ἐς ἐς μοῖ- ραι τῶν Διδύμων. λέγω δὲ, τοῦ κε φερομένου ἱμαλῶς ἐπὶ
τοῦ μονχ κύκλου ὑπεναντίος τῷ παντὶ, ὁ ἠλίος ἐν τῷ αὐτῷ
τοῦ γρόνῳ φερόμενος κατὰ τῶν εἰς ἐπίκυκλου ἱμαλῶς μὲν καὶ
ὑπεναντίος τῷ ἐπίκυκλῳ, ἐπὶ τὰ αὐτὰ δὲ τῷ παντὶ, κατὰ
συμβαθικάς γράφει καὶ τὸν ἐκκέντρον ἐστὸν ὄντα τῷ μονχ ἕγκεν-
τρῳ.
centrique, le soleil décrit un excentrique; c'est ce qu'il fallait prouver.

On démontre la même proposition de cette manière. Soit $\alpha\gamma\delta$ le zodiaque et $\epsilon\zeta\lambda$ l'épicycle solaire ayant son centre sur la circonférence du cercle $\mu\nu\xi$ qui est homocentrique autour du centre θ de l'univers. Soit aussi le point ε, le point le plus éloigné de la terre, au cinquième degré et demi des Gémeaux, je dis que l'épicycle $\varepsilon\zeta$, étant emporté sur la circonférence du cercle $\mu\nu\xi$ d'un mouvement uniforme et contraire à celui de l'univers, et le soleil parcourant dans le même temps l'épicycle $\varepsilon\zeta\lambda$, d'un mouvement uniforme et contraire à l'épicycle, et par conséquent dans le même sens que l'univers, décrira par suite un excentrique égal au concentrique $\mu\nu\xi$.

2 En admettant que le soleil décrit uniformément l'épicycle, dans le sens du mouvement diurne, pendant que le centre de l'épicycle décrit uniformément le concentrique en sens contraire, Adraste démontre que le soleil se trouve sur l'excentrique, aux points $\epsilon, \lambda, \nu, \chi$; mais il ne démontre pas que le soleil soit sur l'excentrique aux points intermédiaires. — 4 Dans les mss. la figure contient deux fois la lettre η. Pour éviter une confusion possible, nous avons supprimé une fois cette lettre, et nous désignons, dans le texte et sur la figure, l'épicycle par $\varepsilon\zeta\lambda$ au lieu de $\varepsilon\zeta\eta\lambda$.
ἀπεννενεγθὼ γὰρ τὸ μὲν μὲν κέντρον πυκνοῦσάν τινα περιφερειαν τὴν μοι, καὶ καθῆστάκετο τῶν ἐπίκυκλον ἐπὶ τὸν πρῶτον, ὥστε ἢλιος ἀρξάμενος ἀπὸ τοῦ ε, τουτεστὶν ἀπὸ τοῦ ρ, ἐν τῷ κύκλῳ χρόνῳ διελπαθέως τὴν ρητ., ὡμοίαν τῇ μοι, καὶ κείσθω τῇ με ἢσπ ἤθη, καὶ ἐπεζευγθῶσαν αἱ ἣτο θρ. ἐπεὶ οὖν ὡμοία ἢ ρητ. περιφερεία τῇ ομ., ἢσπ καὶ γωνία ἢ ἑττ. τᾶς τε παράλληλας ἀρα ἢ τῇ θῆτὶ ἢσπ δὲ καὶ ἢσπ ἢτο ἢ ἢσπ ἢτο τῇ οἴκ. καὶ παράλληλος ἦσπ τῇ δέ ἢ ἢσπ θтал. ἢτο ἢσπ ἢτο τῇ θῆτῃ. ὡρα ἢ κέντρῳ μὲν τῇ θη, διαστήματι δὲ τῷ θῆτῃ γραφένος κύκλος ἤζει καὶ διά τοῦ τοι καὶ ἢσπ ἢσται τῷ μονός.

γεγράφθω οὖν ὁ επιλεξ. ὡς τοι ἢ καί τὸ ἢκέκεντρος. ἐπεὶ οὖν παράλληλος ἢ τῇ θῆτῃ ἤθη, ἢσπ ἢ ἑττ. γωνία τῇ τῇ, τουτεστὶ τῇ περ. ἢτο τῇ πρ. ὡμοίαν ἢτο ἢ τετ. ἢτο ἢ ἢσταμένος δέ <ὁ ἢλιος> ἀπὸ τοῦ ε, κατὰ συμβεβηκός γράψῃ καὶ τῇ θῇ ὡμοίαν περιφερείαν τῶν ἑκέκεντρου. ὡμοίως δέ δειγμάτωσι τούτῳ ποιών ἢσται ἢ δεῖται καὶ δολὸν ἀνύσας τὸν ἐπίκυκλον διά τοῦ ἑκέκεντρου δολον γράψῃ καὶ ἢκέκεντρον ὡσπ. ἢςται δεῖκαι.

dεικτεύον δὲ καὶ τὸ ἀναστρέφον. ἐστώ γὰρ πάλιν ζωνίσχος μὲν ὁ ἄβγα, διάμετρος δὲ αὐτοῦ ἢ αγ., καὶ κέντρον τὸ τῆ, ἢλιος δὲ κύκλος ἢκέκεντρος ελυξ καὶ ἢστω ἀπογειώσασι τοῖς αὐτοῖς τοῦ ε ὑπὸ ε ἢ μοῖραν τῶν Διδύμων, κέντρον δὲ ἢτο τῇ αὐτῇ τῇ τῇ καὶ γεγράφθω κέντρῳ μὲν τῇ ἢ, διαστήματι δὲ τῇ θῆτῃ, κύκλος οὐ μονής. πάλιν κέντρῳ μὲν τῇ μι, διαστήματι δὲ τῷ με, κύκλος γεγράφθω ἢ εκχ. ὑπέλευσαν οὖν ὡς οὕτως ἢσται ὁ αὐτὸς τῷ ἐπίκυκλῳ. λέγω δὴ ὅτι ὁ ἢλιος κινούμενος ὁμαλῶς κατὰ τοῦ ελυξ ἢκέκεντρου γράψῃ κατὰ συμβεβηκός καὶ τὸν εκχ. ἐπίκυκλον φερόμενον ὁμαλῶς κατὰ τοῦ μονές καὶ ἰσοχρονίως τῷ ἢλίῳ.

Supposons, en effet, que le centre \(\mu \) ait décris un arc quelconque \(\mu \sigma \) et que l’épicycle soit arrivé en \(\pi \varphi \gamma \), le soleil parti du point \(\varepsilon \), c’est-à-dire du point \(\rho \), aura décrit dans le même temps l’arc \(\rho \pi \), semblable à l’arc \(\mu \sigma \); prenons la droite \(\Theta \eta \) égale au rayon \(\mu \varepsilon \) et tirons les droites \(\eta \pi \), \(\Theta \rho \). Puisque l’arc \(\rho \pi \) est semblable à l’arc \(\sigma \mu \), l’angle \(\varphi \) est égal à l’angle \(\pi \varepsilon \). Donc la droite \(\pi \sigma \) est parallèle à \(\Theta \eta \), mais elle lui est aussi égale, la droite \(\pi \eta \) est donc égale et parallèle à la droite \(\Theta \varphi \).

Or la droite \(\Theta \sigma \) est égale à la droite \(\eta \varepsilon \). Donc la droite \(\pi \sigma \) est égale à la droite \(\eta \varepsilon \). Donc le cercle décrit du centre \(\Theta \), avec le rayon \(\eta \varepsilon \), passera par \(\pi \) et sera égal au cercle \(\mu \sigma \varepsilon \).

Décirons le cercle \(\varepsilon \pi \lambda \varepsilon \) (du centre \(\Theta \), avec \(\Theta \pi = \Theta \varepsilon \) pour rayon); ce cercle sera l’excentrique. Puisque \(\pi \eta \) est parallèle à \(\Theta \varphi \), l’angle \(\varphi \) sera égal à l’angle \(\varepsilon \), c’est-à-dire à \(\pi \eta \varepsilon \), l’arc \(\varepsilon \pi \) est donc semblable à l’arc \(\pi \rho \) (de l’épicycle \(\pi \Theta \gamma \)). Le soleil \(\varepsilon \) partant du point \(\varepsilon \) décrira par conséquent l’arc semblable \(\varepsilon \pi \) de l’excentrique. On démontrera de même qu’il en est toujours ainsi; de sorte que le soleil ayant parcouru tout l’épicycle se mouvant lui-même sur un cercle concentrique, décrit aussi tout un cercle excentrique. C’est ce qu’il fallait démontrer.

On peut démontrer aussi la proposition inverse. Soit de nouveau \(\sigma \beta \gamma \delta \) le zodiaque dont le diamètre est \(\alpha \varphi \) et le centre \(\Theta \); soit encore \(\varepsilon \lambda \varepsilon \) le cercle excentrique du soleil, \(\varepsilon \) le point le plus éloigné du centre de la terre, sous le cinquième degré et demi des Gémeaux, et soit \(\Theta \) son centre sur la droite \(\Theta \varepsilon \). Décirons, du centre \(\Theta \), avec le rayon \(\Theta \varepsilon \), le cercle \(\mu \sigma \varepsilon \) et du centre \(\mu \), avec le rayon \(\mu \varepsilon \), le cercle \(\varepsilon \xi \). Il est clair que ce sera le même que l’épicycle. Je dis donc que le soleil décrivant uniformément la circonférence \(\varepsilon \lambda \varepsilon \) de l’excentrique, décirira aussi par suite l’épicycle \(\varepsilon \xi \) emporté uniformément dans le même temps sur le concentrique \(\mu \sigma \varepsilon \).

6 Théon désigne par \(\varphi \) l’angle \(\rho \sigma \pi \), et par \(\pi \) l’angle \(\Theta \rho \mu \).
ἐνυνέγχων γὰρ ὁ ἡλίας τυχόσωσαν τινα περιφέρειαν ἐπὶ τοῦ ἐκκέντρου τὴν επ., καὶ ἐπεζεύγχω ἢ τη, καὶ <ἡ> ρῆ παράλληλος, ἡτὶ δὲ τῇ θη ἢ ὅρ. καὶ ἐπεζεύγχων ἢ τη. ἐπεὶ οὖν <αἱ την ἦνα καὶ παράλληλαι εἰσὶν> αἱ τη τὸ ἴσαι ἔστοοντα 5 καὶ παράλληλαι, ἔστι δὲ ἢ θῃ ἴσῃ τῇ με, τοιούτοις τῇ ὅρ. τῇ ὅπ. ὁ ἄρᾳ κέντρω μὲν τῷ ὁ, ὑστατηματὶ δὲ τῷ ὅρ. γραφόμενοι κύκλος ἦξει καὶ διὰ τοῦ τι, καὶ ὁ αὐτὸς ἔσται τῷ ἐξή ἐπικύκλῳ. γεγράφθαι οὖν ὁ πρ. ἐπεὶ οὖν διὰ τὰς παράλληλας αἱ ἡ γονίαι ἴσαι εἰσὶν ἄλλαλίαις, ἐν δὲ τοῖς κύκλοις αἱ 10 ἴσαι γονίαι ἐφ' ὁμοίων περιφερειῶν βεθήκασιν, ἐν δὲ τοῖς ίςοις καὶ ἐπὶ ἴσοις, ἐὰν τε πρὸς τοὺς κέντρους ὅσιν ἐὰν τε πρὸς ταῖς περιφερείαις, αἱ ἐπεὶ μοι περιφερεῖαι [δὲ] ὁμοίω ἔστοονται ἄλλαλίαις, αἱ δὲ ἐπὶ μοι καὶ ἴσαι.

ἐν ὃι ἄρᾳ χρόνῳ ὁ ἡλίας τὴν επὶ περιφερείαν ἐκινήθη 15 τοῦ ἐκκέντρου, ἐν τοῦτο καὶ τὸ μ. κέντρον τοῦ ἐπικύκλου, τὴν μο περιφερείαν ἐνεχθέν, τὸν ἐξ ἐπικύκλου ἐπὶ τὸν πρ. μετήγεκε, καὶ ὁ ἡλίας τὴν επὶ τοῦ ἐκκέντρου διανύσας, ἀρξάμενος ἀπὸ τοῦ ἐ. τοιούτων ἀπὸ τοῦ ὀ. καὶ τὴν ἐπὶ τοῦ ἐπικύκλου περιφερείαν ὁμοίαν ἐγραφὲ. τὸ δ' αὐτὸ δεισδησται καὶ 20 κατὰ πᾶσαν χειρήνα ποιούμενος ὡστε καὶ ὅλον διανύσας τὸν ἐκκέντρον ὁ ἡλίας ὅλον γράψει τὸν ἐπικύκλον ὁ. ὅπερ ἐδείδει δείκται.

χ. ταύτα δὲ καὶ ἐπὶ τῶν ἄλλων πλανώμενων δείκνυται. 25 τῇν ὁ μὲν ἡλίου ἀπαράλλακτος ταύτα δοκεῖ τοιεῖν κατὰ ἄμφο-26 τέρας τὰς ὑποθέσεις, διὰ τὸ τοὺς ἀποκαταστατικοὺς αὐτοῦ γρό- 30 νους, τὸν τε κύκλου καὶ τὸν τοῦ πλάτους καὶ τὸν τοῦ βάθους καὶ τῆς λεγομένης ἀνωμαλίας, οὕτως εἶναι σύνεγγυς ἄλλαλίων, ὡστε τοὺς πλείστους τῶν μαθηματικῶν ἱσούς δοκεῖν, ἡμεροῦν ἔκαστον τῇ δ', ἀκριβοῦστον δὲ ἐπισκοπούμενος τὸν ἕμερον τοῦ μήκους, ἐν ὃὶ τὸν ὅριον ἀπὸ σημείου τἰς ἐπὶ τὸ

4 <αἱ την ἦνα καὶ παράλληλαι εἰσὶν> J D. — 23 Title: peri ἡλίου ἀπο- καταστάσεως (du retour du soleil au même point).
Supposons, en effet, que le soleil ait décrit un arc quel-
conque $\varepsilon \pi$ de l'excentrique. Tirons la droite $\pi \eta$ et sa paral-
lelle $\theta \eta$. Qu'on prenne $\phi \phi$ égale à $\theta \eta$ et qu'on tire $\pi \varphi$. Puisque
les droites $\eta \pi$, $\theta \varphi$, sont égales et parallèles, les droites $\eta \theta$, $\pi \varphi$
seront aussi égales et parallèles; mais on a $\theta \eta = \mu \varepsilon$, donc $\phi \phi = \pi \theta$,
donc le cercle décrit du centre ϕ avec le rayon $\phi \phi$
passera par le point π et sera le même que l'épicycle $\varepsilon \xi \chi$.
Décrivons ce cercle $\pi \gamma \gamma$. A cause du parallélisme des droites
($\phi \pi$, $\theta \eta$) les angles π et φ sont égaux; mais dans les cercles à
des angles égaux correspondent des arcs semblables, et dans les
trous, les cercles égaux à des angles égaux correspondent des arcs
éguals, que ces angles soient au centre ou sur la circonfe-
rence, donc les arcs $\pi \varepsilon$, $\pi \pi$, $\mu \phi$ sont semblables entre eux,
e, de plus, les arcs $\pi \eta$, $\mu \phi$, sont égaux.

Ainsi donc, dans le même temps que le soleil parcourt l'arc $\varepsilon \pi$ de l'excentrique, le centre μ de l'épicycle, décivant
l'arc $\mu \phi$, emportera l'épicycle $\varepsilon \xi \chi$ en $\pi \gamma \gamma$, et le soleil ayant
parcouru l'arc $\varepsilon \pi$ de l'excentrique en partant du point ε,
c'est-à-dire du point φ, décrira l'arc semblable $\phi \pi$ de l'épi-
cycle. On peut démontrer qu'il en est ainsi pendant tout le
mouvement. Donc, en parcourant tout l'excentrique, le
soleil décrit aussi tout l'épicycle. C'est ce qu'il fallait dé-
montrer.

XXVII. Les mêmes démonstrations s'appliquent aux au-
tres planètes. Le soleil paraît faire tous ces mouvements, dans l'une et l'autre hypothèse, avec régularité, car les temps des retours à la même longitude, à la même latitude, au même éloignement qui produit l'inégalité qu'on nomme anomalie, sont tellement peu différents les uns des autres, que la plupart des mathématiciens les regardent comme égaux à 365 jours 1/4. Ainsi, quand on considère atten-
vement le temps du retour en longitude pendant lequel le
soleil parcourt le zodiaque, en allant d'un point au même
point, d'un solstice au même solstice, ou d'un équinoxe au
αὐτὸ σημεῖον διανύει καὶ ἀπὸ τροπῆς ἐπὶ τὴν αὐτὴν τροπὴν καὶ ἀπὸ ἱστημέριας ἐπὶ τὴν αὐτὴν ἱστημέριαν παραγίνεται, τὸν εἰρημένον σύνεγγυς χρόνον, παρὰ τετραετίαν ἐπὶ τὸ αὐτὸ σημεῖον τοῦ μήκους αὐτοῦ κατὰ τὴν αὐτὴν ὄραν ἀποκαθίστα-μένου·

τὸν δὲ τῆς ἀνωμαλίας, καθ' ὅν ἀπογείωσας γινόμενος καὶ δι' αὐτὸ τῇ μὲν φάσει τοῦ μεγέθους μικρότατος, βραδύτατος δὲ κατὰ τὴν εἰς τὰ ἐπόμενα φοράν, ἢ ἀνάπαυσιν προσγειότατος, καὶ διὰ τοῦτο μέγιστος μὲν τῷ μεγέθει δοκών, τῇ δὲ κινήσει τάχιστος, ἡμερῶν ἔγγιστα τῇ ʿζ', διετίκα πάλιν ἐπὶ τὸ αὐτὸ σημεῖον τοῦ βάθους τὴν αὐτὴν ὄραν αὐτοῦ φανομένου, τὸν δὲ τοῦ πλάτους, ἢ ὅ ἀπὸ τοῦ αὐτοῦ βορειότατος ἢ νοτιώτατος γενόμενος ἐπὶ τὸ αὐτὸ παραγίνεται, ως πάλιν ἵσας ὀρθοίς τὰς τῶν αὐτῶν γνωμόνων σκίας, ἡμερῶν μάλιστα τῇ ζε' η', κατὰ τὸ αὐτὸ τοῦ πλάτους σημεῖον αὐτοῦ τὴν αὐτὴν ὄραν ὀκταετίκα παραγινομένου.

κη. ἐπὶ δὲ τῶν ἄλλων, ἐπεὶ καθ' ἐκαστὸν τῶν πλανωμένων τολὺ παραλλάττουσιν <οἱ> εἰρημένου γρόνων πάντες, καὶ ἐφ' ὃν μὲν μάλλον, ἐφ' ὃν δὲ ἢπτον, τὰ γινόμενα καθ' ἐκαστὸν φαίνεται ποικιλότερα καὶ διαλλάττουσιν πως καθ' ἐκαστὸν τὴν ὑπόθεσιν, οὕτως ἐν ἑαυτῷ γρόνῳ τοῦ πλάνητος ἐκαστοῦ τὸν ἐκπεςκλήμενον καὶ τοῦ ἐπισκυλοῦ τὸν ἐγκέκριτον, ἀλλ' ὃν μὲν θάττον, δὲ βραδύνου, διὰ τὰς τῶν κύκλων ἀνισότητας καὶ διὰ τὰς ἀπὸ τοῦ μέσου τοῦ παντὸς ἀνύσως ἀποστάσεις, ἐστὶν τούτῶν ἀποτελεῖσθαι καὶ ἀνομοίως ἐγκλίσεις ταύτης ὧν ἀποκαθίσταται (du retour des autres planètes). — 18 <οἱ> II. Martin. — 27 Titre : περὶ στρογγυλῶν καὶ προσγείων καὶ ἀναποδτησμῶν (des stations, des mouvements en avant et des rétrogradations).

17 Title : περὶ τῆς τῶν λοιπῶν πλανήτων ἀποκαθίστασις (du retour des autres planètes). — 18 <οἱ> II. Martin. — 27 Title : περὶ στρογγυλῶν καὶ προσγείων καὶ ἀναποδτησμῶν (des stations, des mouvements en avant et des rétrogradations).
même équinoxe, c’est à très peu près le temps signalé plus haut, de sorte qu’au bout de quatre ans, le retour à un point de même longitude se fait à la même heure.

Quant au temps de l’anomalie après lequel le soleil au point le plus éloigné de la terre parait le plus petit et le plus lent dans son mouvement vers les signes suivants, ou après lequel, au point le plus voisin de la terre, il parait avoir le plus grand diamètre et la plus grande vitesse, il est à peu près de 365 jours 1/2, de sorte qu’au bout de deux ans le soleil parait revenir à la même distance à la même heure. Enfin, le temps de son retour en latitude, temps après lequel parti du point le plus septentrional ou le plus méridional, il revient au même point, de manière à donner les mêmes longueurs d’ombre des gnomons, il est de 365 jours 1/8, et, par conséquent, on peut dire qu’au bout de huit ans, il sera revenu à la même heure, au même point de latitude.

XXVIII. Pour chacune des autres planètes, les divers temps dont nous avons parlé varient beaucoup, ils sont plus longs pour les uns, plus courts pour les autres. Les durée des retours paraissent d’autant plus variables et plus changeantes dans l’une et l’autre hypothèse que ce n’est pas dans le même laps de temps que chaque planète parcourt son épicycle et l’épicycle son cercle concentrique (au zodiaque) : les mouvements sont plus rapides pour les unes, plus lents pour les autres, à raison de l’inégalité des cercles, de l’inégalité des distances au centre de l’univers et des différences d’obliquité par rapport au cercle du milieu des signes c’est-à-dire des différences d’inclinaison et de position.
κ. δόθηκαν καὶ τὰ τῶν στήριγμάν τε καὶ ἀναποδίτσμάν καὶ προηγήσεων καὶ ὑπολείψεων οὐχ ὁμοίως ἐπὶ πάντων ὑπαντήσαι ἀλλ' ἐπὶ μὲν τῶν ε' γίνεσθαι [ὡς] ταύτα φαίνεται, εἰ καὶ μὴ παντάπαν παντὸς φαίνεται, διὰ τὸ τὸν μὲν ἦλθον ζύγην κατὰ τὸν <αὐτόν> γρόνον ἐπὶ τοῦ αὐτοῦ κύκλου φαίνεσθαι φερόμενον, καὶ τὸν ἐπίκυκλον αὐτοῦ κατὰ τὸν ἐγκέντρον, καθάπερ ἔφαμεν, τῆς δὲ σελήνης τὸν ἐπίκυκλον βάπτουν κατὰ τὸν ἐγκέντρον ἐκείνος τοῦ κύκλου [ὕπολείπεσθαι] κύκλου ἢ αὐτήν διεξέδραν ἐπὶ τὸν ἐπίκυκλον.

λ. ὦν ὅλον δὲ ὡς ὦμοθεν διαφέρει πρὸς τό σῶζειν τὰ φαινόμενα, τοὺς πλάνητας κατὰ τῶν κύκλων, ὡς διώρισται, λέγειν κυνείσθαι,

ο ἡ τῶν κύκλων φέροντας τὰ τουτών σώματα αὐτοὺς περὶ τὰ ἑαυτὰ κέντρα κυνείσθαι - λέγω δὲ τοὺς μὲν ἐγκέντρους, φέροντας τὰ τῶν ἐπίκυκλων κέντρα, περὶ τὰ αὐτῶν κέντρα κυνείσθαι ὑπεναντίως <τῷ παντὶ>, τοὺς δὲ ἐπίκυκλους, φέροντας τὰ τῶν πλανομένων σώματα, πάλιν περὶ τὰ αὐτῶν κέντρα, οὗν τὸν μὲν μὴν ἐγκέντρου φέρεται περὶ τό 0, τοῦ παντὶ καὶ ἐκατοῦ κέντρου, ὑπεναντίως τῷ παντὶ, φέροντα ἐπὶ τῆς αὐτοῦ περὶ

φερείας τοῦ <ἐπίκυκλοι τῷ> μέ κέντρον, τὸν <δὲ> ἐξηκατοῦκυκλού ξενότο ν ἐγκέντρου τῶν πλανομένων κατὰ τὸν 0 πέρι τῷ κέντρον, ἐπὶ μὲν ἦλιον καὶ σελήνης ἐπὶ τὰ αὐτὰ τῷ παντὶ, ἐπὶ δὲ τῶν ἄλλων καὶ τούτων ὑπεναντίως τῷ παντὶ - σώζεται γὰρ οὗτος τὰ φαινόμενα.

7 <αὐτόν> II. Martin. — 12 Titre ajouté par H. Martin : πάσηρον οἱ πλανήται κατὰ τῶν κύκλων, οἱ κύκλοι φέροντες αὐτοὺς περὶ τὰ ἑαυτὰ κέντρα κυνοῦται (les planètes se meuvent elles sur leurs cercles, ou les cercles qui les portent se meuvent-ils autour de leurs propres centres?) — 20 <τῷ παντὶ> II. Martin.
XXIX. De là vient que, pour toutes les planètes, les stations et les retours, soit vers les signes précédents, soit vers les signes suivants, ne se font pas d'une manière semblable. On observe le phénomène pour cinq planètes, mais d'une manière qui n'est pas absolument semblable. Pour le soleil et la lune, cela ne se fait aucunement; en effet, ces deux astres ne paraissent jamais ni avancer, ni rester stationnaire, ni rétrograder. Comme nous l'avons dit, le soleil paraît emporté sur son propre cercle dans le même temps que l'épicycle sur le concentrique, tandis que l'épicycle de la lune est emporté plus rapidement sur le cercle concentrique au cercle zodiacal, qu'elle ne parcourt elle-même l'épicycle.

XXX. Il est clair qu'il importe peu, pour interpréter les phénomènes, que l'on dise, comme il a été expliqué, que les planètes se meuvent sur des cercles ou que les cercles qui portent ces astres se meuvent autour de leurs propres centres. Je comprends que les cercles concentriques, portant les centres des épicycles, se meuvent autour de leurs propres centres dans un sens contraire à l'univers, et que les épicycles portant les planètes se meuvent aussi autour de leurs centres. Ainsi, je comprends que le cercle concentrique μγξ se meuve autour de θ, qui est son propre centre et celui de l'univers, dans un sens contraire à l'univers; je comprends, en outre, que le concentrique porte sur sa circonférence le centre μ de l'épicycle λντ et que cet épicycle qui porte la planète au point ε, tourne autour du centre μ, dans le même sens que l'univers, s'il s'agit du soleil et de la lune, ou dans un sens contraire, si l'on considère les autres planètes. Ainsi sont expliquées les apparentes.
κατά δὲ τὴν ἐτέραν πραγματείαν, ὅντος ἐκκέντρου κύκλου
tοῦ εὐλυξ περὶ κέντρον τὸ κ, ἐπὶ μὲν ἡλίου αὐτὸς ἐξελυξ
cύκλος ἐν ἐνιαυτῷ κινούμενος
5 ὁμαλῶς περὶ τὸ κ κέντρον,
φέρων τὸν ἡλίον ἑνεστηριγμένον
κατὰ τὸ ε σημεῖον, σώσει τὰ
φαινόμενα, τοῦ κ κέντρου καθ' ἐαυτὸ μὲν μὴ κινούμενον μηδ' 10 ὑπεναντίως τῷ παντὶ, συναπο-
φερομένου δὲ τῷ παντὶ καὶ
πρὸς ήμέραν ἑκάστην γράφοντος
tὸν κρυπτὸν, ἵστον γινόμενον τῷ τῆς ἐτέρας πραγματείας
κύκλῳ.
15 ποιήσεται γὰρ ὅτις ὁ ἡλίος ἂεὶ κατὰ τοὺς αὐτοὺς τόπους
μέγιστα ἀποστηματα καὶ τάλιν καθ' ἐτέρους ἐλάχιστα καὶ παρα-
πλησίος κατὰ ἄλλους μέσα, τὰ μὲν μέγιστα κατὰ τὴν ε' σ'
μοῖραν, ὡς εὑρήσῃ, τῶν Διδύμων, τὰ δὲ ἐλάχιστα κατὰ τὴν
αὐτὴν τοῦ Τοξότου, καὶ τὰ μέσα ὅμοιας κατὰ τὰς αὐτὰς τῆς τε
20 Παρθένου καὶ τῶν 'Ἰγμύων· ἐπειδὴ καὶ τὸ ε σημεῖον τοῦ ἐκκέν-
τρου ἐφ' οὖ ἦστιν ὁ ἡλίος, τήνδε μὲν ἔχοντος τὴν θέσιν τοῦ
κύκλου, φαινόμενον ὑπὸ τοὺς Διδύμους ἀπογειώτατον ἔστιν,
περιεμεθέντος δὲ τοῦ κύκλου περὶ τὸ κ κέντρον, μετατεθεὶς
ὅπου νῦν ἦστι τὸ υ, φανήσεται μὲν ὑπὸ τῶν Τοξότην, ἐσταὶ δὲ
25 προσγειώτατον, μεταξὺ δὲ τούτων, κατὰ τε τὴν Παρθένον καὶ
tοὺς 'Ἰγμύως, μέσως ἀποστημάται.

τὰ δ' ἄλλα πλανητὰ ἐπειδῆ κατὰ πάντα τὸν τοῦ ξρυσί-
20 κοῦ καὶ μέγιστα καὶ ἐλάχιστα καὶ μέσα ποιεῖται καὶ ἀποστη-
ματα καὶ κινήματα, ἐὰν κέντρῳ μὲν τῷ θ τοῦ παντὸς, διαστή-
ματι δὲ τῷ χ, γεγράφθαι νοσίσωμεν κύκλον τὸν κτρ., ἔπειτα
tούτων, ἐγκεντροὶ ὅτα καὶ ἴστον τῇ τῆς ἐτέρας ὑποθέσεως ἔπι-
κύκλῳ, φέρεσθαι περὶ τὸ θ τοῦ παντὸς κέντρον καὶ συναποφε−
Suivant l'autre interprétation, soit le cercle excentrique $ελωξ$ qui a pour centre le point x. Considéré par rapport au soleil, ce cercle $ελωξ$, se mouvant uniformément dans l'espace d'un an, autour du centre x, et portant le soleil fixé au point $ε$, rendra compte des phénomènes, si le centre x se meut par lui-même, non dans un sens contraire à l’univers, mais emporté dans le même sens, et si chaque jour il décrit le cercle $πξ$ égal au cercle dans l’autre raisonnement.

De la sorte, en effet, le soleil offrira toujours aux mêmes endroits respectifs les plus grandes, les plus petites et les moyennes distances à la terre : les plus grandes, comme il a été dit, au cinquième degré et demi des Gémeaux, les plus petites au même degré du Sagittaire et les moyennes au même degré de la Vierge et des Poissons. En effet, le point $ε$ de l’excentrique, où est le soleil, vu sous les Gémeaux, dans cette position du cercle, est le plus éloigné de la terre; mais le cercle tournant autour du centre x, le point $ε$, transporté où est maintenant le point $υ$, nous paraîtra dans le Sagittaire à la plus petite distance de la terre. Entre ces deux points extrêmes il se trouvera aux moyennes distances dans la Vierge et les Poissons.

Quant aux autres planètes, c’est en tout lieu du zodiaque qu’elles peuvent être à la plus grande, à la plus petite et à la moyenne distance de la terre et qu’elles peuvent avoir la vitesse minimum, maximum ou moyenne. Du centre $θ$ de l’univers et du rayon $θx$, imaginons qu’on décrive le cercle $πξ$, puis, que le cercle concentrique et égal à l’épicycle de l’autre hypothèse tourne autour du centre $θ$ de l’univers et qu’il porte
ΤΑ ΠΕΡΙ ΑΣΤΡΟΛΟΓΙΑΣ

ASTRONOMIE 287.

avec lui le centre x de l'excentrique, d'un mouvement contraire à l'univers et dans un temps déterminé, enfin que l'excentrique $\varepsilon \omega \xi$ se meude dans un temps différent autour de son centre x, portant l'astre fixé sur sa circonférence au point ε; si on prend les temps propres et particuliers à chaque planète, on rendra compte des phénomènes.

Tout cela nous entraîne trop loin sous prétexte d'accorder les hypothèses et les raisonnement des mathématiciens. Ceux-ci ne considérant que les phénomènes et les mouvements planétaires produits selon le cours des choses, après les avoir observés longtemps dans des lieux favorables, en Babylone, en Chaldée, en Égypte, recherchaient avec ardeur des principes et des hypothèses qui expliquaient les phénomènes *. Ils arrivaient ainsi à confirmer les faits observés et à prédire les phénomènes à venir, les Chaldéens à l'aide de méthodes arithmétiques, les Égyptiens par des méthodes graphiques *, tous par des méthodes imparfaites et sans une science suffisante de la nature; car il faut discuter aussi les faits au point de vue physique. Ceux qui ont étudié l'astronomie chez les Grecs ont essayé de le faire en se servant des principes et des observations de ces étrangers. Platon le déclare dans l'Epinomis, comme nous le verrons un peu plus loin, en rapportant ses propres paroles *.

XXXI. Aristote, dans son traité Du ciel *, parle beaucoup des astres en général et montre qu'ils ne se meuvent ni à travers l'éther tranquille ni avec l'éther, en quelque sorte séparés et indépendants, et qu'ils ne tournent ni ne roulent, mais bien que les nombreuses étoiles fixes sont emportées sur une seule et même sphère, la sphère extérieure, et que chaque planète est portée par plusieurs sphères. Il dit encore dans le xi* livre de la Métaphysique * qu'Eu-

νητας. τὸ γὰρ φυσικὸν ἐστὶ μήτε τὰ ἀστρα αὐτὰ κατὰ τοῦτα
φέρεσθαι κυκλικά τινας ἢ ἐλικοειδεῖς γραμμὰς καὶ ὑπεναντίως
γε τῷ παντὶ μήτε αὐτοὺς τινας κύκλους περὶ τὰ αὐτῶν κέντρα
διενεῖθαι φέροντας ἐνεστηριγμένους τοὺς ἀστέρας, καὶ τοὺς μὲν
5 [ἐπτά] ἐπὶ τὰ αὐτὰ τῷ παντὶ, τοὺς δὲ ὑπεναντίως. πῶς γὰρ
καὶ δυνατὸν ἐν κύκλως ἁπωμάτως τῇλικαύτα σώματα ἐδέσθαι;

σφαίρας δὲ τινας εἶναι τοῦ πέμπτου σώματος οἰκεῖον ἐν τῷ
βάθει τοῦ παντὸς οὐρανοῦ κειμένας τε καὶ φερομένας, τὰς μὲν
ὑψηλότερας, τὰς δὲ ὑπ’ αὐτᾶς τεταγμένας, καὶ τὰς μὲν μείζο-

10 νας, τὰς δὲ ἐλάσσονας, ἐτι δὲ τὰς μὲν κοίλας, τὰς δ’ ἐν τῷ
βάθει τοὺς πάλιν στερεάς, ἐν αἷς ἀπλανῶν δίκην ἐνεστηριγ-

μένα τὰ πλανήτα τῇ ἑκείνων ἀπλῆ μὲν, διὰ δὲ τοὺς τόπους
ἀνισοταχεῖ φορᾷ κατὰ συμβεβηκὸς φαίνεται ποικίλως ἢδη κινεῖ-

σθαι καὶ γράφειν τινὰς κύκλους ἐκκέντρους, ἢ καὶ ἐρ’ ἑτέρων
15 τινῶν κύκλων κειμένους ἢ τινας ἔλληκας, καθ’ ὅν οἱ μαθημα-

τικοὶ κινεῖσθαι νομίζονσιν αὐτὰ, τῇ ἀναστροφῇ ἀπατώμενοι.

ἐπεὶ οὖν φαίνεται μὲν συναποφέρεσθαι ὑπὸ τοῦ παντὸς πρὸς
ἐκάστην ἡμέραν τὴν ἀπ’ ἀνατολῆς ἐπὶ δύσεις, ἀντιφέρεσθαι
δὲ τὴν εἰς τὰ ἐπόμενα κατὰ λοξοῦ τοῦ ζωδιακοῦ μετάβασιν,

20 κινεῖσθαι δὲ τί καὶ πλάτος, βορειότερα τε καὶ νοτιότερα βλε-

πόμενα, πρὸς δὲ τοῦτος ὑψος τε καὶ βάθος, ὅτε μὲν ἄπογειω-

τερα, ὅτε δὲ προσγειώτερα θεωροῦμενα, φησίν ὁ Ἀριστοτέλης
ὅτι διὰ πλειόνων σφαιρῶν ἐκατον οἱ πρόσθεν ὑπετίθεντο φέ-

25 Εὐδοξὸς μὲν ἤλιον καὶ σελήνην διά τριῶν σφαιρῶν φησὶν
ἐστηρίγχθαι, μᾶς μὲν τῆς τῶν ἀπλανῶν περὶ τοὺς τοῦ παντὸς
doxe et Callippe mettent les planètes en mouvement à l'aide de certaines sphères. Ce qui concorde, en effet, avec la science naturelle, c'est que les astres ne soient pas emportés de la même manière par certaines courbes circulaires ou héliocidales, d'un mouvement contraire à celui de l'univers, et que ces cercles ne roulent pas tous autour de leurs centres, en portant fixés à leurs circonférences les divers astres se mouvant les uns dans le même sens que l'univers, les autres en sens contraire. Comment se pourrait-il, en effet, que de tels corps fussent attachés à des cercles incorporels?

D'après les apparences, des sphères du cinquième corps se meuvent dans les profondeurs du ciel; les unes sont plus élevées les autres moins, les unes sont plus grandes les autres plus petites, les unes sont creuses, les autres pleines sont intérieures aux premières, et les planètes qui y sont fixées, à la manière des étoiles, sont portées d'un mouvement simple, mais de vitesse inégale suivant les lieux. Par un effet qui est la conséquence de tous ces mouvements, elles paraissent se mouvoir diversement et décrire certains cercles excentriques; ou bien, placées sur d'autres cercles, elles paraissent décrire des spirales suivant lesquelles des mathématiciens, trompés par la rétrogradation, pensent qu'elles sont mues.

Comme nous les voyons portées chaque jour par le mouvement de l'univers d'orient en occident et passer par les signes suivants, dans leur course à travers l'obliquité du zodiaque, tantôt plus au nord, tantôt plus au sud, tantôt plus haut, tantôt plus bas, d'où il suit qu'elles paraissent plus ou moins éloignées de la terre, Aristote dit que les anciens les supposaient portées chacune par plusieurs sphères.

Eudoxe dit que le soleil et la lune sont appuyés sur trois

12 Ce cinquième corps est l'éther. Cf. Aristote, Météorologie 1, 3.
κάλλιττος δὲ, χωριστοῦ Κρόνου καὶ Δίως, τοῖς ἄλλοις καὶ ἐτέρας τινὰς, φησὶ, προσετίθει σφαίρας, ἀνά δύο μὲν ἥλιω καὶ σελήνης, τοῖς δὲ λουποῖς ἀνά μίαν. εἴτε δὲ ἐπιλογίζεται, εἰ μέλλοιεν συντεθέσαι σώζειν τὰ φαινόμενα, καθ’ ἐκαστὸν τὸν πλανωμένων καὶ ἐτέρας εἶναι σφαίρας μιᾷ ἐλάττωνας τῶν φερουσῶν τὰς ἄνελιπτοσσάς, εἴτε ἐαυτοῦ δύζαν ταῦτην, εἴτε ἐκεῖνων ἀποφαίνομενος. εἰπὲ γὰρ ἦδοντο κατὰ φύσιν μὲν εἶναι τὸ ἐπὶ τὸ αὐτὸ φέρεσθαι πάντα, ἐώρων δὲ τὰ πλανωμένα καὶ ἐπὶ τοῦνατίον μεταβαίνοντα, ὑπέλαθον δεῖν εἶναι μεταξὺ φερουσῶν ἐτέρας τικάς, στερεὰς δηλονοῦσι, σφαίρας, αἱ τῇ ἐκαστὸν κινήσει ἀνελίξουσι τὰς φεροῦσας ἐπὶ τοῦνατίον, ἐφαπτόμενας αὐτῶν, ὦσπερ ἐν ταῖς μηχανοσφαιροποιίαις τὰ λεγόμενα τυμπονία, κυνωμένα περὶ τὸ χέντρον ἦδοντι τικά κίνησιν, τῇ παρεμπλοκῇ τῶν ὀδόντων εἰς τοῦνατίον κινεῖν καὶ ἀνελίπτειν τὰ υποκείμενα καὶ προσφυσάττομενα.

λ. έστι δὲ τὸ μὲν φυσικὸν ὄντως, πάσας τὰς σφαίρας

sphères : la première est celle des étoiles fixes qui roule autour des pôles de l’univers et entraîne par force avec elle toutes les autres du levant au couchant ; la seconde se meut autour de l’axe perpendiculaire au cercle du milieu des signes, c’est par cette sphère que chaque planète paraît 5 exécuter un mouvement en longitude vers les signes suivants ; la troisième roule autour de l’axe perpendiculaire au cercle, oblique à celui du milieu des signes. Par cette dernière, chaque astre paraît avoir un mouvement propre en latitude, tantôt à une plus grande distance, tantôt à une plus petite, tantôt plus au nord, tantôt plus au midi, du cercle qui passe par le milieu des signes. Chacune des autres planètes est portée par quatre sphères dont l’une produit le mouvement de la planète en hauteur.

Aristote dit que Callippe ajoutait de nouvelles sphères aux autres planètes, excepté à Saturne et à Jupiter, savoir deux au soleil et à la lune, et une seulement à chacune des autres. Il pense aussi que, si on veut rendre compte des phénomènes, il faut, pour chacune des planètes, d’autres sphères moindres qu’une des sphères qui portent les sphères rou- lantes. Telle est son opinion ou celle des autres (Eudoxe et Callippe). Si on pensait qu’il est naturel que tout se porte dans le même sens, on voyait cependant les planètes aller en sens contraire ; aussi supposait-on que dans les intervalles des sphères déférentes (c’est-à-dire portant les planètes), il y a quelques sphères évidemment solides qui, par leur mouvement propre, font tourner en sens contraire les déférentes en contact, de même que dans des sphères artificielles, des tymans roulant autour de leurs axes peuvent, de leur propre mouvement et à l’aide de dents, faire mouvoir et rouler en sens contraire des corps adjacents et au contact.

XXXII. Il est bien naturel que toutes les sphères se meuvent dans le même sens, entraînées par la sphère extérieure ; mais, par un mouvement propre, à cause du rang qu’elles occupent, de leur place et de leur grandeur, elles se 35
φέρεσθαι μὲν ἐπὶ τὸ αὐτό, περιγραμμένας ὑπὸ τῆς ἐξωτάτως, κατὰ δὲ τὴν ἰδίαν κίνησιν διὰ τὴν τάξιν τῆς θέσεως καὶ τοὺς τόπους καὶ τὰ μεγέθη τὰς μὲν ὡς τὸν, τὰς δὲ βραδύτερον ἐπὶ τὰ ἐναντία φέρεσθαι περὶ ἄξονας ἱδίους καὶ λειτοξωμένους πρὸς τὴν τῶν ἀπλάνων σφαίραν· ὡστε τὰ ἐν αὐταῖς ἀστρα τῇ τούτων ἀπλῆ καὶ ὅμολη κινήσει φερόμενα κατὰ συμβεβηκός αὐτὰ δοκεῖν συνθέτους καὶ ἀνωμάλους καὶ ποικίλας τινὰς ποιεῖσθαι φοράς. καὶ γράφουσί τινας κύκλους διαφόρους, τοὺς μὲν ἐγκέντρους, τοὺς δὲ ἐκκέντρους, τοὺς δὲ ἐπικύκλους. ἔνεκα δὲ τῆς ἐννοιας τῶν λεγομένων ἐπὶ βραχὺ καὶ περὶ τούτων ἐκθετέον, κατὰ τὸ δοκοῦν ἦμιν ἀναγκαῖον εἰς τὰς σφαιροτοιχὰς διάγραμμα.

ἔστω σφαίρα κολλη τῶν ἀπλανῶν ἡ αβγὸ περὶ κέντρον τὸ θ τοῦ παντός ἐν βάθει τῷ με · διάμετροι δ’ αὐτῆς αἱ ἀγ βδ καὶ νοείσθω ὁ αβγὸ κύκλος μέγιστος καὶ διὰ μέσων τῶν ζωδίων · ἔτερα δὲ τὶς ὑποκάτω αὐτῆς περὶ τὸ αὐτὸ κέντρον κολλή σφαίρα πλάνητος ἡ ερτι καὶ πχψ, ἐν τῷ αἷ τῷ αἰ? J D.
portent les unes plus vite, les autres moins et dans le
sens contraire, autour de leurs axes propres obliques à celui
de la sphère des étoiles. Ainsi les astres qu’elles portent sont
entraînés par le mouvement simple et régulier des étoiles et
ce n’est que par un effet, qui est la conséquence du mouve-
ment des sphères, qu’ils paraissent accomplir des mouve-
ments composés, irréguliers et variés ; ils décrivent plusieurs
cercles, les uns concentriques, les autres excentriques ou
épicycles. Pour l’intelligence de ce que nous disons, il faut
expliquer en peu de mots la figure qui nous paraît néces-
saire pour la construction des sphères.

Soit $\gamma \delta$ la sphère creuse des étoiles autour du centre θ
de l’univers, ε son épaisseur, $\alpha \gamma$ et $\beta \delta$ deux diamètres (per-
pendiculaires). Supposons que $\alpha \beta \gamma \delta$ soit un grand cercle et
qu’il passe par le milieu des signes ; soit, au-dessous de la 15
première, la sphère creuse $\varepsilon \phi \tau$, $\pi \chi \psi$, d’une planète, ayant
le même centre et pour épaisseur $\varepsilon \tau$. Soit enfin, dans cette
épaisseur, la sphère solide $\xi \tau \eta$ portant un astre errant fixé
βάθηι τῷ ἐπ ἐν δὲ τῷ βάθηι τοῦτῳ στερεὰ σφαίρα ἡ ἐξπη, ἐνεστηριγμένον ἐν αὐτῇ φέροικα τὸ πλανώμενον κατὰ τὸ e. καὶ τὰκα νερέσθωσαν ἐπὶ τὰ αὐτὰ ὀμαλῶς ἀπὸς κινήσεις ἀπὸ ἀναταλω ἐπὶ δύσεις, μόνη δὲ ἢ τὸ πλάτος ἀφορίζουσα 5 τοῦ πλάνητος ἐπὶ τὰ ἐναντία φερέσθω, ἡ ἐπὶ τὰ αὐτὰ μὲν, ὑπολειπέσθω δὲ διὰ βραδυτῆτα ἐκκτέρως γὰρ σωθῆσεται τὰ φαντόμενα.

αλλὰ ἡ μὲν τῶν ἀπλανῶν περὶ ἡξονὰ <τῶν> πρὸς ὀρθὰς τοῖς <τοῦ ἱσθμερινοῦ ἐπιτέφῳ · ἡ δὲ κοιλὴ τοῦ πλάνητος· 10 περὶ ἡξονὰ πρὸς ὀρθὰς τοῖς αὐτῷ ἐπιτέφῳ ἐν φι ἐστὶ καὶ ὁ τὸ πλάτος ἀφορίζων κύκλος ὁ λοξός πρὸς τὸν διὰ μέσων τῶν ζωδίων. φερέσθω δὲ ἡ μὲν τῶν ἀπλανῶν σφαίρα τόκηστα· βραδύτερον δὲ ταύτης ἡ κοιλὴ τοῦ πλάνητος ἐπὶ τὰ ἐναντία, ὅτε ἐν τινὶ ὀρυσμένῳ γρόνῳ τάκειν ἐπὶ τὰ ἐναντία περιέκαν τὴν τῶν ἀπλανῶν. ἡ· ός τινες οὐνταί. ὑπολειπέσθαι· τοτέρα· δὲ ἅληθεστέρα δόξα, ἐν ἀλλοις εἴρηται· φερέτω δὲ [ἐπὶ] τήν σφαίραν τὴν στερεὰν ἔχουσαν τὸ πλανώμενον· ἡ δὲ στερεὰ σφαίρα. φερομένη περὶ τῶν ἐπικυρίως ἡξονὰ ὀμαλῶς, ἐπὶ τὸ αὐτὸ ἀποκαταστήσεται, κατὰ τὰ αὐτὰ φερομένη τῇ ἀπλανῇ. ἦτων 15 15 ὑπερμένῃ περιέρχεται ἡ ὑπολειπέσθαι. ἡ πάττον. ἡ βραδύτερον.

au point ε. Que toutes soient portées régulièrement dans le même sens par des mouvements simples d’orient en occident; que celle qui produit le mouvement de la planète en latitude tourne seule en sens contraire ou dans le même sens pourvu qu’elle reste en arrière par sa lenteur, car les deux hypothèses rendent compte des phénomènes.

Et maintenant, que la sphère des étoiles tourne autour de l’axe perpendiculaire au plan du cercle équinocial, et que la sphère creuse de la planète tourne autour de l’axe perpendiculaire au cercle produisant le mouvement en latitude, et oblique à celui qui passe par le milieu des signes. Que la sphère des étoiles tourne très rapidement; que la sphère creuse de la planète tourne plus lentement en sens contraire, de sorte que, dans un temps déterminé, elle ait parcouru dans ce sens contraire toute la sphère des étoiles ou qu’elle soit laissée en arrière, comme d’autres le veulent, — nous avons dit ailleurs qu’elle est l’opinion la plus vraisemblable; — qu’elle porte la sphère solide soutenant l’astre errant. La sphère solide, tournant régulièrement autour de son axe propre, reviendra au même point, portée dans le même sens que la sphère étoilée; elle reviendra au même point dans le même temps que la sphère creuse de la planète aura parcouru, en se mouvant en sens contraire, la sphère entière des étoiles ou qu’elle aura été laissée plus ou moins en arrière.

Supposons d’abord qu’elle soit revenue dans le même temps; soit μ le centre de la sphère, décrivons du centre θ, avec le rayon θμ, le cercle μλνξ; divisons la droite ευ en deux parties égales au point ζ, et du centre ζ, avec le rayon ζλ, décrivons le cercle ελνξ, excentrique à l’égard de l’univers. Il est évident que dans le temps que la sphère creuse de la planète, portant la sphère solide, sera laissée en arrière de la sphère des étoiles, le centre μ de la sphère solide par-
ΤΑ ΠΕΡΙ ΑΣΤΡΟΝΟΜΙΑΣ

...
courra le cercle concentrique $\mu\lambda\nu\xi$, paraissant emporté en sens contraire et entrainant cette sphère solide. Il est encore évident que la planète placée au point ε sur la sphère solide décrira (dans le même temps) le cercle $\varepsilon\tau\pi\xi$ qui devient l'écycycle du concentrique $\mu\lambda\nu\xi$ et tourne dans le même sens que l'univers ; elle décrira aussi, par conséquent, l'excentrique $\varepsilon\lambda\omega\xi$, égal au concentrique, en le parcourant dans un sens contraire à celui de l'univers.

Elle paraîtra donc aux observateurs qui seront en θ, décrire le zodiaque $\alpha\beta\gamma\delta$, en s'avancant vers les signes suivants en sens contraire du mouvement de l'univers. Elle paraîtra aussi se mouvoir en latitude en raison de l'inclinaison de son plan sur le cercle qui passe par le milieu des signes, les axes de ces sphères étant respectivement perpendiculaires à ces plans. C'est toujours au même lieu qu'elle sera le plus éloignée de la terre et qu'elle paraîtra se mouvoir le plus lentement : c'est au point α du zodiaque, le centre de la sphère solide étant au point μ de la droite $\alpha\theta$, et la planète elle-même étant au point ε. Au point opposé, elle sera toujours le moins éloignée de la terre et paraîtra se mouvoir le plus rapidly : c'est au point γ du zodiaque. La sphère creuse tournant en sens contraire, le centre de la sphère solide sera au point ν de la droite $\theta\gamma$ et la planète elle-même sera vue au point γ, c'est-à-dire qu'elle sera au point ν.

Elle aura les distances moyennes et les mouvements moyens en deux endroits : lorsqu'elle sera aux points qui partagent en deux parties égales l'écycycle $\xi\pi\tau\eta$ et le concentrique $\mu\lambda\nu\xi$, tels sont les points ζ et η qui, à cause de la translation des sphères en sens contraire, ou de leur moindre mouvement, sont les mêmes que λ et ξ, lesquels partagent en deux parties égales l'excentrique $\varepsilon\lambda\omega\xi$ et le concentrique $\mu\lambda\nu\xi$ et apparaissent dans le zodiaque entre les points α et γ, en β et δ, c'est-à-dire en φ et ω. Tout cela est apparent pour le soleil, puisque les temps de ses retours, autant que nos sens peuvent
χρόνους πάντας ὡς πρὸς αὐτήν ἂν οὕς ἡ σύνεγγυς ἀλλήλων εὐρίσκεσθαι — λέγω δὲ τὸν τε τοῦ μὴχου καὶ τοῦ πλάτους καὶ βάθους — <καὶ> ἐπισυναντῶν ἀμφότερον τῶν σφαιρῶν τὰ ὀμόλογα σημεῖα κατὰ τὰς ὀμόλογους αὐτῶν κινήσεις ἂν κατὰ 5 τοὺς αὐτοὺς τόπους καὶ κατὰ τὰ αὐτὰ ὀράσθαι ζῷδια.

ἐπειδὴ δὲ τῇ τοιαύτῃ καὶ κατὰ φύσιν οὕτω φορᾶ τῶν πλα-

ημομένων ἡ τῶν σφαιρῶν, ὀμαλὴ καὶ ἄπλη καὶ τεταγμένη, λοξῇ
dὲ καὶ διὰ βραδυτῆτα μόνον ὑπολειπομένη τῶν ἀπλανῶν ἡ μιὰ

τῇ φεροῦσῃ τὴν στερεὰν, τούτους τῶν ἐπίκυκλων, ἐπὶ τὰ ἐνν."10

τία φερομένη κατὰ συμβεβηκός ἐπιγίνεται τοικήλη καὶ σύνθεςος
ἀνώμαλος τε καὶ οὕσα φορὰ τοῦ πλανομένου, <καὶ> μία μὲν

ἡ εἰς τὰ ἐπόμενα τῶν ζῳδίων γνώμην ἡ δύτως καὶ ἢ καθ’ ὑπό-

λεψίν, διὰ δὲ τὴν λόξωσιν ἐν πλατεί τινι τῶν ζῳδίων θεορο-

μένη, διὰ δὲ <τὴν> τῆς στερεάς περὶ τὸν αὐτῆς ἄξονα δίνη-

σιν ποτὲ μὲν ἐν ὑψεῖ καὶ διὰ τοῦτο βραδεία δοκοῦσα, ποτὲ δὲ

ἐν βάθει καὶ διὰ τοῦτο ταχυτέρα, καὶ ἀπλῶς ἀνώμαλος, διὰ
tαύτα δὲ καὶ κατὰ τὸν ἐπίκυκλον γνωμένη καὶ κατὰ τὸν ἐκχέν-

τρου δοκοῦσα, ἄσθεν ὡς εἰκότως καὶ αἱ τῶν μαθηματικῶν

ὑποθέσεις τῆς φορᾶς αὐτῶν, ἢ τε κατ’ ἐπίκυκλον καὶ κατ’

ἐκχεντρον, ἀλλήλως ἔπνευεν καὶ συνάδουσιν, ἐπειδὴ ἀμφότεραι

τῇ κατὰ φύσιν, κατὰ συμβεβηκός δὲ, ἀκολουθοῦσιν, δ καὶ θαυ-

μάξει Ἱππαρχος, μάλιστα ἐπὶ τοῦ ἦλιου διὰ τὸ ἄστρον τῆς
tῶν σφαιρῶν αὐτοῦ φορᾶς ἀκρισίας ἀπαρτιζόμενον.

ἐπὶ δὲ τῶν ἄλλων οὕς οὕτως ἀκρισίας διὰ τὸ μὴ ἐν τῷ αὐτῷ

25 χρόνῳ τὴν στερεὰν σφαίραν τοῦ πλάνητος ἀποκαθίστασθαι, ἐν ἢ

ἢ καλὴ τῆς τῶν ἀπλανῶν ἡ ὑπολείπεται ἢ ἐπὶ τὰ ἐνναντία περι-

ἐρχεται, ἄλλ’ ἐφ’ ὃν μὲν θάττων, ἐφ’ ὃν δὲ βραδύτερον, ὡστε

les percevoir, sont trouvés égaux entre eux, ou à peu près — je parle des durées de ses retours à la même longitude, à la même latitude, au même éloignement, — les points semblables des deux sphères se trouvent toujours, par des mouvements semblables, aux mêmes endroits et paraissent dans les mêmes signes.

Un tel mouvement des planètes et des sphères est naturellement régulier, simple, bien ordonné, mais il est oblique au zodiaque et, à cause de sa lenteur, la planète paraît laissée en arrière par la sphère des fixes; une seule sphère se meut en sens contraire, c'est celle qui porte la sphère solide dite épicycle; cependant le mouvement paraît varié, multiple et inégal. Il se produit vers les signes suivants, ou réellement ou par suite d'un plus lent déplacement; il paraît oblique au zodiaque, et à cause de la rotation de la sphère solide autour de son axe propre, la planète se montre tantôt plus loin et par conséquent plus lente, tantôt plus près et par conséquent animée d'une plus grande vitesse. En un mot le mouvement paraît inégal, il se fait suivant l'épicycle alors qu'il paraît se faire suivant l'excentrique. Il est évidemment conforme à la raison qu'il y ait accord entre les deux hypothèses des mathématiciens sur les mouvements des astres, celle de l'épicycle et celle de l'excentrique; l'une et l'autre s'accordent par accident avec celle qui est conforme à la nature des choses, ce qui faisait l'objet de l'admiration d'Hipparque, surtout pour le soleil, puisque les mouvements de ses sphères s'accomplissent exactement dans des temps égaux entre eux.

Pour les autres planètes il n'y a pas la même exactitude, parce que la sphère solide de la planète ne revient pas dans le même temps à la même position; la sphère creuse reste en arrière de celle des étoiles ou va dans un sens contraire, plus ou moins rapidement; de sorte que leurs mouvements semblables, bien qu'ils s'accomplissent sur des points semblables des sphères, ne se font pas toujours aux mêmes endroits.
τὰς ὁμολόγους αὐτῶν κινήσεις, καὶ κατὰ τὰ αὐτὰ σημεῖα τῶν σφαιρῶν μὴ κατὰ τοὺς αὐτοὺς τόπους συναντών, ἀλλ' ἓνεκεὶ τιμαλλάττειν εἶναι, δὲ καὶ τὰς λοξώσεις τῶν σφαιρῶν ἐν πλεῖοσι πλάσοι, διὰ δὲ ταύτα τοὺς τε [τοὺς] ἀποκτακτικοὺς αὐτῶν χρόνους τοῦ τε μήκους καὶ πλάτους καὶ βάθους ἀνύσους εἶναι καὶ διαφόρους, <καὶ τὰς μεγίστας> καὶ ἐνεχύστας καὶ μέσας ἀποστάσεις καὶ κινήσεις ἀλλοτρία κατ' ἄλλους τόπους καὶ ἐν τάσι ποιεῖσθαι τοῖς ζῷδιοις.

Εἴτε δὲ, διὰ τὸ παραλλάττειν, ὃς φαίμεν, τὰς ὁμολόγους κινήσεις καὶ κατὰ τὰ ὁμολόγα σημεῖα τῶν σφαιρῶν, μηδὲ κύκλους δοκεῖν γράφειν τὰ πλανώμενα ταξις κατὰ συμμεθηκὸς κινήσεις, ἀλλὰ τινας ἐλικας. ἐπὶ <μὲν> οὖν τῶν πλανωμένων ἐκάστου χρή νομίζειν ἵνα μὲν εἶναι τὴν κοίλην σφαιρὰν καὶ φέρουσαν ἐν τῷ ἐσκεφτῇ βάθει τὴν στερεάν, ἵναν δὲ τὴν στερεάν, πρὸς τῇ ἵδια πάλιν ἐπιφανείᾳ φέρουσαν τὸ πλανώμενον.

λγ. ἐπὶ δὲ τοῦ ἡλίου καὶ φωσφόρου καὶ στιλβοντος δυνατόν μὲν καὶ ἴδια εἶναι καθ' ἐκαστὸν ἀμφοτέρας, ἀλλὰ τὰς μὲν κοίλας τῶν τριῶν ἵσοδρόμους ἐν τῷ χρόνῳ τὴν τῶν ἀπλαγῶν ἐπὶ τάναντι περιέναι φεραίραν τὰς δὲ στερεὰς ἐπὶ μίας εὐθείας ἐγχύσας τὰ κέντρα, μεγέθει δὲ τὴν μὲν τοῦ ἡλίου ἐλάττωνα, ταύτης δὲ μειζόνα τὴν τοῦ στιλβοντος, καὶ ταύτης ἐπὶ μειζόνα τὴν τοῦ φωσφόρου.

δυνατόν δὲ καὶ μίαν μὲν εἶναι τὴν κοίλην κοινῆς τῶν τριῶν, τὰς δὲ στερεὰς <τῶν> τριῶν ἐν τῷ βάθει ταύτης 25 περὶ τοῦ αὐτοῦ κέντρον ἀλλήλας, μικροτάτην μὲν καὶ ὄντος στερεάν τῆς τοῦ ἡλίου, περὶ δὲ ταύτην τὴν τοῦ στιλβοντος, εἰτα ἀμφοτέρας περιελάφην καὶ τὸ πάν βάθος τῆς κοίλης καὶ κοινῆς πληροῦσαν τὴν τοῦ φωσφόρου. δὲ 8 τὴν μὲν

mais changent sans cesse de place, l'obliquité des sphères ne se produisant pas à la même latitude, et les temps des retours à la même longitude, à la même latitude, au même éloignement étant inégaux et variables, les plus grandes, les plus petites et les moyennes distances, de même que les vitesses variables se produiront dans tous les signes du zodiaque, tantôt sur un point, tantôt sur un autre.

En outre, les mouvements semblables paraissant, comme nous l'avons dit, changer de place, bien qu'ils s'accomplissent sur les mêmes points des sphères, les planètes dans leurs mouvements *par accident* ne paraissent pas même décrire des cercles, mais des spirales. Il faut donc croire que, pour chaque planète, il y a une sphère propre creuse qui porte dans son épaisseur une sphère solide et que la sphère solide à son tour porte l'astre sur sa surface.

XXXIII. Quant au Soleil, à Vénus et à Mercure, il est possible que chacun de ces astres ait deux sphères propres, que les sphères creuses des trois astres, animées de la même vitesse, parcourent dans le même temps, en sens contraire, la sphère des étoiles fixes et que les sphères solides aient toujours leurs centres sur une même ligne droite, la sphère du soleil étant la plus petite, celle de Mercure étant plus grande et celle de Vénus étant encore plus grande.

Il se peut aussi qu'il n'y ait qu'une seule sphère creuse commune aux trois astres et que les trois sphères solides, dans l'épaisseur de celle-là, n'aient qu'un seul et même centre, la plus petite serait la sphère vraiment solide du soleil, autour de laquelle serait celle de Mercure ; viendrait après, entourant les deux autres, celle de Vénus qui remplirait toute l'épaisseur de la sphère creuse commune. C'est pour cela que ces trois astres sont laissés en arrière sur le zodiaque, ou exécutent un mouvement en longitude de sens contraire au mouvement diurne et de même vitesse sans avoir les autres mou-
κατὰ τὸ μῆκος διὰ τῶν ζωδιῶν ἢ ὑπόλευψιν ἢ ἐπὶ τὰ ἑνακτία φοράν ἵσσόρμου ποιοῦνται, τὰς δὲ ᾠλᾶς οὖν ὁμοίως, [δὲ] ἀεὶ τε περὶ ἀλλήλους ὁρῶνται κατα-
λαμβάνοντες καὶ καταλαμβανόμενοι καὶ ἐπιπροσθεῖται ἀλλήλοις,
τοῦ μὲν Ἐρμοῦ τὸ πλείστον ἐνισχύτο ποι μοῖρας ἐφ’ ἐκάτερα
τοῦ ἴλου πρὸς ἐστέραν ἢ πρὸς ἀνατολὴν ἀρισταμένου, τοῦ δὲ
tῆς Ἀρροδίτης τὸ πλείστον παντηκοντα μοῖρας. ὑποτέτασε
δ’ ἂν <τις> καὶ τὴν ἀληθετέραν θέσεν τε καὶ τάξιν εἶναι
tαύτην, ἦν τοῦ κόσμου, ὡς κόσμου καὶ ἴλου, τῆς ἐμψυχίας
τῇ τόπος οὕτω, ὡς ἀρχίδες τοῦ παντὸς ὁντος τοῦ ἴλου
πολυθέρμου διὰ τὴν κίνησιν καὶ τὸ μέγεθος καὶ τὴν συνοδία
τῶν περὶ αὐτῶν.

ἄλλο γὰρ ἐν τούς ἐμψυχοὺς τὸ μέσον τοῦ πράγματος, του-
tέστι τοῦ ἴλου ἢ ἴλου, καὶ ἄλλο τοῦ μεγέθους: οὗν, ὡς
ἐφαρμεν, ἡμῶν αὐτῶν ἄλλο μέν, ὡς ἀνθρώπων καὶ ἴλων, τῆς
ἐμψυχίας μέσον τὸ περὶ τὴν καρδίαν, ἀκινήτου καὶ πολυ-
θέρμου καὶ δία ταύτα πάσης ψυχικῆς δυνάμεως οὖσαν ἄρχην,
οὗν ψυχικῆς καὶ κατὰ τόπον ὀρμητικῆς, ὄρεστικῆς καὶ φαντα-
στικῆς καὶ διανοητικῆς, τοῦ δὲ μεγέθους ἡμῶν ἔτερον μέσον,
οὗν τὸ περὶ τὸν ὁμφαλὸν.

ὦμοίως δὲ καὶ τοῦ κόσμου παντός, ὡς ἀπὸ βραχέων καὶ
τυγχόντων καὶ θητῶν τὰ μέγιστα καὶ τιμωτάτα καὶ θεία
eικάσαι, τοῦ μεγέθους μέσον τὸ περὶ τὴν γῆν κατεψυχημένον
καὶ ἀκινήτου: ὡς κόσμου δὲ καὶ ἢ κόσμου καὶ ἴλου τῆς
ἐμψυχίας μέσον τὸ περὶ τῶν ἴλων, ὡνοεὶ καρδίαν ὁντα τοῦ
παντός, ἔθεν φέρουσιν αὐτοῦ καὶ τὴν ψυχήν ἀρχαμένην διὰ
παντός ἠκεῖν τοῦ σώματος τεταμένην ἀπὸ τῶν περάτων.

δὲ τοῦτο γὰρ ὡς διὰ τὰς εἰρημένας αἰτίας ἀμφοτέρων τῶν

Car dans les corps animés, le centre du corps, c'est-à-dire de l'animal, en tant qu'animal, est différent du centre du volume. Par exemple, pour nous qui sommes, comme nous l'avons dit, hommes et animaux, le centre de la créature animée est dans le cœur toujours en mouvement et toujours chaud, et à cause de cela, source de toutes les facultés de l'âme, cause de la vie et de tout mouvement d'un lieu à un autre, source de nos désirs, de notre imagination et de notre intelligence. Le centre de notre volume est différent : il est situé vers l'ombilic.

De même, si l'on juge des choses les plus grandes, les plus dignes et les plus divines, comme des choses les plus petites, fortuites et mortelles, le centre du volume du monde universel sera la terre froide et immobile, mais le centre du monde, en tant que monde et animal, sera dans le soleil qui est en quelque sorte le cœur de l'univers et d'où l'on dit que l'âme du monde prit naissance pour pénétrer et s'étendre jusque dans ses parties extrêmes.

XXXIV. Il est clair que, pour les motifs expliqués, des deux hypothèses, dont chacune est la conséquence de l'autre, celle de l'épicycle paraît la plus commune, la plus générale-ment admise, la plus conforme à la nature des choses. Car
συνεχεία χαλικωτέρα καὶ καθολικωτέρα δοκεῖ
καὶ σύνεγγυς τῇ κατὰ φύσιν ὃς κατὰ τὸν ἑπίκυκλον ὃ γὰρ
τῆς στερεάς σφαιράς μέγιστος κύκλος, ὅν τῇ ἐπὶ αὐτῆς περὶ
αὐτῆς φορὰς γράφει τὸ πλανῶμενον ἔστιν ὃ ἑπίκυκλος. ὃ δὲ
5 ἐκείνους παντάπασιν ἀπηρτημένοις τού κατὰ φύσιν καὶ μᾶλλον
κατὰ συμβεβηκός γραφόμενος. ὅπερ καὶ συνιδὼν ὃ Ἰππαρχὸς
ἐπεκεῖ τὴν κατ᾿ ἑπίκυκλον ὑπόθεσιν ὃς οὕτων ἐκεῖνος, τιλανώ-
τερον εἶναι λέγων πρὸς τὸ τοῦ κόσμου μέσον πάντα τὰ οὐρά-
νια ἵσορροπος κείσθαι καὶ ὁμοίως συναρπαστὰ. οὐδὲ αὐτὸς
μέντοι, διὰ τὸ μὴ ἐφαρδιάσθη ἀπὸ φυσιολογίας, σύνοψον ἄκρι-
βῶς, τίς ἡ κατὰ φύσιν καὶ κατὰ ταύτα ἁλλῆς φορά τῶν πλα-
νωμένων καὶ τίς ἡ κατὰ συμβεβηκός καὶ φαινομένη ὑποτι-
θεται δὲ καὶ οὕτως τὸν μὲν ἑπίκυκλον ἐκάστος κυνείσθαι
κατὰ τὸ ἐγκέντρου κύκλου, τὸ δὲ πλανῶμενον κατὰ τοῦ ἐπι-
κύκλου.

22 Τίτλο: τὰ Ἀριστοτέλεως ψηφί τὰ χαλαράς εἶναι τυποῦ τοῦ τέμποτο
σώματος οὐκεῖον ἐν τῷ βάθει τοῦ παντὸς ὑφραγοῦ κειμέναι τα
καὶ φερομένας, τὰς μὲν ὑψηλοτέρας, τὰς δὲ ὑπὶ αὐτὰς τεταγ-
θεῖ εἰς καὶ τὰς μὲν μείζονας, τὰς δὲ ἐλάττωνας, ἐτὶ δὲ τὰς ἐκ
κόλας, τὰς δὲ ἐν τῷ βάθει τοὺς πάλιν στερεάς, ἐν αἷς
ἀπλανῶν δικὴν ἐνεστηρυγμένα τὰ πλανήτα, τῷ ἐκεῖνον ἀπλή-
μέν, διὰ δὲ τοὺς τόπους ἀνιστοχγεῖ φορὰ κατὰ συμβεβηκός ψη-

22 Titre : τὰ Ἀριστοτέλεως ψηφί τὰ χαλαράς... ἀπαρχομε-
νοι. Cette opinion d'Aristote est déjà exprimée dans les mêmes termes au
§ xxxi, p. 288 l. 7-16. Que cette répétition soit de Théon, ou ce qui est plus
probable, qu'elle soit l'œuvre d'un des premiers copistes, nous croyons qu'elle
devrait être supprimée.
l'épicycle est un grand cercle de la sphère solide, celui que la planète décrit dans son mouvement sur cette sphère, tandis que l'excentrique diffère entièrement du cercle qui est conforme à la nature, et est plutôt décrit par accident. Hippарque, persuadé que le phénomène se produit ainsi, vante l'hypothèse de l'épicycle comme sienne propre et dit qu'il est probable que tous les corps célestes sont uniformément placés par rapport au centre du monde et qu'ils lui sont semblablement unis. Mais lui-même, ne connaissant par suffisamment la science naturelle, n'a pas bien compris quel est le vrai mouvement des astres qui est d'accord avec la nature des choses, ni celui qui est par accident et qui n'est qu'une apparence. Il pose cependant en principe que l'épicycle de chaque planète se meut sur le concentrique et que la planète se meut sur l'épicycle.

Platon paraît préférer aussi l'hypothèse de l'épicycle, il pense que ce ne sont pas des sphères, mais des cercles qui portent les planètes, comme il l'indique à la fin de la République en imaginant des fuseaux emboités les uns dans les autres. Il se sert du reste de termes communs : il dit souvent cercles au lieu de sphères, et autour des pôles au lieu de autour de l'axe.

D'après les apparences, dit Aristote, des sphères du cinquième corps (l'éther) se meuvent dans les profondeurs du ciel ; les unes sont plus élevées, les autres moins, les unes sont plus grandes, les autres plus petites, les unes sont creuses, les autres pleines sont intérieures aux premières, et les planètes, qui y sont fixées à la manière des étoiles, sont portées d'un mouvement simple, mais de vitesse inégale suivant les lieux. Par un effet qui est la conséquence de tous ces mouvements, elles paraissent se mouvoir diversement et décrire certains cercles excentriques ; ou bien, placées sur d'autres cercles, elles paraissent décrire des spirales suivant lesquelles des mathématiciens, trompés par la rétrogradation, pensent qu'elles sont mues.
νεται ποικίλως ἡδη κινεῖται καὶ γράφει τινάς κύκλως ἐκχειρτρος, ἢ καὶ ἔφι ἐτέρων τινῶν κύκλων κειμένους ἢ τινὰς ἑλικας, καὶ δὲν οἱ μαθηματικοὶ κινεῖται νομίζουσιν αὐτά, τῇ ἀναστροφῇ ἀπατώμενοι.

5 λε. τῶς ὁδικας φαίνονται προηγεῖται τε καὶ σταρίζειν καὶ ἀναποδίζειν ὁσοὶ τῶν πλανήτων καὶ ταῦτα ποιεῖν δοκοῦσι, δηλωτέον. ἔστω ἔρωτικος μὲν ὁ αβγοῦ περὶ τὸ ἰ τοῦ πυκνός κέντρον, πλάνητος δὲ ἐπίκυκλος ὁ ἐξή, καὶ ἀπὸ τῆς ἤ ὠμος ἤ ἁθόρει ἐφαπτόμεναι τοῦ ἐπίκυκλου αἱ ὧξς, ὑνις καὶ διὰ τοῦ μ κέντρου τοῦ ἐπίκυκλου ἡ θμεα. ἐπεὶ οὖν ἐπὶ εὐθείας ὁρῶμεν, ὀδίλον ὡς ὁ ἄστη ἐπὶ μὲν τοῦ ἃς γενόμενος ἡμῖν ἐπὶ τοῦ καφάνεται ἡν δὲ ἢ σε περιφέριειν ἐνεχθεῖς ὃδει τοῦ ἐρωτικοῦ τῆς κα εἰς τὰ προηγούμενα προ- πετοδικέναι ὁμοιός τῆς εν διανύσας ὃδει τῆς αλ προπε- ποδικέναι. τάλιν δὲ τῆς νής διαπορευθεὶς ὃδει τῆς λαχ εἰς τὰ ἐπόμενα τῶν ἔρωτων ἀναποδικέναι καὶ τῷ μὲν ἢ προσ- τών καὶ πρώτως αὐτοῦ ἀπογραμμένοι, ἐπὶ τοῦ καφάνεται πλεῖω

5 Titre complété par H. Martin : peri <σταρίζμων καὶ> προηγήσεων καὶ ἀναποδίσμων (des stations, des mouvements en avant et des rétrogradations).
XXXV. Il faut montrer comment quelques planètes paraissent tantôt avancer, tantôt stationner et tantôt rétrograder ; car elles paraissent faire tout cela. Soit le zodiaque $\alpha \beta \gamma \delta$ autour du point θ centre de l'univers, et $\epsilon \zeta \eta$ l'épicycle de la planète. Du point θ où nous observons, tirons les tangentés $\theta \xi \chi$, $\theta \lambda$, à l'épicycle, et par le centre μ de l'épicycle, la droite $\theta \mu \zeta \xi$. Puisque nous voyons en ligne droite, il est clair que l'astre arrivé en ζ nous paraîtra en χ ; puis, lorsqu'il aura parcouru l'arc ξ, il paraîtra avoir décrit l'arc $\alpha \chi$ vers les signes précédents du zodiaque. De même, lorsqu'il aura parcouru l'arc $\chi \nu$, il paraîtra avoir parcouru en avant l'arc $\alpha \lambda$. Lorsque ensuite il décrira l'arc $\nu \lambda \zeta$, il paraîtra décrire l'arc $\lambda \alpha \chi$, vers les signes suivants du zodiaque, Pendant qu'il s'approchera du point ζ ou qu'il commencera à s'en éloigner, il paraîtra employer plus de temps à se déplacer et stationner au point χ ; puis ζ s'étant éloigné du point ζ il avancera de nouveau ; ensuite en
γρόνον ποιῶν καὶ στὴρίζων · τλειον δὲ ἀποστάς τοῦ ζ, πάλιν προηγησάμενος ἐπετα προσεγγίζων τῷ ν καὶ πρῶτος ἀπιῶν αὐτοῦ, πάλιν ἔσταναι δόξει καὶ ἀναποδίζειν. τοὺς μὲντο στηρίζομεν καὶ ἀναποδίζομεν καὶ τὰς προηγήσεις καὶ ὑπολείψεις ἐκαστος πλάνης ἄλλοτε ἐν ἄλλοις πονήστει ζωδίως καὶ μέρει ζωδίων, διὰ τὸ καὶ τὸν ἐπίκυκλον ἐκάστου ἂν μετανίστασθαι εἰς τὰ ἐπιμένα ἢ μεταβαίνοντα ἢ ὑπολειπόμενον.

La figure de cette page et le texte correspondant contiennent deux fois la lettre v dans les mss., nous en avons remplacé une par la lettre o.
s’approchant du point \(v \) et en commençant à s’en éloigner, il paraîtra de nouveau stationner et enfin rétrograder. Les stations, les rétrogradations et les mouvements en avant et en arrière de chaque planète, se feront tantôt dans un signe, tantôt dans un autre et dans différentes parties des signes, parce que l’épicycle de chacune se déplace toujours vers les signes suivants, que ce mouvement soit réel, ou que l’épicycle soit simplement laissé en arrière.

Des distances moyennes des planètes

XXXVI. Il est utile, pour notre sujet, de savoir qu’elle est la distance moyenne d’une planète, quel que soit le déplacement de l’épicycle ou de l’excentrique. Dans l’hypothèse des épicycles, si nous prenons la distance la plus grande de l’astre à la terre, telle que \(\theta \varepsilon \), et puis la plus petite, telle que \(\theta \nu \), ainsi que la différence entre la plus grande et la plus petite \(\varepsilon \nu \), et que nous en prenions le milieu \(\mu \), il est clair que la distance moyenne sera \(\varrho \mu \). Si donc du centre \(\theta \) et de l’intervalle \(\varrho \mu \) nous décrivons le cercle concentrique \(\mu \lambda \varepsilon \), et que du centre \(\mu \) avec l’intervalle \(\mu \varepsilon \), nous tracions l’épicycle \(\varepsilon \nu \), il est évident que l’astre porté sur l’épicycle sera le
τα περί αστρολογίας

...γεγκέντρων, κέντρων δὲ τῷ μ καὶ διαστήματι τῷ με τὸν ἐξην, ἐπίκυκλου, φανερόν ὡς ὁ ἄστερ κατὰ τοῦ ἐπίκυκλου φερόμενος, ἕπτα μὲν τοῦ ε ἀστερίου γενόμενος μέγιστον ἀποστῆσεται ἄφρ', ἡμῶν, ἐπὶ δὲ τοῦ ν ἐλάχιστον, καθ' ἀκάτερον δὲ τῶν ζ καὶ, καθ' αὐτὸν ἐπίκυκλος ύπὸ τοῦ ἐγκέντρου, ὀποὐνήστετε μεταστάντος τοῦ ἐπίκυκλου, τὸ μέσον.

κατὰ δὲ τὴν <τῶν> ἐκκέντρων ὑπόθεσιν, ὄντος ἐκκέντρου τοῦ ἑλύξ ψεὶ κέντρον τῷ κ, τοῦ δὲ παντὸς κέντρου του θ, καὶ τῆς μεταξὺ τῶν κέντρων τῆς θυ ἐκθληθείσης ἀφ' ἀκάτερα, ἑκκέντρως τῷ ἑκάτερῳ τῷ τῷ με. τῷ. ό <δὲ> πλάνης, κατὰ τοῦ ἐκκέντρου φερόμενος, ἐπὶ μὲν τοῦ ε γενόμενος, ὅπου ἄν καὶ τούτο, μέγιστον ᾳρέξει ἄφρ' ἡμῶν, 15 ἐπὶ δὲ τῶν η ἐλάχιστον, κατὰ δὲ τὰς πρὸς τὸν ἐγκέντρον διχοτομίας τὰς λ ξ, ὅπου <ἄν> γίνονται μεταπίπτοντος τοῦ ἐκκέντρου, τὰ μέσα καὶ φανερὸν ὡς καθ' ἀκάτερον τὴν ὑπόθεσιν τὰ αὐτὰ συμφρονήσει μέγιστα καὶ πάλιν ἐλάχιστα καὶ μέσα εἶναι ἀποστήματα.

περὶ συνόδων καὶ ἐπιπροσθήσεων [καὶ φάσεων] καὶ χρύσεων

...λέιπεται περὶ συνόδων καὶ ἐπιπροσθήσεων καὶ χρύσεως καὶ ἐκλείψεως ἐπὶ βραχὺ τῶν προκειμένων ένεκα διελθεῖν. ἐπὶ τοιῶν φύσει μὲν ἐπὶ αὐθαίρετης ὀρῷμεν, ἐστι δὲ ἁνωτάτῳ μὲν ἦ τῶν ἀπλακανθήτων, σύμπαν τοῦ καὶ τῶν πλακαμένων, ἐν ἦ τὰξι διωρίσαμεν, δῆλον ὡς ἦ μὲν σελήνη, προσγειοτάτη ὡς, πάσιν τοῖς ὑπὲρ αὐτὰν ἐπιπροσθῆσει, καὶ πάντα τὰ πλα-

15 διχοτομίας διατομές conj. J D. : les points d'intersection λ, ξ, du concentrique et de l'excentrique, ne divisent aucun de ces deux cercles en deux parties égales.
plus éloigné de nous au point z et le moins éloigné au point v, et à une distance moyenne aux deux points ξ et η d'intersection du concentrifique et de l'épicycle, en quelque lieu que soit transporté l'épicycle.

Dans l'hypothèse des excentriques, soit l'excentrique $\varepsilon \lambda \omega \xi$ dont le centre est x, soit θ le centre de l'univers, menons la ligne des centres θx et prolongeons-la de part et d'autre. Si nous décrivons, du centre θ, le cercle $\mu \lambda \omega \xi$, égal à l'excentrique, il est clair que c'est le concentrifique sur lequel est emporté l'épicycle de l'autre hypothèse, décrit du centre μ, avec le rayon μz. Lorsque la planète portée par l'excentrique sera en z, en quelque endroit que cela se produise, elle sera le plus éloignée de nous, elle le sera le moins en v; les distances moyennes seront aux points λ et ξ d'intersection de l'excentrique et du concentrifique, en quelque endroit que tombent ces points par le déplacement de l'excentrique. Il est évident qu'il y a accord dans les deux hypothèses : les plus grandes, les plus petites et les moyennes distances sont les mêmes.

Des conjunctions, des occultations et des éclipses

XXXVII. Pour le besoin de notre sujet, il nous reste à parler brièvement des conjunctions et des occultations, disparitions et éclipses. Puisque nous voyons naturellement en ligne droite, que la sphère des étoiles est la plus élevée, et que les sphères planétaires sont placées au-dessous, dans l'ordre que nous avons indiqué, il est clair que la lune étant la planète la plus rapprochée de la terre peut passer devant tous les autres astres qui sont au-dessus d'elle; elle nous cache, en effet, les planètes et plusieurs étoiles, lorsqu'elle
νόμενα, τινὰ δὲ καὶ τῶν ἀπλανῶν, κρύπτειν, ἐπειδὴν μεταχύ τινος αὐτῶν καὶ τῆς ὁφεις ἡμῶν ἐπὶ εὐθείας καταστῇ, αὐτὴ δὲ ὑπὸ συνεντὸς ἀντρον κρύπτεται. ὁ δὲ ἡλιός ὑπὸ μὲν τῆς σελήνης ἐπιπροσθέται, αὐτὸς δὲ πλὴν τῆς σελήνης τάλλα πάντα κρύπτειν, τὸ μὲν πρῶτον συνενεγκίζων καὶ καταυγάζων, ἔπαινα δὲ κατὰ μίαν εὐθείαν ἐμπρόσθεν τῆς ὁφεις ἡμῶν ἀκαίεινον τινὰς μεταχύ καθιεστάμενος.

στίλθων δὲ καὶ φωσφόρος τὰ μὲν ὑπὲρ αὐτῶν κρύπτουσι, τῆς ὁφεις ἡμῶν κάκεινων κατ' εὐθείαν ὁμοίως ἐπιπροσθεὶσιν γινόμενοι· δοκοῦσιν <ὁ δὲ> καὶ ἄλληλους ἐπιπροσθείσιν ποτε, διὰ τὰ μεγέθη καὶ τὰς λοξώσεις τῶν κύκλων καὶ τὰς βέτεις ἄλληλων ὑπέρτερας τε καὶ ταπεινότερον γνώριμους. τὸ μέντοι ἄριστα ἀξιόν ἐτὶ αὐτῶν, διὰ τὸ περὶ τὸν ἡλιόν ἀνατρέφεται καὶ μάλιστα τὸν στίλθοντα μικρὸν κέντρον εἶναι τῷ μεγέθις καὶ τὸν ἁνεγκυκλισμόν ἄριστον, πυρός δὲ τους ὑπὲρ αὐτῶν δύο πλάνητας ποτε κρύπτειν, φανήδων δὲ τὸν φαινόντας, πάντες δὲ οἱ πλάνητας τῶν ἀπλανῶν τοὺς κατὰ τὸν ἁκοῦσθυ δρόμον ἐκατος.

Περὶ ἐκλείψεως ἡλίου καὶ σελήνης

λη. σελήνη δὲ κατὰ διάμετρον ἡλίου καὶ σελήνης γενομένη, καὶ εἰς τὴν τῆς γης ἐμπίπτουσα σχισάν ἐκλείπειτη, πλῆν ὅλω κατὰ πάντα γε μῆνα· οὔτε <τάξις> ταῖς συνόδοις καὶ συμμετοχαῖς λεγομέναις ἡλίου ἐκλείπει, οὔτε ταῖς παγκολέησις πάσαις η σελήνη, διὰ τὸ τοὺς κύκλους κυητῶν τοῦ λελοξεθαίναι πρὸς ἄλληλους. ὁ μὲν γὰρ ἡλίου κύκλος, δὲς φακεν, ὑπ᾽ αὐτοῦ σύνενεγκες τὸ διὰ μέσον τῶν ζωδίων φαίνεται φερόμενος, τοῦ κύκλου αὐτοῦ βραχαὶ τι πρὸς τοῦτον ἐγκεκλιμένου, δὲς ἡμετα μοῖρας ἐφ᾽ ἐκάτερον παραλλάττειν. ὁ δὲ τῆς σελήνης κύκλος,

est placée en ligne droite entre notre vue et ces astres, et elle ne peut être cachée par aucun d’eux. Le soleil peut être cachée par la lune, et lui-même peut cacher tous les autres astres, la lune exceptée, d’abord en s’approchant et en les noyant dans sa lumière, et ensuite en se plaçant directement entre eux et nous.

Mercure et Vénus cachent les astres qui sont au-dessus d’eux, quand ils sont pareillement placés en ligne droite entre eux et nous; ils paraissent même s’éclipser mutuellement, suivant que l’une des deux planètes est plus élevée que l’autre, à raison des grandeurs, de l’obliquité et de la position de leurs cercles. Le fait n’est pas d’une observation facile, parce que les deux planètes tournent autour du soleil et que Mercure en particulier, qui n’est qu’un petit astre, voisin du soleil, et vivement illuminé par lui, est rarement apparent. Mars éclipse quelquefois les deux planètes qui lui sont supérieures, et Jupiter peut éclipser Saturne. Chaque planète éclipse d’ailleurs les étoiles au-dessous desquelles elle passe dans sa course.

Des éclipses de soleil et de lune

XXXVIII. La lune disparaît quand, diamétralement opposée au soleil, elle entre dans l’ombre de la terre. Cela n’arrive pas tous les mois; et le soleil n’est pas éclipé à toutes les conjonctions de la lune ou néoménie, de même que la lune ne l’est pas à toutes les pleines lunes, parce que leurs cercles sont sensiblement inclinés l’un sur l’autre. Le cercle du soleil parait emporté, comme nous l’avons dit ; sous celui qui passe par le milieu des signes sur lequel il est un peu incliné, car il s’en écarte d’un demi-degré de chaque côté; et le cercle de la lune a une obliquité de dix

27 Voy. XII, p. 221.
ός μὲν "Ιππαρχος εὑρίσκει, ἐν πλάτει ὁδὸν μοιρῶν λειλάξω-
tai, ὡς δ' οἱ πλείστοι τῶν μαθηματικῶν νομίζουσιν, ὅδεκα,
ὅτε ε' ἢ καὶ ε' μοίρας ἐφ' ἐκάτερα τοῦ διὰ μέσων βορειο-
tέραν ἢ νοτιώτεραν ποτὲ φαίνεσθαι.
5 ἄν δὴ νοεῖσομεν τὰ διὰ τῶν κύκλων ἑκατέρων, τοῦ τε ἡλια-
κοῦ καὶ τοῦ τῆς σελήνης, ἐπιπέδα ἐκβαθύστερα, ἦσσαν αὐτῶν
κοινὴ τομὴ εὐθεία, ἐρ' ἢς ἀμφοτέρων ἐστὶ τὰ κέντρα. ἦτις
εὐθεία πρὸς τὸν κοινῇ διάμετρος ἦσσαν ἄμφοτέροις ἢς τὰ ἄκρα,
καθ' ἡ τέμνειν δοκοῦσιν ἀλλήλους οἱ κύκλοι, σύνδεσμοι καλοῦ-
tαι, ὁ μὲν ἀναβηβάζων, ὁ δὲ καταβηβάζων, καὶ αὐτοὶ μεταπίπ-
tοντες εἰς τὰ ἐπόμενα τῶν ἔφοδων. ἐὰν μὲν οὖν κατὰ σύν-
δεσμον ὁ σύνοδος ἠλίου πρὸς σελήνην γένηται, σύνεγγυς ἀλλήλων
φαινομένον τῶν σωμάτων, ἐπιπροσθήσῃ τοῦ ἠλίου πρὸς τὴν ὕφω
ὁμόν σελήνη, ὅτε δόξει ἡμῖν ἐκλείπειν ὁ ἠλίος, καὶ τοσοῦτον
15 γε μέρος, ὅτου ἢ σελήνη ἐπίπροσθεν γένηται. ἐὰν δὲ μὴ κατὰ
τὸν σύνδεσμον ἡ συμμετακτὴν σύνοδον γένηται, ἀλλὰ τοῦ μὲν
μήκους τῶν ἔφοδων κατὰ τὴν αὐτῆς μοίραν, τοῦ δὲ πλάτους
μὴ κατὰ τὴν αὐτήν, ἀλλὰ τὸ μὲν βορειότερον φαίνειται τῶν
ἀστρων, τὸ δὲ νοτιώτερον, οὐχ ἐπιπροσθοῦμενος ἢλίους οὖθ' ἐκλείπειν δόξεϊ.

λ9. ἔπει δὲ τῆς σελήνης ὅτι ἢ γένοιτο φωνεῖν. ὅτι μὲν
γὰρ εἰς τὴν τῆς γῆς ἐμπιπτούσα σκίην ποτὲ ἐκλείπει, πολλά-
κις εἶρηται· ὡς δ' οὐ καθ' ἐκατὸν μήνα, ὑδροτέον.
degrés en latitude, comme l'a trouvé Hipparque, ou de douze degrés, comme le pensent la plupart des mathématiciens, de sorte qu'elle paraît s'écarter de cinq ou six degrés, au nord ou au sud du cercle qui passe par le milieu des signes.

Si nous supposons prolongés les plans des deux cercles, solaire et lunaire, leur commune intersection sera une ligne droite qui contient les centres des deux cercles. Cette ligne, en quelque façon, sera leur diamètre commun. Les points extrêmes où paraissent se couper les cercles s'appellent les nœuds, l'un ascendant, l'autre descendant ; ils se portent vers les signes suivants du zodiaque. Si la conjonction du soleil et de la lune se fait près des nœuds, les deux astres paraissent voisins l'un de l'autre et la lune cachera à nos yeux le soleil qui s'éclipsera d'autant plus que la lune le couvrira davantage. Mais si la conjonction mensuelle ne se fait pas près du nœud, la longitude comptée sur le zodiaque étant la même pour les deux astres, mais la latitude étant différente, les deux astres paraîtront l'un plus au nord, l'autre plus au sud, et le soleil n'étant pas caché ne pourra pas disparaître.

XXXIX. Voici ce qui arrive évidemment pour la lune. Elle s'éclipse, comme nous l'avons dit souvent, lorsqu'elle entre dans l'ombre de la terre ; montrons comment il se fait que l'éclipse n'ait pas lieu chaque mois. Les rayons lumineux, se propageant en ligne droite, enveloppent une région obscure ; si deux corps sphériques, l'un lumineux et l'autre éclairé par le premier, sont égaux, l'ombre produite est un cylindre indéfini. Soit, par exemple, \(a\beta\) le corps lumineux et \(\gamma\delta\) le corps éclairé, supposons-les tous les deux égaux et sphériques. Les rayons de lumière tels que \(a\gamma\), \(\beta\delta\) (dirigés suivant deux génératrices opposées du cylindre tangent aux deux sphères), se propagent en ligne droite ; donc les diamètres \(a\beta\), \(\gamma\delta\), étant égaux et perpendiculaires aux tan-
δεν μὲν ἵνα τὸ τὸ φωτίζων καὶ τὸ τὴν σκιὰν ἀποθάλλον, σφαιρικὸ δὲ ἄμφω, γίνεται ἢ [δὲ] σκιὰ κυλινδρικὴ καὶ εἰς ἀπειρὸν ἐκπίπτουσα. οὖν ἔστω φωτίζων μὲν τὸ αβ, φωτιζόμενον δὲ τὸ γδ, ἵστα δὲ ἀλλήλοις καὶ σφαιρικὰ ὀὖν ὡς τῆς γε αγ ἀκτίνος καὶ τῆς βδ ἐπ' εὐθείας ἐκπίπτουσον, ἐπεὶ αἱ αβ γδ διάμετροι ἵσται τε εἰς τὸν ἀλλήλοις καὶ πρὸς ὅρθας ταῖς αἰε ἐξαιτομέναις, παράλληλοι ἐστο- ται, καὶ αἱ ἐς δζ ἐπ' ἀπειρον ἐκβαλλόμεναι οὐ συμπεσοῦν- ται· τοῦ δὲ τοιοῦτον πάντως γινομένου ὀὖν ὡς τῆς γδ σφαιράς ἢ σκιὰ κυλινδρικὴ τε ἐσται καὶ ἐπ' ἀπειρον ἐκπίπ- τουσα.

<Diagram here>

ἐὰν μέντοι τὸ φωτίζων ἐλαττῶν ἢ, οὖν τὸ γθ, τὸ δὲ φωτιζόμενον μείζων, οὖν τὸ κλ, ἢ κμν <σκιὰ> τῷ μὲν σγ/ζμκτι ἐστι καλαθευθῆς, ἐπ' ἀπειρον δὲ ὀμολογῶν ἐκπίπτουσα· ἐπεὶ γὰρ μείζων ἢ κλ διάμετρος τῆς γθ, αἱ κμ λν ἀκτίνες ἐπ' ἀπειρον ἐκπίπτουσαι ἐν πλεῖον ἄει διαστάσει γενή- σονται, <σκιὰ> τοῦτο ἐσται παντεγοθῇ ὀμολογ. ἐὰν δὲ ἀνάπαλν τὸ μὲν φωτίζων ἢ μείζων, καθάπερ τὸ λξ, τὸ δὲ φωτιζόμενον <ἐλαττῶ>, οὖν τὸ πρ, σφαιρικὰ δὲ ἄμφω, ὀὖν ὡς τοῦ πρ σκιὰ, τοῦτοστὶν ἢ προ, κω-

gentes \(\gamma \zeta, \beta \zeta \), il est clair que ces rayons seront parallèles et que les droites \(\gamma \zeta, \zeta \), prolongées indéfiniment, ne se ren-
contreront pas. Comme cela se produit sur tous les points, il est évident que la sphère \(\gamma \zeta \) produira une ombre cylin-
drique indéfinie.

Si, au contraire, le corps lumineux est plus petit, tel que \(\eta \theta \), et que le corps éclairé soit plus grand, tel que \(\lambda \), l'ombre \(\xi \mu \lambda \nu \) aura la forme d'un cône tronqué indéfini, car le dia-
mètre \(\lambda \) étant plus grand que le diamètre \(\eta \theta \), les rayons lumineux \(\xi \mu \) et \(\lambda \nu \) prolongés indéfiniment s'éloigneront de plus en plus l'un de l'autre, et il en sera ainsi de tous côtés.

Si le corps lumineux est plus grand, comme \(\xi \zeta \), et le corps éclairé plus petit, comme \(\pi \rho \), et que tous les deux soient sphériques, il est clair que l'ombre du corps \(\pi \rho \), c'est-
dire \(\pi \rho \sigma \), aura la forme d'un cône et sera limitée, car les rayons \(\xi \pi \) et \(\rho \sigma \) prolongés en ligne droite se rencontreront au point \(\sigma \), puisque le diamètre \(\pi \rho \) est plus petit que le diamètre \(\xi \zeta \). Ce phénomène se produira de toutes parts.
νοειδής καὶ πεπερασμένη γενήσεται, τῶν ἢπ τοῦ ἀκτίνων ἐπὶ εὐθείας ἐκαθαλλομένων καὶ συμπιπτοὺσῶν ἄλληλαις κατὰ τὸ στημένον, ἐπειδή ἐλάττων ἔστιν ἡ περὶ διάμετρος τῆς ζο, καὶ τούτου γυνομένου πανταγόδειν.

5 ἐπεὶ τοῖνοι διὰ τῆς περὶ ἀποστημάτων καὶ μεγεθῶν πραγματείας ἡλίου καὶ σελήνης δεῖκνυσιν Ἰππαρχίας τὸν μὲν ἡλίον σύνεγγυς χιλιοκταχοσιγδοχονταπλασίων τῆς γῆς, τὴν γῆν ἐπτείκουσάπλασίων μᾶλλον τῆς σελήνης, πολὺ δὲ υψηλότερον τὸν ἡλίον τῆς σελήνης, θῆλον ὡς ἢ τε σκιὰ ἔσται τῆς γῆς κωνοειδῆς καὶ κατὰ τὴν κοινὴν διάμετρον τοῦ τε ἡλίου καὶ τῆς γῆς ἐμπίπτουσα, καὶ τὸ τῆς σελήνης μέγεθος κατὰ τὸ πλείστον ἐλάττων τοῦ πάχους τῆς ἀπὸ τῆς γῆς σκιᾶς. ἐπειδὰν κατὰ μὲν τὸν ἐτερον σύνδεσμον ἡλίου γένηται, κατὰ δὲ τὸν ἐτερον σελήνη, καὶ ἐπὶ μιᾶς εὐθείας ὁ τε ἡλίος καὶ ἡ γῆ.

10 [καὶ ἡ σκιὰ] καὶ ἡ σελήνη κακαστὴ, τότε ἀναγκαίως ἐμπίπτουσα εἰς τὴν σκιὰν τῆς γῆς ἡ σελήνη, διὰ τὸ ἐλάττων εἶναι αὐτῆς καὶ μηδὲν ἔχειν ὅιον φῶς, ἀφανῆς καθίσταται καὶ λέγεται ἐκλείπειν.

Ἀλλὰ ἐπειδὰν μὲν ἀκριβῶς γέννωται κατὰ διάμετρον, ὅστε 20 ἐπὶ τῆς αὐτῆς, ὡς φαμεν, εὐθείας κακαστήναι τὸ τε τοῦ ἡλίου κέντρον καὶ τὸ τῆς γῆς καὶ τὸ τῆς σελήνης, διὰ μέσου τοῦ σκιάσματος σελήνη Ἰουσά θῆλη ἐκλείπει· ὅτε δὲ σύνεγγυς, μὴ μέντοι ἐπὶ εὐθείας, ἐνίοτε οὐγ, ἄλη· τα μέντοι πλείω, μὴ κατὰ τοὺς συνδέσμους γυνομένῳ τῶν σωμάτων τοῦ τε ἡλίου καὶ σελήνης ἐν ταῖς παντοσελήνοις, ὡς μὲν σκιᾷ τῆς γῆς καὶ οὕτως ἐπὶ μιᾶς εὐθείας ἔσται τοῦ ἡλίου, ἡ δὲ σελήνη, βορειο-
Par la considération des distances et des diamètres du soleil et de la lune, Hipparque montre que le volume du soleil contient environ 1880 fois celui de la terre, que le volume de la terre contient plus de 27 fois celui de la lune, et que le soleil est beaucoup plus éloigné que la lune. Il est donc évident que l'ombre de la terre aura la forme d'un cône, qu'elle s'étendra suivant un diamètre commun du soleil et de la terre (c'est-à-dire suivant la droite qui joint leurs centres), et que le diamètre de la lune, même à son maximum, est moindre que la largeur de l'ombre projetée par la terre. Quand le soleil est à un nœud et la lune à l'autre nœud, le soleil, la terre et la lune étant en ligne droite, la lune entre nécessairement dans l'ombre de la terre, et comme elle est plus petite et qu'elle n'a pas d'éclat par elle-même, elle devient invisible, et on dit qu'elle s'éclipse.

Lorsque les centres du soleil, de la terre et de la lune sont exactement placés suivant une ligne diamétrale, c'est-à-dire suivant la même ligne droite, comme nous l'avons dit, la lune pénétrant au milieu de l'ombre, il y a éclipse totale. Lorsque les trois centres ne sont pas tout à fait en ligne droite, il n'y a pas toujours éclipse totale. Mais le plus souvent, au temps des pleines lunes, le soleil et la lune ne passent pas par les nœuds, et la lune sera plus au nord ou plus au
Τίς τι εὑρέν ἐν μαθηματικῇ
μ. Εὐδημὸς ἤστορεῖ ἐν ταῖς Ἀστρολογίαις, ὅτι Ὄινοπίδης
10 εὑρὲ πρῶτος τὴν τοῦ θείου δίδαξον καὶ τὴν τοῦ μεγάλου
ἐνικοῦν περίστασιν: Θαλῆς δὲ ἦλθον ἐκλείψαν καὶ τὴν κατὰ
tὰς τροπὰς αὐτοῦ περίστασιν, ὡς οὐκ ἦσαν ἀδελφὸι ἀνακρινεῖν
"Αναξί-
μανδρος δὲ ὅτι ἐστὶν ἡ γῆ μετέωρας καὶ κινεῖται περί τὸ τοῦ
κόσμου μέσον: "Αναξίμην ὅτι ὅ τελήν ἐκ τοῦ ἦλθον
15 ἐγεί τῷ φῶς καὶ τίνα ἐκλείπει τρόπον: οἱ δὲ λοιποὶ ἐπὶ ἐξω-
ρημένους τούτους ἐπεξευρίων ἔτερα: ὅτι οἱ ἄπλανοι κινοῦνται
περὶ τὸν διὰ τῶν πάλιν ἀξιονομαντεύον, οἱ δὲ πλανώμενοι
περὶ τὸν τοῦ θείου πρὸς ἀρίθμον ὅταν αὐτῷ ἀξιονομαντεύον, ἀπέχουσι
ὅ ἀλλήλων οὗ τε τῶν ἄπλανων καὶ τῶν πλανώμενων ἀξιον
20 πεντεκαιδεκατρίην πλευρὰν ἦπετί μοίραι καθ'.

10 διάξωσιν] λάξωσιν? J. D. Tous les mss., ainsi que les textes d’H. Martin,
d’Ed. Hiller, de Fabricius (Bibliothèque grecque, éd. de Harless, t. III, p. 464)
et de Fréd. Hultsch (Heronis reliquiae, p. 280) qui reproduisent ce passage,
o ont leçon διάξωσιν (cincture) à laquelle nous croyons qu’on pourrait substi-
tuer le mot λάξωσι (obliquité). On lit, en effet, dans le pseudo-Plutarque : Ἡ
θαληθέσεως πρώτος ἔπους ὑστεροκλάνει ἕλεγεν τὴν λάξωσιν τοῦ θείου τοῦ κόσμου, ἡ
τινα Οἰναπίδης ὁ Χίος ὡς ἦσαν φησίντα: (Opinions des philosophes, II, 12) : Pytha-
gore est le premier, dit-on, qui ait trouvé l’obliquité du cercle zodiacal;
Οἰνοπίδης οὗ ὦ Χίος ὡς ἦσαν σφηνιζότα (Opinions des philosophes, II, 12) : Pytha-
gore est le premier, dit-on, qui ait trouvé l’obliquité du cercle zodiacal;
Οἰνοπίδης οὗ ἔστήσεται (Opinions des philosophes, II, 12) : Pytha-
gore est le premier, dit-on, qui ait trouvé l’obliquité du cercle zodiacal;
Οἰνοπίδης οὗ ἔστήσεται (Opinions des philosophes, II, 12) : Pytha-

gore est le premier, dit-on, qui ait trouvé l’obliquité du cercle zodiacal;
midi que l’ombre de la terre. Comme elle n’entre pas dans le
 cône d’ombre, il ne saurait y avoir éclipse.

Voilà ce que dit Adraste. Dercyllide n’a écrit sur ce sujet
avec aucun ordre convenable. Voici cependant ce qu’il indi-
que dans le livre où il traite « Des fuseaux dont il est ques-
tion dans la République de Platon ».

Des découvertes astronomiques et de leurs auteurs

XL. Eudème dans ses livres « Sur l’astronomie » raconte
qu’Enopide a trouvé le premier l’obliquité du zodiaque et
reconnu l’existence de la grande année ; d’après lui, Thalès
a fait voir que les éclipses de soleil et les retours de cet astre
aux solstices n’arrivent pas toujours après le même temps ;
Anaximandre prétend que la terre est suspendue dans l’es-
pace et se meut autour du centre du monde ; Anaximène a
montré que la lune reçoit la lumière du soleil et de quelle
maniè re elle s’éclipse. D’autres ont ajouté de nouvelles
découvertes à celles-là : que les étoiles se meu vent autour de
l’axe immobile qui passe par les pôles, que les planètes se
meu vent autour de l’axe perpendiculaire au zodiaque ; et que
l’axe des étoiles et celui des planètes s’écartent l’un de l’a u-
tre, du côté du pentédécagone, et par conséquent d’un angle
de 24 degrés.
Τίνες αἱ ἀστρονομίαις ὑποθέσεις

μα. ἐν δὲ τοῖς ἐφεξῆς φησίν· ὁν τρόπον ἐπὶ γεωμετρίας καὶ μουσικῆς μὴ καταστημάτων τὰς ὑποθέσεις ἀδύνατον τῶν μετὰ τὰς ἄρχους λόγων ἐξάπτωσαν, κατὰ τὰ αὐτὰ καὶ ἐπὶ τῆς ἀστρολογίας προσμολογεῖσθαι χρὴ τὰς ὑποθέσεις, ἐρ' αἷς πρόσεσιν ὁ λόγος ὁ περὶ τῆς τῶν πλανωμένων κινήσεως. πρὸ πάντων δὲ, φησὶ, σχεδὸν τῶν περὶ τὰ μαθηματικὰ τὴν πραγματείαν ἐξόντων ἡ λήψις τῶν ἄρχων ὡς ὀμολογομενόν ἐπὶ τρόπων μὲν ὡς ἔστων ἡ τοῦ κόσμου σύστασις τεταγμένως ἐπὶ

μιὰς ἄρχης διεπομένη ύψεστηκέ τε τὰ ὄντα καὶ φανόμενα ταῦτα· διὸ μὴ δεινόν φάναι τὸν κόσμον τῆς ἢμετέρας οὐσίας ἐκ τοῦ ἀπείρου, ἀλλὰ κατὰ περιγραφὴν εἶναι.

δεύτερον δὲ ὡς οὐ σθέτει καὶ ἀνάψει τῶν θείων σωμάτων αἱ τε ἀναστολαι καὶ οὕσεις· ἀλλὰ γὰρ εἰ μὴ ἀδίδος τούτων ὡς

13 διαμονή, οὐκ ἢν ἢ ἐν τῷ παντὶ τάξις φυλαγθεῖ· τρίτον ὡς οὐ πλείους οὐδὲ ἐλάπτονες τῶν ζ' οἱ πλαγαμενοὶ καὶ τοῦτο ὠθλον ἐκ μακράς τηρήσεως· τέσσαρον ἐπεὶ οὔτε πάντα τὰ ὄντα κινεῖσθαι εὐλογον ἐστὶν οὔτε πάντα μένειν, ἀλλὰ τὰ μὲν κινεῖσθαι, τὰ δὲ μένειν, ὀμολογεῖσθαι δει, τίνα ἐν τῷ παντὶ μένειν χρῆ καὶ τίνα κινεῖσθαι. φησὶ δ' ὡς γὴν μὲν χρή οὐ- εσθαί μένειν, ἐστὶν τοῦ θείων οἴκου κατὰ τὸν Πλάτωνα, τὰ δὲ πλαγομένα σὺν τῷ παντὶ περιγράφοι οὕρανῳ κινεῖσθαι· τοὺς δὲ τὰ κινητὰ στάσεσται, τὰ δὲ ἀκίνητα φύσει καὶ ἑδραὶ κινήσαντας ὡς περὰ τὰς τῆς μαθηματικῆς ὑποθέσεις ἀποδιοπομ秝

25 πεῖτε.

ἐν δὲ τούτοις φησὶ καὶ κατὰ μήκος τοὺς πλαγωμένους

Des hypothèses de l'astronomie

XLI. Il dit ensuite : de même qu'en géométrie et en musique, il est impossible, sans faire d'hypothèses, de déduire les conséquences des principes, de même en astronomie il convient d'établir d'abord des hypothèses pour pouvoir parler du mouvement des planètes. Avant tout, dit-il, comme tout le monde en convient, il faut arrêter les principes qui doivent servir dans les études mathématiques. Le premier est que la composition du monde est ordonnée et gouvernée par un seul principe et que la réalité se trouve au fond des choses qui existent ou qui paraissent exister, et qu'il ne faut pas dire que le monde est l'infini où notre vue se perd, mais qu'il a ses limites.

Le second principe est que les levers et les couchers des corps divins ne se font pas parce que ces corps s'allument et s'éteignent successivement; si leur état n'était pas éternel, il n'y aurait aucun ordre conservé dans l'univers. Le troisième principe est qu'il y a sept planètes, ni plus ni moins, vérité qui résulte d'une longue observation. Le quatrième est le suivant : puisqu'il n'est pas conforme à la raison que tous les corps soient en mouvement ou qu'ils soient tous au repos, mais puisque les uns sont en mouvement et les autres immobiles, il faut rechercher ce qui est nécessairement au repos dans l'univers et ce qui est en mouvement. Il ajoute qu'il faut croire que la terre, foyer de la maison des dieux, suivant Platon *, reste en repos et que les planètes se meuvent avec toute la voûte céleste qui les enveloppe. Ensuite, il repousse avec énergie, comme contraire aux bases de la mathématique, l'opinion de ceux qui veulent que les corps qui paraissent en mouvement soient au repos et que les corps immobiles par nature et par situation soient en mouvement.

Il dit ensuite que les planètes ont un mouvement circulaire,
κινείσθαι καὶ βάθος καὶ πλάτος τεταγμένως καὶ ὁμολογοῦσα ἐγκυκλίως, ἢ ἀρχηγόσμενοι ὁδὸν ἀν ἐκ καλλομεθα τῆς περὶ αὐτοῦ ἀληθείας. διὸ τὰς τε ἀνατολὰς καὶ παρανυφόλας τῆς κατὰ μῆκος κινήσεως καὶ τὰς ἀπὸ τῶν πρεσβυτέρων ἀποδοθομένας ἐκλύσου καὶ ραχίμους αἰτίας τῆς ὑπολείψεως λεγομένης παραιτεῖται. ὁρθῶν δὲ τὸ νομίζειν, φησί, τῶν τὸ ἀλόγον καὶ ἄτακτον ρυγόντας τῆς τουχύτης κινήσεως, ἐναντίον τῇ ἀπλανεί φορᾷ τὰ πλανώμενα κινεῖσθαι ἥρεμα, περιαγομένης τῆς ἐντός φορᾶς υπὸ τῆς ἐκτός.

10 οὖν ἄξονι δὲ τοῦ πλανωμένου αἰτίας οἴσθαι τὰς ἐλκοσειδεῖς γραμμὰς ὡς προηγομένας τὰς τε ἱππικὴ παραπλησίας. γίνεσθαι μὲν γάρ ταύτας κατὰ συμβεβηκός· πρώτων δὲ προηγομένην αἰτίαν εἶναι καὶ τοῦ πλάνου καὶ τῆς ἐλικως τῆν κατὰ λοξῶν τοῦ Ἰωδιάκου κύκλων κίνησιν καὶ γάρ ἐπεισοδιώδης 15 καὶ ὑπεράον ἡ κατὰ τὴν ἐλικα κίνησις, ἐκ τοῦ δειπλοῦ τῆς περὶ αὐτοῦς κινήσεως ἀποτελομένης. προτέρου δὲ γρή ἐπειν τὴν κατὰ τοῦ λοξῶν προηγομένην κίνησιν ἐπομένη γάρ ἡ ἐλιξ καὶ οὐ πρότη.

πάλιν παραὶτεῖται καὶ τῆς κατὰ τὸ βάθος κινήσεως αἰτίας 20 εἶναι τὰς ἑκκεντρότητας· περὶ δὲ κέντρων ἐν τῷ τὸ αὐτῆς καὶ κόσμου ἑγείται τούς κατ᾽ ὑφάλων φερομένως πάτι τὴν κίνησιν εἶναι, κατὰ συμβεβηκός ὑπὸ τῶν πλανωμένων, οὐ κατὰ προηγομένην, ως ἐπάκοι ἐπειδείξκειν, τῶν ἐπικύκλων καὶ τῶν ἑκκέντρων κύκλων ὑπὸ τῶν ἑγκέντρων βάθους γραφομένων.

25 οὖν γάρ ἐπιφανείας ἔχει ἑκάστη σφαιρά, τὴν μὲν ἐντὸς κοιλητῆς, τὴν δὲ ἐκτὸς κυρτῆς, ὃν ἐν τῷ μεταξύ κατ᾽ ἐπικύκλους καὶ ἑγκέντρως κινεῖται τὰ ἄστρα, καθ᾽ ἑνὶ κίνησιν καὶ τοὺς ἑκκέντρους κατὰ συμβεβηκός γράφει. 2 ἤγησάμενος ἤγησάμενος Η. Martin.
régulier et uniforme, en longitude, en distance et en latitude... Il juge ainsi, bien que nous puissions nous tromper sur ce point. C'est pourquoi il croit que les levers successifs différents dépendent d'un mouvement en longitude et il rejette les raisons faibles et commodes, données par les anciens, d'après les quelles les planètes seraient laissées en arrière. Mettant de côté tout ce qu'il y a de désordonné et de contraire à la raison dans un tel mouvement, il est juste de croire, dit-il, que les planètes sont emportées lentement par un mouvement contraire à celui des étoiles fixes, de sorte que le mouvement intérieur soit produit par le mouvement extérieur.

Il ne pense pas qu'il faille prendre comme causes premières de ces mouvements, des spirales ni des lignes semblables à la course sinueuse d'un cheval. Car ce mouvement est le résultat d'autres mouvements. La cause première du mouvement en spirale est le mouvement qui s'accomplit suivant le cercle oblique du zodiaque. Le mouvement en spirale est en effet, adventice et postérieur, il résulte du double mouvement des planètes. On doit donc regarder comme premier le mouvement suivant le cercle oblique; le mouvement en spirale en est une conséquence, il n'est pas premier.

En outre il ne croit pas que les cercles excentriques soient la cause du mouvement en profondeur. Il pense que tout ce qui se meut dans le ciel est emporté autour d'un centre unique du mouvement et du monde, de sorte que ce n'est que par une conséquence, et non par un mouvement antécédent, comme nous l'avons dit plus haut, que les planètes décrivent des épicycles ou des excentriques dans l'épaisseur des concentriques. Car chaque sphère a une double surface, l'une concave à l'intérieur, l'autre convexe à l'extérieur, dans l'intervalle desquelles les astres se meuvent suivant des épicycles et des concentriques, d'un mouvement qui leur fait décrire, comme conséquence apparente, des excentriques.
μή, δε και κατά μέν τάς ἡμετέρας φαντασίας άνωμάλους εἶναι τάς τῶν πλανομένων κινήσεις, κατά δε τό υποκείμενον και τάλαθος ὁμαλάς, τάτι δὲ τήν κίνησιν προσωρινήν και ἀδίαστόν εἶναι δι’ ὀλγίστων φορῶν καὶ ἐν τεταγμέναις σφαίραις. αἰτιάται δὲ τῶν φυλοσόφων ὅτι τάς σφαίρας οἷον ἁμώ-γρος ἑνώσατος τούς ἁστέρας καὶ τοῖς τούτων κύκλως πολυ-σφαίρας εἰσηγοῦνται, διὸπερ Ἀριστοτέλης ἄξιος καὶ τῶν μαθηματικῶν Μέναιχμος καὶ Κάλλιππος, οἱ τάς μὲν φεροῦται, τάς δὲ ἀνελιττούσαις εἰσηγήσαντο, ἐπὶ δὲ τούτως ὑμολογομένως νος περὶ μένουσαν τὴν γῆν τὸν υφράνον τῶν τῶς ἄστρων ἴγνεῖται κινεῖται ἐν ὁμαλαίς καὶ ἐργαλείοις κινήσεισθαι ἐλαχίστας τε καὶ συμφώνουσι ἐγκέντρους τε καὶ ἀδίαστος φοράς, καὶ ταύτας σωκράτεις καὶ παρὰ Πλάτωνι ἀποδείκνυσι τὰς ὑπο-θέσεις.

κινοῦνται δὲ οἱ μὲν ἀπλανεῖς περὶ τὸν διά τῶν πόλων ἥξονα μένοντα, οἱ δὲ πλανοῦμεν περὶ τὸν τοῦ ζωδίακοι πρὸς ὀρθῶς ὅταν αὐτὴ ἥξονα ἀπέχουσι τὸ ἄλληλων τοῦ ἀπλανών καὶ τῶν πλανωμένων ἥξων πεντεκτεικτειχεῖνον πλευράν, δι’ αὐτοῖς μὲν τέμνει τὸν κόσμον ὁ ζωδιακὸς μέγιστος ὁν τῆς δὲ τοῦ ζωδιακοῦ περιφερεῖας εἰς τῆς μοῖρας διαφορομένης ὁ ζωδιακὸς ἐκα-τέρωθεν ρτ’ μοῖρας ἀπαλμαθάνει ὁ δὲ ἥξων τοῦ ζωδιακοῦ πρὸς ὀρθῶς ὅτι διακεῖ τὰς μοῖρας. λειδώνται δὲ ὁ ζωδιακὸς ἀπὸ του γεμερινοῦ παραλήπου ἐπὶ τοῦ θερινοῦ, εἰσὶ δὲ ἀπὸ μὲν τοῦ θερινοῦ ἐπὶ τοῦ ἄρκτικον μοῖρα λ’, ὡς παραδίδουσιν Ἰππαρχος, ἀπὸ δὲ τοῦ ἄρκτικον μέχρι τοῦ πόλου τῆς ἀπλανοῦσας σφαίρας μοῖραι τριάκοντα ἡ’ συνάμωρ ὅτι, ἀπὸ μὲν τοῦ θερινοῦ μέχρι τοῦ πόλου τῆς τῶν ἀπλανοῦσας σφαίρας μοῖραι ἡ’.

Il dit encore que, suivant les apparences, les mouvements des planètes sont irréguliers, mais qu’en principe et en réalité ils sont réguliers; le mouvement est simple et naturel pour tous : il n’y a qu’un très petit nombre de déplacements sur des sphères disposées avec ordre. Il blâme ces philosophes qui, considérant les astres comme inanimés, ajoutèrent aux sphères et à leurs cercles plusieurs autres sphères; ainsi Aristote et parmi les mathématiciens, Ménèchme et Callippe ont proposé les sphères déférentes et les spirales. Après avoir établi tout cela, il pense que le ciel se meut avec tous les astres autour de la terre immobile, suivant un très petit nombre de mouvements circulaires, uniformes, harmonieux, concentriques et indépendants. Il montre que, d’après Platon, ces hypothèses rendent compte des apparences.

8 Cf. Métaphysique, λ 8, p. 1073 B.
ἐνα δὲ πληρωθέως ἐπὶ τὸν πόλον τοῦ τῶν πλανωμένων ἁξο- νὸς τῇ μοίρᾳ, προσβεβίον μοίρας κὸν, καθ’ ἐκ γὰρ ὁ πόλος τοῦ <τῶν> πλανωμένων ἁξονὸς πρὸς ἀρκεῖς όντος τοῦ ζωδίακῳ. λοιπά δὲ ἀπὸ τοῦ πόλου <του> τῶν πλανωμένων ἁξονὸς

9 μοίραι ἐπὶ τὰ χειμερινὰ μέρη τοῦ ἀρκτικοῦ βῆ. καὶ πάσαι γάρ ἦσαν λέει, ὅτι ἄφελομεν κὸν, λοιπὰ βῆ. αἷς προσβεβίον τὰς ἀπὸ τοῦ ἀρκτικοῦ μέχρι τοῦ θερινοῦ πάλιν μοίρας λ᾽ καὶ τὰς ἀπὸ τοῦ θερινοῦ ἐπὶ τὸν ισημερινὸν μοίραν κὸν καὶ <τὰς> ἀπὸ τοῦ ισημερινοῦ ἐπὶ τὸν χειμερινὸν, οὐ πάλιν έφάπτεται ὁ

10 ζωδίακος, μοίρας κὸν, γίνονται μοιρὰς κὸν τῶν τῆς τοῦ παντὸς μοιρῶν πεντεκαίδεκαντον μέρος, πεντεκαίδεκας γάρ καὶ γίνον- ται τῆς. διὰ τοῦτο φαίνειν τοῦ ἐγγραφομένου εἰς σφαίραν πεν-

tεκαίδεκανον πλευρὰν ἀπέγειν ἄλληλον τοῦ δύο ἁξονας, τον
tε τῶν ἀπλανῶν καὶ τὸν πλανωμένων.

13 μη. ἔλικα δὲ γράφει, τὰ πλανώμενα κατὰ συμβαθῆκας, διὰ τὸ δύο κινείται κινήσεις έναντίας ἄλληλαις, τῷ γὰρ αὕτα κατὰ τὴν ιδίαν κίνησιν ἀπὸ τοῦ θερινοῦ ἐπὶ χειμερινὸν φέρεσθαι καὶ ἀνάπτυκα, ἥρεμα μην αὐτὰ περιοῦντα, τἄχιστα δὲ ἐπὶ τὰ ένων-
tία περιγόμενα καὶ ἐκάστην ἴμεραν ὑπὸ τῆς ἀπλανοῦν σφαί-

16 ρας, ὅσκ ἐπὶ εὔθειας ἀπὸ παραλλήλου ἐπὶ παράλληλου πορεύεται,

 epoll. λεξικά περὶ τῆς ἀνταρκτικοῦ. — 15 Τίτλο: περὶ τῆς ἐλλειπείδους κινήσεως (du mouvement en spirale).
Pour compléter les 90 degrés qui s'étendent jusqu'au pôle de la sphère des planètes, il faut ajouter à cette somme 24 degrés, puisque l'axe des planètes est perpendiculaire au zodiaque. Du pôle de l'axe des planètes au cercle glacial arctique il reste 12 degrés, car tout l'arc de la zone vaut 36 degrés; si on en retranche 24, il reste 12. Il convient d'y ajouter les 30 degrés compris du cercle arctique au troupeau d'été, puis les 24 degrés compris du troupeau d'été au cercle équinocial, et encore les 24 degrés compris du cercle équinocial au troupeau d'hiver auquel le zodiaque est tangent. Mais 24 degrés forment la quinzième partie des 360 degrés de la circonférence de l'univers, car 45 fois 24 font 360, nous avons donc raison de dire que les deux axes, celui des étoiles et celui des planètes, s'écartent l'un de l'autre de la valeur du côté du pentédécagone inscrit dans (un grand cercle de) la sphère.

XLIII. Les planètes décrivent des spirales par accident, c'est-à-dire en conséquence de leurs deux mouvements en sens contraire l'un de l'autre. En effet, comme elles sont portées par leur propre mouvement du troupeau d'été au troupeau d'hiver et réciproquement, en allant lentement, et qu'elles sont rapidement entraînées chaque jour en sens contraire sous la sphère des étoiles, elles ne passent pas en droite ligne d'un parallèle à un autre, mais entraînées autour de la sphère des fixes. En d'autres termes, pour aller sur le zodiaque d'un point α à un autre point β, leur mouvement ne se fait pas seulement suivant une ligne droite du zodiaque, mais il devient en même temps circulaire autour de la sphère des fixes, de sorte qu'en passant d'un parallèle à un autre elles décrivent des spirales semblables aux vrilles de la vigne; c'est comme si on enroulait une courroie autour d'un cylindre d'un bout à l'autre; telles étaient les lanières enroulées sur les systèmes de Laconie et sur lesquelles les éphores écrivaient leurs dépêches.
γράφει δὲ καὶ ἄλλην ἔλικα τὰ πλανομένα, οὐ μόνον ώς περὶ κύλινδρον ἢ ἀπὸ τῆς ἑτέρας ἀποτομής ἐπὶ τὴν ἑτερον ἀποτομήν, ἀλλὰ καὶ τὴν ώς ἢ ἐν ἐπιπέδῳ. ἐπειδὴ γὰρ δὲ θυώνος ἀπὸ τοῦ ἑτέρου παραλλήλου ἐπὶ τὸν ἑτέρον χωροῦσι καὶ ἀπὶ ἑκείνου πάλιν ἐπὶ τὸν αὐτὸν καὶ τούτο ἄδιαλείπτως καὶ ἀπαύωτως γίνεται ώς αὐτῶν, ἀν ἐπινοήσωμεν ἐπὶ ἀπειρον ἐκτεινομένας εὐθείας εἶναι τὰς παραλλήλους καὶ δὲ αὐτῶν κατὰ τὰ αὐτὰ παρευμένα τὰ πλανομένα ποτὲ μὲν τὴν γεωμετρίαν ὁδὸν, ποτὲ δὲ τὴν θεωρίαν, μέχρις ἀπειρού εὖρεθεὶν ἄν ἡμῖν ἐλικα γράφοντα. κατὰ δὲ τὸ ἄπειρον καὶ ἀλώνιον τῆς περὶ τὴν σφαῖραν διὰ [τής] τῶν παραλλήλων πορείας ὁμοία ἢ ὀδὸς αὐτοῖς γίνεται τῇ διὰ τῶν ἐπὶ ἀπειρον ἐκτεινομένων εὐθείαν ὁδὸν, καθάπερ ὅλοι τὰ υποκείμενα διαγράμματα. ὡστε δύο κατὰ συμβεβηκὸς γράφομοις ἐλικας, τὴν μὲν ώς περὶ κύλινδρον, τὴν δὲ ώς δὲ ἐπιπέδου.

μὸ. ταυτὶ μὲν τὰ ἀναγκαίωτα καὶ [ἕξ ἀστρολογίας] χυμώτατα πρὸς τὴν τῶν Πλατωνικῶν ἀνάγνωσιν. ἔτει δὲ ἐφαμεν εἶναι μουσικὴν καὶ ἀρμονίκην τὴν μὲν ἐν ὀργάνοις, τὴν δὲ ἐν ἀριθμοῖς, τὴν δὲ ἐν κόσμῳ, καὶ περὶ τῆς ἐν κόσμῳ τῶν ἀναγκαῖα πάντα ἐξῆς ἐπηγειλάμεθα μετὰ τὴν περὶ ἀστρολογίας παράδοσιν — ταυτὶν γὰρ ἐφό καὶ Πλάτων ἐν τοῖς μαθήμασι τείμητην εἶναι μετὰ ἀριθμητικῆς γεωμετρίας στερεομετρίας ἀστρονομίαν — ὥς καὶ περὶ τῶν ἐν κεφαλαίοις παραδείκνυσιν ὁ Θράκυλλος τῶν ός καὶ αὐτοὶ προεξειράσθηκαν ὁ ἄστιον.

2 ἢ ἀπὸ τῆς ἑτέρας > Π. Μαρτίν. — 3 ἢ > Π. Μαρτίν.

< τέλος τῶν σωζομένων ἁπάντων >
Les planètes décrivent encore une autre spirale, mais celle-ci non comme si on la traçait sur un cylindre d’un bout à l’autre, mais comme si on la traçait sur une surface plane. Puisque depuis un temps infini, elles passent d’un cercle parallèle à l’autre et de nouveau de celui-ci au premier, et cela sans interruption et sans fin, si nous supposons des lignes droites, disposées en nombre infini, représentant les cercles parallèles et que les planètes se meuvent sur ces parallèles dans le même sens que la sphère des fixes, tantôt vers le tropique d’hiver, tantôt vers le tropique d’été, elles nous paraîtront décrire une hélice sans fin. À cause du mouvement incessant et continu autour de la sphère sur les cercles parallèles, le chemin parcouru sera semblable à celui qui se ferait suivant les lignes droites étendues à l’infini, comme l’indiquent les figures ci-jointes. Les planètes décrivent donc deux spirales par accident, l’une comme autour d’un cylindre, l’autre comme sur une surface plane.

XLIV. Tout cela est très nécessaire et très utile pour la lecture des œuvres de Platon. Or, nous avons dit que nous avions à considérer la musique instrumentale, la musique mathématique et l’harmonie des sphères et que nous rapporterions tout ce qu’il y a nécessairement d’harmonie dans le monde, après ce qui regarde l’astronomie, — car Platon assigne à cette musique des sphères le cinquième rang dans les mathématiques, après l’arithmétique, la géométrie, la stéréométrie et l’astronomie — nous allons donc montrer sommairement ce que Thrasyle expose sur ce sujet, en même temps que notre propre travail antérieur.

15 Ces figures manquent aux mss. — 21 Voy. 1, 2, p. 25 et II, 1, p. 79. — 26 République VII, p. 530 D.
NOTES

Note I. — Problème de la duplication du cube. Solution mécanique de Platon (Introduction, p. 5)

Le problème de la duplication de l’autel, avec la condition que le nouvel autel soit semblable au premier, se ramène à la duplication du cube d’une arête. Hippocrate de Chio trouva que si l’on insère deux moyennes proportionnelles continues \(x \) et \(y \) entre le côté \(a \) d’un cube et le double \(2a \) de ce côté, la première moyenne \(x \) est le côté du cube double. On a, en effet, par définition :

\[
\frac{a}{x} = \frac{x}{y} = \frac{y}{2a},
\]

d’où

\[
\frac{a^3}{x^3} = \frac{axy}{2axy} = \frac{1}{2} \quad \text{et} \quad x^3 = 2a^3 \quad (*)
\]

Platon a résolu le premier le problème des deux moyennes proportionnelles. Il y employa un instrument formé de deux règles KL, GH, dont l’une mobile parallèlement à l’autre fixe, glissait entre les rainures de deux montants FG, MH, fixés perpendiculairement à celle-ci.

\((*) \) Les géomètres anciens ne pouvaient pas disposer des ressources de l’algèbre qu’ils ne connaissaient pas; mais les proportions, qu’ils maniaient avec une très grande habileté, quoiqu’ils n’eussent aucune notation particulière, leur fournissaient des procédés de calcul très simples et très ingénieux. En combinant les proportions par voie de multiplication, de division,... et en simplifiant les rapports de la proportion finale, ils parvenaient à ne conserver qu’une inconnue dans des questions qui en comportaient plusieurs.
Soient a et b les deux droites entre lesquelles on veut insérer deux moyennes proportionnelles. On trace deux droites perpendiculaires AE, CD, sur lesquelles on prend, à partir de leur point de concours, $AB = a$ et $BC = b$. Puis on applique l'instrument sur la figure de manière que le bord d'une règle passe par le point A, et le bord de l'autre par le point C. On écarte alors, plus ou moins, la règle mobile de la règle fixe, et en même temps on fait tourner l'instrument dans le plan de la figure, jusqu'à ce que, les bords des deux règles passant toujours par les points A et C, les prolongements des droites AB et BC passent en même temps par les sommets du rectangle que forme l'instrument.

Les deux triangles ADE, CDE étant rectangles, la hauteur de chacun d'eux est moyenne proportionnelle entre les segments de l'hypoténuse, et l'on a :

\[
\frac{AB}{BD} = \frac{BD}{BE} = \frac{BE}{BC}
\]

Ainsi BD et BE sont deux moyennes proportionnelles entre AB et BC, c'est-à-dire entre a et b.

Cette solution de Platon est mécanique, puisqu'elle exige l'usage d'un instrument, autre que la règle et le compas. Elle nous a été transmise par Eutocios d'Ascalon, géomètre du 1^er siècle, dans un commentaire sur le livre II du traité *De la sphère et du cylindre* par Archimède (*).

Note II. — Sur le sophisme : Un, en tant qu'un, est sans parties et indivisible (I, III, p. 29). — *Problème d'Achille et de la tortue.*

Le raisonnement de Théon est un sophisme. J'ai un objet sensible, dit-il, je le divise en plusieurs parties que je supprime successivement une à une, il viendra un moment où il ne restera plus qu'un objet sensible. Je divise de nouveau cet un sensible en plusieurs parties que je supprime de même une à une, jusqu'à ce qu'il ne reste plus qu'un objet. En opérant ainsi, j'arrive toujours

 Notes 335

à un, donc un, en tant qu’un, est sans parties et indivisible : ὁτε ἄμεριστον καὶ ἄδιχιστον τὸ ἐν ὡς ἐν (pag. 28, lig. 12).

L’un des plus célèbres sophismes est de Zénon d’Élée, qui vivait au Ve siècle avant notre ère, on le nomme l’Achille. En voici l’énoncé :

Achille va dix fois plus vite qu’une tortue qui a un stade d’avance, on demande s’il l’atteindra et à quelle distance ().

Zénon prétendait qu’Achille n’atteindrait jamais la tortue, car, disait-il, pendant qu’Achille parcourra la stade qui le sépare de la tortue, celle-ci avancera de 0,1 de stade ; pendant qu’Achille parcourra ce dixième, la tortue qui va dix fois moins vite, avancera de 0,01 de stade ; pendant qu’Achille parcourra ce centième, la tortue avancera de 0,001 ; et ainsi de suite. Donc il s’écoulera un nombre infini d’instants avant la rencontre, et Achille n’atteindra jamais la tortue.

Cela revient à affirmer, dit Aristote, « que jamais le plus lent, quand il est en marche, ne pourra être atteint par le plus rapide, attendu que le poursuivant doit, de toute nécessité, passer d’abord par le point d’où est parti celui qui fuit sa poursuite, et qu’ainsi le plus lent conservera constamment une certaine avance ». *Leçons de physique*, VI, ix (ancien xiv), 4 ; t. II, p. 396 de la trad. de B. Saint-Hilaire.

L’erreur de Zénon est manifeste, car Achille atteint la tortue à une distance de son point de départ, égale à 1 stade et 1/9 ou 10/9 de stade. En effet, pendant qu’il parcourt ces 10/9 de stade, la tortue, qui va dix fois moins vite, en parcourt 1/9 ; or l’espace parcouru par Achille est alors égal à l’espace parcouru dans le même temps que la tortue, plus à l’espace qui les séparait, donc il y a rencontre.

Zénon ne voit pas que la somme des espaces parcourus pendant le nombre infini des instants successifs du mouvement d’Achille et de la tortue représente une distance finie, et que, dans le cas du mouvement uniforme, le nombre infini de ces instants successifs représente un temps fini (**).

(*) Le stade valait 185 mètres.
(**) Nous n’insistons pas, mais nous signalons au lecteur *philosophe* l’inté-

Note III. — Sur les nombres hétéromèques (I, xvi, p. 49).

Soient \((n - 1) n = n^2 - n\) et \(n (n + 1) = n^2 + n\) deux hétéromèques successifs. Le carré compris entre \(n^2 - n\) et \(n^2 + n\) est \(n^2\). Or \(n^2\) est la moyenne arithmétique entre \(n^2 - n\) et \(n^2 + n\), et la moyenne arithmétique entre deux nombres est plus grande que leur moyenne géométrique ; donc, comme Théon le vérifie, le carré compris entre deux hétéromèques successifs n'est pas la moyenne géométrique entre ces deux nombres. Mais la moyenne géométrique entre deux carrés successifs est un hétéromèque ; soit, en effet, \(x\) la moyenne géométrique entre deux carrés successifs \(n^2\) et \((n + 1)^2\), on a \(x^2 = n^2 (n + 1)^2\), d'où \(x = n (n + 1)\), nombre hétéromèque, puisque les deux facteurs diffèrent d'une unité.

Note IV. — Sur les nombres carrés (I, xx, p. 61).

Tout nombre étant un multiple de 6 ou un multiple de 6, plus 1, plus 2, plus 3, plus 4 ou plus 5, est de la forme \(6n, 6n \pm 1, 6n \pm 2,\) ou \(6n + 3\). Donc tout carré est de la forme
\[36n^2 \quad 36n^2 \pm 12n + 1 \quad 36n^2 \pm 24n + 4 \quad \text{ou} \quad 36n^2 + 36n + 9.\]

1° S'il est de la forme \(36n^2 \pm 24n + 4\), il est divisible par 4, et non par 3, mais la soustraction d'une unité donne le reste \(36n^2 \pm 24n + 3\) qui est divisible par 3 ;

2° S'il est de la forme \(36n^2 + 36n + 9\), il est divisible par 3, et non par 4, mais la soustraction d'une unité donne le reste \(36n^2 + 36n + 8\) qui est divisible par 4 ;

3° S'il est de la forme \(36n^2\), il est à la fois divisible par 3 et par 4, et par conséquent \(36n^2 - 4\) ne l'est pas ;

4° Enfin, s'il est de la forme \(36n^2 \pm 12n + 1\), il n'est divisible ni par 3 ni par 4, mais la soustraction d'une unité donne le reste \(36n^2 \pm 12n\) qui est à la fois divisible par 3 et par 4.

Note V. — Des nombres polygonaux (I, xix-xxvii, p. 69).

Nous allons résumer cette théorie des nombres polygones en y ajoutant quelques explications. Soit d la raison d’une progression par différence commençant par l’unité, les premiers termes seront $1, 1 + d, 1 + 2d, 1 + 3d, 1 + 4d, 1 + 5d, 1 + 6d, 1 + 7d...$
Si on fait les sommes successives des termes, à partir de l’unité, on obtient les nombres correspondants

$1, 2 + d, 3 + 3d, 4 + 6d, 5 + 10d, 6 + 15d, 7 + 21d, 8 + 28d...$
Les termes de la seconde suite se nomment des nombres polygones, et ceux de la première en sont les gnōmons. Si on donne à d, dans les deux suites, les valeurs successives $1, 2, 3, 4, 5, 6,...$ on obtient les gnōmons et les nombres polygones suivants:

\[
\begin{align*}
 d = 1, & \quad \text{gnōmons} \ldots & 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 & 11 & 12 \\
 \text{n. triangulaires} \ldots & 1 & 3 & 6 & 10 & 15 & 21 & 28 & 36 & 45 & 55 & 66 & 78 \\
 d = 2, & \quad \text{gnōmons} \ldots & 1 & 3 & 5 & 7 & 9 & 11 & 13 & 15 & 17 & 19 & 21 & 23 \\
 \text{n. quadrangulaires} \ldots & 1 & 4 & 9 & 16 & 25 & 36 & 49 & 64 & 81 & 100 & 121 & 144 \\
 d = 3, & \quad \text{gnōmons} \ldots & 1 & 4 & 7 & 11 & 16 & 22 & 29 & 37 & 46 & 56 & 67 & 78 \\
 \text{n. pentagones} \ldots & 1 & 5 & 12 & 22 & 35 & 51 & 70 & 92 & 117 & 145 & 176 & 210 \\
 d = 4, & \quad \text{gnōmons} \ldots & 1 & 5 & 9 & 13 & 17 & 21 & 25 & 29 & 33 & 37 & 41 & 45 \\
 \text{n. hexagones} \ldots & 1 & 6 & 15 & 28 & 45 & 66 & 91 & 120 & 153 & 190 & 231 & 276 \\
 d = 5, & \quad \text{gnōmons} \ldots & 1 & 6 & 11 & 16 & 21 & 26 & 31 & 36 & 41 & 46 & 51 & 56 \\
 \text{n. heptagones} \ldots & 1 & 7 & 18 & 34 & 55 & 81 & 112 & 148 & 189 & 235 & 286 & 342 \\
 d = 6, & \quad \text{gnōmons} \ldots & 1 & 7 & 13 & 19 & 25 & 31 & 37 & 43 & 49 & 55 & 61 & 67 \\
 \text{n. octogones} \ldots & 1 & 8 & 21 & 40 & 65 & 96 & 133 & 176 & 225 & 280 & 341 & 408 \\
 d = 7, & \quad \text{gnōmons} \ldots & 1 & 8 & 15 & 22 & 29 & 36 & 43 & 50 & 57 & 64 & 71 & 78 \\
 \text{n. ennéagones} \ldots & 1 & 9 & 24 & 46 & 75 & 111 & 154 & 204 & 261 & 325 & 396 & 474 \\
 d = 8, & \quad \text{gnōmons} \ldots & 1 & 9 & 17 & 25 & 33 & 41 & 49 & 57 & 65 & 73 & 81 & 89 \\
 \text{n. décagones} \ldots & 1 & 10 & 27 & 52 & 85 & 126 & 175 & 232 & 297 & 370 & 451 & 540 \\
 d = 9, & \quad \text{gnōmons} \ldots & 1 & 10 & 19 & 28 & 37 & 46 & 55 & 64 & 73 & 82 & 91 & 100 \\
 \text{n. endécagones} \ldots & 1 & 11 & 30 & 58 & 95 & 141 & 196 & 260 & 333 & 415 & 506 & 606 \\
 d = 10, & \quad \text{gnōmons} \ldots & 1 & 11 & 21 & 31 & 41 & 51 & 61 & 71 & 81 & 91 & 101 & 111 \\
 \text{n. dodecagones} \ldots & 1 & 12 & 33 & 64 & 105 & 156 & 217 & 288 & 369 & 460 & 561 & 672 \\
\end{align*}
\]

En désignant par k le n^{e} gnōmon et par l le n^{e} nombre polygonè, on a :

\[
k = 1 + (n - 1)d
\]
\[
eq 1 + (1 + d) + (1 + 2d) + (1 + 3d) + (1 + 4d) + (1 + 5d) + \ldots + (1 + (n - 1)d) = n + d \left[\frac{1 + 2 + 3 + 4 + 5 + \ldots + (n - 1)}{2} \right] = n + d \frac{n(n - 1)}{2}
\]

[A]
Or \(\frac{n(n-1)}{2} \), somme des \((n - 1) \) premiers nombres à partir de l'unité, est le \((n - 1) \)\(^{\circ} \) nombre triangulaire, on a donc ces deux théorèmes :

1° Le \(n \)\(^{e} \) nombre polygone égale \(n \), plus \(d \) fois le \((n - 1) \)\(^{e} \) nombre triangulaire, \(d \) étant la raison de la progression des gnomons ;

2° Les nombres polygones, de même rang \(n \), forment une progression par différence, dont le premier terme est \(n \), et dont la raison est le \((n - 1) \)\(^{e} \) nombre triangulaire.

Les nombres triangulaires sont ainsi nommés, parce que, si on dispose les uns au-dessous des autres les gnomons à ajouter et décomposés en unités, on a des figures triangulaires (Voy. p. 37).

Les nombres carrés sont ainsi nommés, parce qu'on peut donner la forme carrée aux groupes d'unités dont ces nombres se composent (Voy. p. 63) :

On peut aussi obtenir la figure des nombres carrés par la formule \(l = n + d \frac{n(n-1)}{2} \) qui, pour \(d = 2 \), devient \(l = n + 2 \frac{n(n-1)}{2} \). On écrira sur une ligne les \(n \) unités du nombre \(n \), puis on placera, de part et d'autre de cette ligne, les unités dont se compose le \((n - 1) \)\(^{e} \) nombre triangulaire ; on obtiendra les figures quadrangulaires suivantes, en remplaçant les unités par des points :

\[
\begin{array}{cccccc}
1 & 4 & 9 & 16 & 25 & 36 \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\cdot & \cdot & \cdot & \cdot & \cdot & \cdot \\
\end{array}
\]

Les nombres pentagones sont donnés par la formule \(l = n + 3 \frac{n(n-1)}{2} \). On obtiendra donc leur représentation en ajoutant à \(n \), trois fois le \((n - 1) \)\(^{e} \) nombre triangulaire ; ils peuvent donc être figurés de la manière suivante :
On aura les nombres hexagonaux en ajoutant à n, quatre fois le $(n-1)^{\text{e}}$ nombre triangulaire; on peut donc leur donner cette forme:

On peut remarquer que la suite naturelle des nombres hexagonaux est égale à la suite des nombres triangulaires de rang impair. On démontre, en effet, que le n^{e} nombre hexagone est égal au $(2n-1)^{\text{e}}$ nombre triangulaire; car, d’après la formule générale $[A]$, donnée plus haut, chacun d’eux égale $n(2n-1)$.

Une autre remarque à faire, c’est que les nombres parfaits, c’est-à-dire égaux à la somme de leurs parties aliquotes, sont tous hexagones et par conséquent triangulaires.

En effet le n^{e} hexagone $l = n(2n-1)$. Supposons $n = 2^k$, on aura $l = 2^k(2^{k+1} - 1)$. C’est la formule qui donne les nombres parfaits quand le facteur $2^{k+1} - 1$ est premier; donc les nombres parfaits sont hexagones et par conséquent triangulaires. Ainsi
et ainsi des autres.

NOTE VI. — *Des nombres pyramidaux* (I, xxx, p. 74).

Le n^{e} nombre pyramidal, à base triangulaire, est la somme des n premiers nombres triangulaires. On démontre qu’il est égal à $\frac{n(n+1)(n+2)}{1\cdot2\cdot3}$.

De même, le n^{e} nombre pyramidal, à base carrée, est la somme des n premiers nombres carrés. On démontre qu’il est égal à $\frac{n(n+1)(2n+1)}{1\cdot2\cdot3}$.

Le nombre pyramidal tronqué s’obtient en évaluant la pyramide totale et celle qui en a été enlevée, on prend la différence des deux valeurs. Soit une pyramide triangulaire tronquée dont le côté de la base inférieure vaut n et celui de la base supérieure p, le nombre pyramidal tronqué vaudra $\frac{n(n+1)(n+2) - (p-1)p(p+1)}{1\cdot2\cdot3}$.

NOTE VII. — *Des nombres latéraux et des nombres diagonaux* (I, xxxi, p. 75).

Les nombres latéraux et les nombres diagonaux sont définis par leur génération. Théon l’explique ainsi : il prend d’abord le côté 1 et la diagonale 1, puis il détermine successivement les autres côtés, en ajoutant au côté précédent la diagonale, et il détermine les autres nombres diagonaux en ajoutant à la diagonale précédente deux fois le côté correspondant. On obtient, d’après cette règle, le tableau suivant, complété par l’addition du double carré des côtés, et du carré des nombres diagonaux :
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>1</td>
<td>2</td>
<td>1 = 2 - 1</td>
</tr>
<tr>
<td>2 = 1 + 1</td>
<td>3 = 1 + 1 × 2</td>
<td>8</td>
<td>9 = 8 + 1</td>
</tr>
<tr>
<td>5 = 2 + 3</td>
<td>7 = 3 + 2 × 2</td>
<td>50</td>
<td>49 = 50 - 1</td>
</tr>
<tr>
<td>12 = 5 + 7</td>
<td>17 = 7 + 5 × 2</td>
<td>288</td>
<td>289 = 288 + 1</td>
</tr>
<tr>
<td>29 = 12 + 17</td>
<td>41 = 17 + 12 × 2</td>
<td>1682</td>
<td>1681 = 1682 - 1</td>
</tr>
<tr>
<td>70 = 29 + 41</td>
<td>99 = 41 + 29 × 2</td>
<td>9800</td>
<td>9801 = 9800 + 1</td>
</tr>
<tr>
<td>169 = 70 + 99</td>
<td>239 = 99 + 70 × 2</td>
<td>57122</td>
<td>57121 = 57122 - 1</td>
</tr>
</tbody>
</table>

Cette règle de Théon donne, en nombres entiers, la résolution du triangle rectangle isocèle, avec cette condition que la différence entre le carré de l'hypoténuse et le double carré du côté de l'angle droit ne soit que d'une unité, c'est-à-dire qu'elle donne, en nombres entiers, les solutions de l'équation \(y^2 - 2x^2 = \pm 1 \). Supposons que \(y = a \) et \(x = b \) soient une solution de l'équation, c'est-à-dire qu'on ait \(a^2 - 2b^2 = \pm 1 \), je dis que \(x' = b + a \) et \(y' = a + 2b \) en sont aussi une solution. On déduit, en effet, de ces deux dernières relations \(y'^2 - 2x'^2 = \pm 1 \). Or \(a^2 - 2b^2 = \pm 1 \) par hypothèse, donc \(y^2 - 2x^2 = \mp 1 \). Mais \(y = x = 1 \) est une première solution de l'équation \(y^2 - 2x^2 = -1 \), on en conclura donc une infinité d'autres solutions, d'après la règle donnée par Théon.

Note VIII. — De la perfection du nombre dix (I, xxxii, p. 77).

Le nombre 10 = 1 + 2 + 3 + 4 ; or 1 était le principe des nombres ; 2 représentait la première ligne (la ligne droite qui est définie par deux de ses points) ; 3 représentait la première surface (le triangle défini par ses trois sommets) ; et 4 représentait le premier solide (le tétraèdre défini par ses quatre sommets). Donc la décade 1 + 2 + 3 + 4 symbolisait tout ce qui existe. Voyez pour plus de détails l'Épilogue : *Le nombre géométrique de Platon* (mémoire définitif).
Note IX. — *Sur l'addition et la soustraction des consonances* (II, xiii bis, p. 105).

Nommons A, B, C, trois sons tels que l'intervalle de B à A soit, par exemple, une quinte et l'intervalle de C à B une quarte. Soient a, b, c, les nombres correspondants à ces trois sons ; c est les $4/3$ de b, et b les $3/2$ de a, donc c est les $4/3$ des $3/2$ de a, c'est-à-dire qu'on a $c = 2a$. Quoique l'intervalle de C à A soit le produit des deux intervalles qu'il comprend, on dit qu'il est la somme de ces deux intervalles; ainsi l'on dit que l'octave est la somme d'une quinte et d'une quarte, mais le nombre qui mesure l'octave est le produit des deux nombres qui mesurent la quarte et la quinte.

Nommons encore A, B, C, trois sons tels que l'intervalle de B à A soit, par exemple, une quarte et que l'intervalle de C à A soit une quinte. Soient a, b, c, les nombres correspondants à ces sons et x l'intervalle de c à b. On a, d'après la remarque précédente $3/2 = 4/3 \times x$ d'où $x = 3/2 \div 4/3 = 9/8 = 1$ ton. Quoique l'intervalle de C à B soit le quotient de l'intervalle de C à A par l'intervalle de B à A, on dit qu'il est la différence de ces deux intervalles; ainsi l'on dit que le ton est l'excès de la quinte sur la quarte, mais le nombre qui mesure le ton est le quotient des deux nombres qui mesurent la quinte et la quarte.

Note X. — *Le diagramme musical de Platon comprend quatre octaves, une quinte et un ton* (II, xiii bis, p. 105).

Le diagramme musical de Platon comprend, en effet, les sons correspondants aux termes des deux progressions $1, 2, 4, 8$, et $1, 3, 9, 27$, et s'arrête à 27. Or le premier son de la première octave étant représenté par 1, les premiers sons de la deuxième, de la troisième, de la quatrième et de la cinquième octave sont respectivement représentés par $2, 4, 8, 16$. La quinte de cette cinquième octave est exprimée par $16 \times 3/2 = 24$. Pour ajouter un ton à cette quinte, il faut multiplier 24 par $9/8$, le résultat est 27, dernier terme du diagramme de Platon, qui comprend par
conséquent quatre octaves plus une quinte et un ton. (Cf. le Timée p. 34 D-35 D.)

Note XI. — De la valeur du demi-ton (II, xiv, p. 113).

La moitié du ton $1 + 1/8$ n’est pas $1 + 1/16$. Cette moitié x est donnée par l’équation $x^2 = 9/8$ d’où, $x = \sqrt{9/8}$. Mais il faut remarquer que la valeur $1 + 1/16 = 17/16$ est très approchée, car si on en fait le carré, on obtient $289/256$ qui ne diffère, que de $1/256$, du ton $9/8 = \frac{9 \times 32}{8 \times 32} = 288/256$.

Le limma est moindre que le demi-ton, parce qu’on a, comme on peut aisément le vérifier,

$$\left(\frac{256}{243}\right)^2 < \frac{9}{8} \text{ d’où } \frac{256}{243} < \sqrt{\frac{9}{8}}$$

Note XII. — Du système musical parfait formé de deux octaves (II, xxxv, p. 145).

L’échelle musicale des anciens Grecs, décrite par Théon, avait l’étendue de la voix humaine. C’était une série descendante de deux octaves. Elle était formée de quatre petits systèmes, composés chacun de quatre sons dont les extrêmes donnaient la quarte, consonance maîtresse de laquelle découlaient les autres (II, xiii bis, p. 107, ligne 29).

Ces petits systèmes se nommaient tétracordes parce que les sons étaient donnés par la lyre à quatre cordes. Les cordes des instruments et les sons qu’elles rendaient portaient le même nom. Les deux extrêmes de chaque tétracorde étaient invariables ou immobiles; les deux intermédiaires étaient variables ou mobiles, elles recevaient différents degrés de tension constituant trois genres principaux d’harmonie : le diatonique, le chromatique et l’énharmonique.

Le premier tétracorde se nommait tétracorde des supérieures ou des hyperbolées, ὑπερβολικῶν.

Le deuxième s’appelait tétracorde disjoint ou des disjunctes, διάζευγμένων, parce que sa dernière corde, c’est-à-dire la plus
basse, était distincte de la première, ou la plus haute, du tétracorde suivant; elle en différait d'un ton. Les deux premiers tétracordes avaient une corde commune : la plus grave du tétracorde des hyperbolées était en même temps la plus aiguë du tétracorde des disjointes.

Le troisième était le tétracorde moyen ou des mèses, μέσον.

Le premier et le second tétracorde ayant une corde commune, ainsi que le troisième et le quatrième, l'ensemble des quatre tétracordes ne rendait que quatorze sons. Pour compléter les deux octaves, on a ajouté au-dessous du son le plus grave du tétracorde des hypates un quinzième son, plus bas d'un ton, qu'on a appelé proslambanomènes, προσλαμβανόμενος, sous-entendu ἔρωτος, ou προσλαμβανόμενη sous entendu χερσί, c'est-à-dire son ajouté ou corde ajoutée.

De même que les tétracordes étaient désignés par des noms relatifs à leur position dans l'échelle musicale, les cordes étaient désignées par des noms relatifs à leur position dans chaque tétracorde.

La plus haute était la nède des hyperbolées, νῆτῃ ὑπερβολαίων (*)

La seconde était la paranète, παρανῆτῃ, c'est-à-dire voisine de la nède.

La troisième s'appelait trite des hyperbolées, τριτῆ.

La quatrième et la cinquième étaient la nède et la paranète des disjointes, νῆτῃ et παρανῆτῃ διεξεύγμενων.

La sixième, nommée trite des disjointes, τριτῆ, était la troisième du tétracorde disjoint.

La septième et la huitième étaient la paramèse, παραμέστῃ, c'est-à-dire voisine de la mèse, et la mèse, μέσῃ.

La neuvième était la lichane des mèses, λίχανος μέσον (**).

(*) Νῆτῃ pour νέατῃ, de νέατος, η, ou, nouveau, qui est à l'extrémité.
(**) Λίχανος, où (ἡ), indicatrice (du genre), de λίχανος, où (ὁ), index, indicateur : la lichane indiquait le genre qui était diatonique, chromatique ou enharmonique, suivant que l'intervalle du son de cette corde au son de la corde précédente valait un ton, un ton et demi ou deux tons.
La dixième et la onzième étaient la parhypate et l'hypate des mèses, παρυπάτη et ὑπάτη.

La douzième était l'hyperhypate, ὑπαρυπάτη, ou lichane des hypates, λίχανος ὑπάτων.

La treizième et la quatorzième étaient la parhypate des hypates, παρυπάτη et l'hypate des hypates, ὑπάτη.

Enfin la quinzième était la proslambanomène.

La seconde corde de chaque tétracorde, c'est-à-dire la paranète des hyperbolées, la paranète des disjointes, la lichane des mèses et l'hyperhypate, étaient appelées aussi, suivant le genre : diatone, chromatique ou enharmonique, des hyperbolées, des disjointes, des mèses ou des hypates.

Voici un tableau de ce système parfait, avec indication des intervalles successifs dans les trois genres, diatonique, chromatique et enharmonique, le demi-ton ou limma étant égal à $\frac{236}{243}$.
Système parfait, formé de deux octaves, comprenant les 3 genres : diatonique, chromatique, enharmonique.

<table>
<thead>
<tr>
<th>Tétracordes</th>
<th>Cordes ou sons</th>
<th>Genres</th>
</tr>
</thead>
<tbody>
<tr>
<td>1 Nète des hyperbolées</td>
<td>1 1 1/2 2</td>
<td>diat., chrom., enharm.</td>
</tr>
<tr>
<td>2 Paranète ou diatone</td>
<td>1 1/2 2</td>
<td></td>
</tr>
<tr>
<td>3 Trite</td>
<td>1/2 1/2 1/2</td>
<td></td>
</tr>
<tr>
<td>4 Nète des disjoïntes</td>
<td>1 1 1/2 2</td>
<td></td>
</tr>
<tr>
<td>5 Paranète ou diatone</td>
<td>1 1/2 2</td>
<td></td>
</tr>
<tr>
<td>6 Trite</td>
<td>1/2 1/2 1/2</td>
<td></td>
</tr>
<tr>
<td>7 Paramèse</td>
<td>1 1 1</td>
<td></td>
</tr>
<tr>
<td>8 Mése</td>
<td>1 1 1/2 2</td>
<td></td>
</tr>
<tr>
<td>9 Lichane ou diatone</td>
<td>1 1 1/2 2</td>
<td></td>
</tr>
<tr>
<td>10 Parhypate</td>
<td>1 1 1/2 2</td>
<td></td>
</tr>
<tr>
<td>11 Hypate</td>
<td>1 1 1/2 2</td>
<td></td>
</tr>
<tr>
<td>12 Hyperhypate ou diatone</td>
<td>1 1 1/2 2</td>
<td></td>
</tr>
<tr>
<td>13 Parhypate</td>
<td>1 1 1/2 2</td>
<td></td>
</tr>
<tr>
<td>14 Hypate</td>
<td>1 1 1/2 2</td>
<td></td>
</tr>
<tr>
<td>15 Proslamanomène</td>
<td>1 1 1</td>
<td></td>
</tr>
</tbody>
</table>

Platon pour expliquer, dans le Timée, la formation de l’âme du monde, admet que Dieu divisa d’abord l’essence en *sept* parties qui sont entre elles comme les termes des deux progressions 1, 2, 4, 8 et 1, 3, 9, 27 dont l’une a pour raison 2 et l’autre pour raison 3.

Il dit ensuite que Dieu inséra, entre les termes successifs de ces deux progressions, deux moyennes dont l’une, que nous appelons moyenne arithmétique, égale leur demi-somme et dont l’autre est telle qu’elle surpasse un extrême et est surpassée par l’autre de la même fraction des extrêmes, c’est-à-dire que *x* étant la moyenne insérée entre *a* et *b*, on a \(x - \frac{a}{a + b} : \frac{a}{a + b} - x = a : b \), d’où

\[
x = \frac{2ab}{a + b} = \frac{a}{\sqrt{2}(a + b)}
\]

de sorte que cette moyenne entre deux nombres s’obtient en divisant le double produit de ces deux nombres par leur somme, ou le produit des deux nombres par leur demi-somme. On l’appelle une moyenne harmonique.

Par cette double insertion on obtient les nombres suivants (à lire par colonnes horizontales) :

<table>
<thead>
<tr>
<th></th>
<th>4</th>
<th>3</th>
<th>2</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>4/3</td>
<td>3/2</td>
<td>2</td>
</tr>
<tr>
<td>2</td>
<td>8/3</td>
<td>3</td>
<td>4</td>
</tr>
<tr>
<td>4</td>
<td>16/3</td>
<td>6</td>
<td>8</td>
</tr>
</tbody>
</table>

Dans cette progression, le rapport de la moyenne arithmétique à la moyenne harmonique égale 9/8 : c’est la valeur du ton.

Platon insère ensuite entre chaque terme de la progression double et la moyenne harmonique qui le suit, ainsi qu’entre la moyenne arithmétique et le terme suivant, deux termes tels que le rapport de chacun d’eux au précédent soit aussi 9/8.

Cette opération effectuée sur la progression 1, 2, 4, 8, et prolongée jusqu’à ce qu’on obtienne le terme 27, donne les résultats contenus dans le tableau suivant :
TABLEAU I.

(A lire par colonnes verticales).

<table>
<thead>
<tr>
<th>1</th>
<th>2</th>
<th>4</th>
<th>8</th>
<th>16</th>
</tr>
</thead>
<tbody>
<tr>
<td>9</td>
<td>9</td>
<td>9</td>
<td>9</td>
<td>18</td>
</tr>
<tr>
<td>8</td>
<td>4</td>
<td>2</td>
<td>8</td>
<td>16</td>
</tr>
<tr>
<td>8</td>
<td>81</td>
<td>81</td>
<td>81</td>
<td>81</td>
</tr>
<tr>
<td>84</td>
<td>56</td>
<td>16</td>
<td>8</td>
<td>8</td>
</tr>
</tbody>
</table>

Moyennes harmoniques. | 4 | 8 | 16 * | 32 * | 64 * |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
<td>3</td>
</tr>
</tbody>
</table>

Moyennes arithmétiques. | 3 | 6 | 12 | 24 |
<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>2</td>
<td>27</td>
<td>27</td>
<td>27</td>
</tr>
<tr>
<td></td>
<td>16</td>
<td>8</td>
<td>4</td>
<td>2</td>
</tr>
<tr>
<td></td>
<td>243</td>
<td>243</td>
<td>243</td>
<td>243</td>
</tr>
<tr>
<td></td>
<td>128</td>
<td>64</td>
<td>32</td>
<td>16</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4</td>
<td>8</td>
<td>16 *</td>
</tr>
</tbody>
</table>

Pour substituer à ces nombres, généralement fractionnaires, des nombres entiers proportionnels, on peut les réduire au même plus petit dénominateur commun $128 \times 3 = 384$ et les multiplier tous par ce dénominateur, on obtient alors le tableau suivant :

TABLEAU II.

<table>
<thead>
<tr>
<th>384</th>
<th>768</th>
<th>1536</th>
<th>3072</th>
<th>6144</th>
</tr>
</thead>
<tbody>
<tr>
<td>432</td>
<td>864</td>
<td>1728</td>
<td>3456</td>
<td>6912</td>
</tr>
<tr>
<td>486</td>
<td>972</td>
<td>1944</td>
<td>3888</td>
<td>7776</td>
</tr>
<tr>
<td>512</td>
<td>1024</td>
<td>2048</td>
<td>4096</td>
<td>8192 *</td>
</tr>
<tr>
<td>576</td>
<td>1152</td>
<td>2304</td>
<td>4608</td>
<td>9216</td>
</tr>
<tr>
<td>648</td>
<td>1296</td>
<td>2592</td>
<td>5184</td>
<td>10368</td>
</tr>
<tr>
<td>729</td>
<td>1458</td>
<td>2916</td>
<td>5832</td>
<td></td>
</tr>
<tr>
<td>768</td>
<td>1336</td>
<td>3072</td>
<td>6144 *</td>
<td></td>
</tr>
</tbody>
</table>

Sommes. 4535 | 8302 | 16604

Total. 29441

Si on insère de même une moyenne harmonique et une moyenne arithmétique entre les termes successifs de la progression triple, on obtient les nombres (à lire par colonnes horizontales) :

<table>
<thead>
<tr>
<th>1</th>
<th>3/2</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>3</td>
<td>9/2</td>
<td>6</td>
<td>9</td>
</tr>
<tr>
<td>9</td>
<td>27/2</td>
<td>48</td>
<td>27</td>
</tr>
</tbody>
</table>
Les intervalles de 1 à 3, de 3 à 9, et de 9 à 27, étant ceux d'octave et quinte, Proclus (*) admet que Platon a d'abord rempli l'intervalle de 1 à 3, comme ceux de la progression double, et qu'il a ensuite triplé les termes obtenus de 1 à 3, pour avoir ceux de 3 à 9, et triplé les termes de 3 à 9, pour avoir ceux de 9 à 27.

L'opération ainsi effectuée donne des résultats qu'on peut multiplier par $128 \times 3 = 384$, plus petit commun multiple des dénominateurs, pour leur substituer des nombres entiers proportionnels. On obtient ainsi les deux tableaux suivants :

<table>
<thead>
<tr>
<th>Tableau III</th>
<th>Tableau IV.</th>
</tr>
</thead>
<tbody>
<tr>
<td>(A lire par colonnes verticales).</td>
<td>(A lire par colonnes verticales).</td>
</tr>
</tbody>
</table>

<table>
<thead>
<tr>
<th></th>
<th>1</th>
<th>3</th>
<th>9</th>
<th>384</th>
<th>4152</th>
<th>3456</th>
</tr>
</thead>
</table>
| $\begin{array}{c|c|c|c|c|c}
1 & 3 & 9 & 384 & 4152 & 3456 \\
8 & 27 & 81 & 81 & 81 & 81 \\
64 & 243 & 729 & 64 & 64 & 64 \\
4 & 4 & 12 & 4 & 4 & 4 \\
3 & 9 & 27 & 3 & 3 & 3 \\
16 & 81 & 343 & 16 & 16 & 16 \\
243 & 729 & 1/2187 & 243 & 243 & 243 \\
128 & 128 & 128 & 128 & 128 & 128 \\
\end{array}$ |
| Moyennes harm. | 3 & 2 & 2 & 2 & 2 & 2 |
| Moyennes harm. arithm. | 2 & 4 & 4 & 4 & 4 & 4 |
| | 9 & 27 & 81 & 9 & 9 & 9 |
| | 81 & 243 & 729 & 81 & 81 & 81 |
| | 32 & 32 & 32 & 32 & 32 & 32 |
| | 8 & 8 & 8 & 8 & 8 & 8 |
| | 3 & 3 & 3 & 3 & 3 & 3 |

<table>
<thead>
<tr>
<th></th>
<th>384</th>
<th>432</th>
<th>486</th>
<th>542</th>
<th>576</th>
<th>648</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1296</td>
<td>1296</td>
<td>1458</td>
<td>1458</td>
<td>1728</td>
<td>1728</td>
</tr>
<tr>
<td></td>
<td>3888</td>
<td>3888</td>
<td>4374</td>
<td>4374</td>
<td>5184</td>
<td>5184</td>
</tr>
<tr>
<td></td>
<td>4608</td>
<td>4608</td>
<td>4608</td>
<td>4608</td>
<td>4608</td>
<td>4608</td>
</tr>
<tr>
<td></td>
<td>6561</td>
<td>6561</td>
<td>6561</td>
<td>6561</td>
<td>6561</td>
<td>6561</td>
</tr>
<tr>
<td></td>
<td>6912</td>
<td>6912</td>
<td>6912</td>
<td>6912</td>
<td>6912</td>
<td>6912</td>
</tr>
<tr>
<td></td>
<td>7776</td>
<td>7776</td>
<td>7776</td>
<td>7776</td>
<td>7776</td>
<td>7776</td>
</tr>
<tr>
<td></td>
<td>8748</td>
<td>8748</td>
<td>8748</td>
<td>8748</td>
<td>8748</td>
<td>8748</td>
</tr>
<tr>
<td></td>
<td>9216</td>
<td>9216</td>
<td>9216</td>
<td>9216</td>
<td>9216</td>
<td>9216</td>
</tr>
<tr>
<td></td>
<td>10368</td>
<td>10368</td>
<td>10368</td>
<td>10368</td>
<td>10368</td>
<td>10368</td>
</tr>
</tbody>
</table>

Somme... 76923

Nous faisons suivre d'une étoile les termes de la progression triple (tableaux III et IV) qui ne font pas partie de celle des doubles, et les termes de la progression double (tableaux I et II) qui ne font pas partie de celle des triples.

On lit dans le traité De l'âme du monde et de la nature qui porte le nom de Timée de Locres (ch. 1, à la fin) : « Dieu fit l'âme la première, en prenant dans le mélange dont il l'a formée, une

(*) Proclus in Timaeum, p. 193 et suiv. de l'éd. de Bâle, 1534.
partie égale à 384 unités. Ce premier nombre trouvé, il est facile de calculer les termes de la progression double et de la progression triple. Tous ces termes disposés suivant les intervalles de tons et demi-tons, sont au nombre de 36 et donnent une somme totale égale à 114 695 ; et les divisions de l'âme sont elles-mêmes au nombre de 114 695 ». Or l'intention évidente de Platon a été de ne pas dépasser 8 dans la progression des doubles et 27 dans la progression des triples. Donc son diagramme contient :

1° 22 termes de la progression double, compris de 384 à 8 × 384 c'est-à-dire de 384 à 3072 (tableau II), qui valent 29 444

2° 1 terme de la progression triple compris, de 384 à 3072, qui ne fait pas partie de la progression double (voy. tableaux IV et II), c'est 2 187 et enfin

3° 12 termes de la progression triple, compris de 9 × 384 à 27 × 384 c'est-à-dire de 3456 à 10368 (tableau IV), qui valent 76 923

Somme 108 531

Donc le diagramme de Platon contient (22 + 1 + 12) ou 35 termes différents (et non 36), et la somme de ces 35 termes est 108 531 et non 114 695. La différence 6 144 des deux résultats est le terme 16 × 384 de la progression des doubles (tableau II), terme dont il ne faut pas tenir compte, car il dépasse 8 × 384 dans la progression des doubles et ne fait pas partie de la progression triple. Si on le compte, il faut compter aussi les deux termes 4096 et 8192, de la progression double, qui ne font pas partie de la progression triple.

Il y a donc une erreur dans le traité qui porte le nom de Timée de Locres. Si, suivant les intentions de Platon, on ne dépasse pas, en faisant les insertions, les cubes 8 et 27 dans les progressions respectives 1, 2, 4, 8, et 1, 3, 9, 27, le diagramme musical de Platon comprend 35 termes dont la somme est 108 531, inférieure de 6144, à la somme 114 695 de Timée de Locres (\(^\ast\)).

(\(^\ast\)) L'erreur de Timée de Locres est reproduite par tous les commentateurs. Voyez abbé Roussier, Mémoire sur la musique des anciens, Paris, 1770, in-4e,
Sachant en quelle vénération les Pythagoriciens avaient le quaternaire ("), nous croyons fermement que l'erreur du Pseudo-Timée n'est pas involontaire. Le nombre 33 était certainement doué de perfection, c'était le produit du nombre septenaire par la demi-décade; mais le nombre 36 était encore plus parfait, c'était le produit du premier carré pair par le premier carré impair; et, par conséquent, il était lui-même un carré, c'est-à-dire une harmonie, et puis son côté 6 était un nombre vraiment parfait c'est-à-dire égal à la somme de ses parties aliquotes, car on a 6 = 1 + 2 + 3. Le nombre 36 avait une autre vertu, écoutons Plutarque : « ... Ce quaternaire, à savoir 36, célèbre par les Pythagoriciens, semble avoir ceci d'admirable qu'il est la somme des quatre premiers nombres pairs et des quatre premiers nombres impairs...

\[(1 + 3 + 5 + 7) + (2 + 4 + 6 + 8) = 16 + 20 = 36\]

i. mèn oûn ὑπὸ τῶν Πυθαγορικῶν ὑμνουμένη τετρακτύς, τὰ ἓκα; τὰ τριάκοντα, τριακατόν ἥχειν δοκεῖ, τὸ συγκείσθαι: μὲν ἐκ πρῶτων ἀρτύων τεσσάρων, καὶ πρῶτων περισσών τεσσάρων... » De la création de l'âme dans le Timée § XXX.

Alors que les philosophes pythagorisant voulaient trouver partout des quaternaires, Timée, pour compléter le grand quaternaire 36, aura ajouté aux 35 termes du diagramme musical de Platon le terme 6144 correspondant au son 16, octave du son 8 qui est le dernier terme de la progression 1, 2, 4, 8.

Si le Pseudo-Timée n'a pas ajouté aussi au diagramme de Platon les deux termes 4096 et 8192, qui sont l'un la quinte aigüe, l'autre la quarte grave de 6144 et qui, comme 6144, ne font pas partie des termes insérés dans la progression des triples, c'est parce qu'alors le nombre total des termes eût été 38, au lieu de 36.

Note XIV. — Pourquoi le nombre six était appelé mariage

(II, xlv, p. 169).

On l’appelait aussi mariage parce qu’il est le produit du premier nombre pair 2 par le premier nombre impair 3. Les nombres impairs étaient considérés comme mâles et les nombres pairs comme femelles. « Si on les divise l’un et l’autre en unité, dit Plutarque (traduction d’Amyot), le pair montrera un lieu vide au milieu, là où le non-pair a toujours le milieu remply d’une de ses parties, et pour ceste cause, ils (les Pythagoriciens) ont opinion que le pair ressemble plus à la femelle et le non-pair au masle : καὶ διαφομένων εἰς τὰς μονάδας, ὁ μὲν ἄρτιος, καθάπερ τὸ θῆλυ, χώραν μεταξύ κενήν ἐνδίδωσι· τοῦ ἀπὸ περίτου μόρουν ἀεί τι πλήρεις ὑπολειπέσται: διὰ τὸν μὲν ἔξθεν, τὸν ἀπὸ θήλει πρόσφορον νομιζοῦσιν. » *(Questions romaines, CLI, p. 288 C.)*

Note XV. — Sur les euripes (II, xlv, p. 173).

On a donné le nom d’euripes aux courants qui se produisent dans les détroits (ζ.presenter, δυτικτε di mouvement rapide, de δυτικτε jeter).

Le plus célèbre était celui de Chalcis, entre l’Eubée et la Béotie, et dont la direction changeait sept fois par jour, suivant la plupart des auteurs anciens : « Il y a des marées particulières en certains lieux, dit Pline, ainsi le flux vient plusieurs fois dans le détroit de Messine, à Tauroménium, et sept fois par jour dans l’Euripe, auprès de l’Eubée. *(Hist. naturelle, II, c, p. 143 de la trad. de Littré, édition Nisard.)*

Les variations du flux des euripes étaient très irrégulières : cette inconstance était très connue.

Platon dit dans le Phédon : «... Ni dans les choses, ni dans les raisonnements, il n’y a rien de vrai ni de stable; mais tout est dans un flux et un reflux continu, comme l’Euripe, et rien ne demeure un moment dans le même état : » *(... οὔτε τῶν πραγμάτων...)*
ôdēnvês òdên ògîês òdêv bêbâiôn õûte tîôn ëgîôn, ἀλλά πάντα τά õûta, ἀτε-
γνώς οὐστερ ἐν Ἑὐρίπε, ἧνο καὶ κάτω στράφηκα καὶ γρόνον ὦδένα ἐν ὦδει
μένει» (Phédon, XXXIX, p. 90 C.) Lucain dit aussi, dans la Pharsale : "les flots inconstants de l'Europie entraînent les vaisseaux de Chal-
cis vers Aulis si funeste aux nochers

"Euripusque trahit, cursum mutantibus undis,
"Chalcidicus puppes ad iniquam classibus Aulim."

(La Pharsale, Chant V, vs. 235-236.)

L'idée superstitieuse attachée au nombre sept paraît expliquer l'hypothèse de Théon, hypothèse suivant laquelle les euripies varient sept fois par jour.

Note XVI. — Détermination de la moyenne harmonique entre deux nombres donnés (II, LXI, p. 197).

a, b, c étant les trois nombres qui donnent la proportion har-
monique $a - b$; $b - c = a : c$, la première règle de Théon se tra-
duit par la formule $b = \frac{(a - c) e}{a + c} + e$, valeur égale à $\frac{2 ae}{a + c}$; elle
est donc générale quel que soit le rapport de a à c.

La seconde règle se traduit par la formule $b = \frac{(a - c) e}{2(a + c)} + e$;
cette valeur n'est égale à $\frac{2 ae}{a + c}$ que pour $a = c$, solution à rejeter,
et pour $a = 3c$. Théon donne en effet la seconde règle pour les
 nombres en rapport triple, 18 et 6.

L'auteur ayant fait la remarque (II, LVII, p. 189) que, dans la
proportion harmonique, le produit de la somme des nombres
extrêmes par la moyenne harmonique est égal au double produit
des nombres extrêmes, nous sommes étonné qu'il n'ait pas con-
clu de cette égalité la valeur de la moyenne harmonique.

Note XVII. — Sur la mesure du volume de la terre (III, III, p. 214).

Le passage est altéré et les manuscrits présentent une lacune à
la fin. Henri Martin, en essayant de le restituer, a fait une faute
de calcul. Le diamètre d de la terre étant égal à 80182 stades, on a

$$d^2 = 6429153124 \quad \text{au lieu de} \quad 6427153124.$$

Le chiffre inexact 7, des centaines de myriades, substitué au
chiffre exact 9, a donné à H. Martin des valeurs inexactes pour
d^3, pour $1/14\ d^3$ et pour $22/3$ de $1/14\ d^3$ ou $11/21\ d^3$ qui exprime le volume de la sphère de diamètre d. Il faut

$$d^3 = 315\ 5023\ 5578\ 8568$$
$$1/14\ d^3 = 36\ 8215\ 9684\ 2040 + \frac{4}{7}$$
$$11/21\ d^3 = 270\ 0250\ 4350\ 8297 + \frac{11}{21}$$

Ainsi le volume de la terre, évalué en stades cubiques, en supposant le rapport de la circonférence au diamètre égal à $22/7$, vaut, d’après la mesure de l’arc de méridien faite par Ératosthène, 270 troisièmes myriades, 250 deuxième myriades, 4350 myriades, 8297 monades et $11/21$. Non seulement cette fraction est illusoire, mais on peut compter, tout au plus, sur les deux ou trois premiers chiffres du résultat. C’est l’expression de ce volume que nous avons restituée pp. 210 et 211.

Note XVIII. — Sur le mythe de Pamphylien dans la République de Platon pp. 616B-617B. (III, xvi, pp. 233-237).

Il résulte du récit de Platon que, des huit globes concentriques, le premier extérieurement est celui des étoiles fixes, le second est celui qui porte Saturne, le troisième porte Jupiter, le quatrième Mars, le cinquième Mercure, le sixième Vénus, le septième le Soleil et le huitième la lune. La terre est au centre du système.

Les couleurs et les vitesses des fuseaux répondent à celles des astres qu’ils portent, et la largeur inégale des bords colorés répond à l’écart inégal des planètes dans leur course à travers la zone zodiacale et quelquefois au delà. La sphère des étoiles fixes est en effet, de couleur variée, puisque les étoiles ont des nuances diverses. Le septième cercle, celui du soleil, est très éclatant; le huitième, celui de la lune, lui emprunte son éclat. La nuance un peu jaune du second et du cinquième est bien celle de Saturne et de Mercure. La blancheur du troisième et la rougeur du quatrième caractérisent parfaitement l’aspect de Jupiter et de Mars. Enfin le sixième cercle est donné comme le plus éclatant après le soleil, ce qui est vrai de Vénus. Une vitesse égale est attribuée à Mercure, à Vénus et au soleil : le soleil, dans sa course apparente autour de la terre, entraîne, en effet, Mercure et Vénus.
INDEX DES MOTS GRECS

Qu’on ne trouve pas dans les dictionnaires ou qu’on n’y trouve pas traduits dans le sens que leur attribue Théon. — Les mots qui manquent au *Thesaurus graecae linguae* d’Henri Estienne (éd. Didot) sont précédés d’une étoile.

κρόνυχος, θ, ι, acronyme, qui se fait à la fin de la nuit, à la pointe du jour. Δοτη δε (δύσις) και κρονύχος, ἐπειδὰν ἦλιον ἀνέκλαι λόγος τὸ κατὰ διάμετρον ἀστρον ἀντικλώνη. Reste le coucher, dit coucher de la pointe du jour, quand, le soleil se levant, un astre disparaît dans la partie de l’horizon diamétralement opposée. Théon, III, xiv, 226.

ἀντικλώνη, se coucher du côté opposé (en parlant d’un astre). Ἠδ. ἄποκταπτεικος (ἀριθμός), nombre récurrent : nombre dont toutes les puissances ont la même terminaison que lui. I, xxiv, 64.

βομίσκος, ὁ, homisque (petit autel), parallélépipède rectangle dont les trois côtés sont inégaux. I, xxix, 70.

γνώμων, ὁ, gnomon, nombre indicateur : chacun des termes successifs de la progression par différence

\[
1 + d \quad 1 + 2d \quad 1 + 3d \quad 1 + 4d \ldots \quad 1 + nd
\]

qui sert à obtenir les nombres polygonaux de \(d + 2 \) côtés. I, xxii, 62.

γραμμικός (ἀριθμός), nombre linéaire, c’était un nombre premier. I, vi, 36.

* δεκαπτάσης, ο, on, long de dix stades. III, iii, 206.

διάξωσις, εος, ἓ, zône. III, xl, 320.

διάτονος (ἀριθμόνια), harmonie diatonique ; elle procède, dans chaque tétracorde, en allant de l’aigu au grave, par deux tons puis un demi-ton. II, ix, 90.
INDEX

dièse, éco, η, dièse, demi-ton ou limma pour les Pythagoriciens, quart de ton pour les Aristoxéniens. II, xi, 92.
diplasiesiptèritos, δ, η, double et deux tiers en plus, c'est-à-dire $2 + \frac{2}{3}$. II, xxvi, 128.
diplasieptéritos, δ, η, double et un quart en plus, c'est-à-dire $2 + \frac{1}{4}$. II, xxvi, 128.
diplasieptèritos, δ, η, double et un tiers en plus, c'est-à-dire $2 + \frac{1}{3}$.
diplasiepmélaios, δ, η, double et une demi en plus, c'est-à-dire $2 + \frac{1}{2}$.
diplasieptèritos, δ, η, deux tiers en plus (de l'unité), c'est-à-dire $1 + \frac{2}{3}$.
diplasiepmelptos, δ, η, deux cinquièmes en plus (de l'unité), c'est-à-dire $1 + \frac{2}{5}$.
doxis, idos, η, docide (poutrelle), parallélipipède rectangle qui a deux côtés égaux et le troisième plus grand que chacun des deux autres. I, xxix, 70.

gkenteros (κύκλος ou σφαίρα), cercle ou sphère homocentrique.
eliphs (ἀριθμὸς), nombre déficient : nombre dont la somme des parties aliquotes est inférieur au nombre lui-même. I, xxxii, 76.

enarmóinos, δ, η, enarmónion ἄρμα, genre enharmonique ; il procède, dans chaque tétracorde, en allant de l'aigu au grave, par un diton (intervalle de deux tons non divisé) puis deux quarts de ton. II, xi, 92.
diarmóinos, τό, l’Épinomis, dialogue de Platon. III, xxx, 286.
diarmóinos, τό, l’Épinomis, dialogue de Platon. III, xxx, 286.
epiarmhés, δ, η, épimère, rapport contenant plusieurs parties égales en plus (de l'unité), c'est-à-dire de la forme $1 + \frac{m}{m + n}$. II, xxv, 126.

epikyrrhos, δ, η, superpartiel ou sesquipartiel, rapport contenant une partie en plus (de l'unité), c'est-à-dire de la forme $1 + \frac{1}{m}$.

II, xxiv, 124.

Epinomios, τό, l’Épinomis, dialogue de Platon. III, xxx, 286.

* épivnektás, se rencontrer au même point. III, xxx, 298.

* episkuódektatos, δ, η, un dix-huitième en plus (de l'unité), c'est-à-dire $1 + \frac{1}{18}$.

epómena (πημένα), points suivants : points qui passent après un astre au méridien : είς τά ἐπόμενα, vers l'orient. III, passim.

epistrophēs (ἀριθμός), nombre hétéromèque : produit de deux fac-
teurs qui diffèrent d’une unité, c’est-à-dire de la forme \(m (m + 1) \).

I, xiii, 42.

εὔθυμετρικός (ἐρθυμός), nombre qui ne se mesure qu’en longueur,

c’est-à-dire nombre premier. I, vi, 36.

ἐραπτομένη (γραμμή), ligne tangente.

ίσχις ἑσός (ἀρθομός), nombre également égal ou carré. I, xi, 42.

κυκλοευκόν, ὁνος, ὅ, canon harmonique : instrument à une ou deux cor-
des sonores, servant à démontrer les lois numériques des sons.

II, xxxv, 142.

κατακύκλωσις, ἐως, ἦ, insertion de moyens entre deux termes, divi-
sion d’une corde sonore en petites parties.

κυκλοευκόν, ἐως, ἦ, nombre circulaire : nombre dont les puissan-
ces ont la même terminaison que lui. I, xxiv, 64.

λείμμα, ἐπών, τό, limma : excès de la quarte sur le double ton,
c’est-à-dire 4/3 : (9/8)², intervalle un peu moindre que le demi-
ton. II, xiv, 106; xv, 112; xxxiv, 140.

μεσότης, τος, ἦ, médiété : proportion formée de trois nombres,
telle que l’excès du premier sur le second est à l’excès du second sur
le troisième, comme le premier est à lui-même, au second
ou au troisième. II, l, 174; liv, 186.

μήκος, εος-ους, τό, longitude. III, passim.

μοίρα, ἦ, degré d’une circonférence généralement divisée en
360 parties égales.

μηχανοσφαίροσις, ἦ, construction de sphères artificielles. III,
xxxv, 290.

ὁμάλλος, ἦ, ὅν, uniforme : ὁμάλλη κήνης, mouvement uniforme, c’est-
à-dire dans lequel les espaces parcourus en temps égaux sont
égaux.

ὁμοιοί (Ἀρθομοί), nombres semblables. I, xxii, 60.

παριθαλλον, diviser un nombre par un autre. II, xli, 194.

παραθολή, ἦ, division d’un nombre par un autre.

παρακατολή, ἦ, lever simultané (en parlant de plusieurs astres).

III, xli, 324.

περιοχή, ἦ, produit de plusieurs nombres. I, viii, 40.

πλάτος, εος-ους, τό, quotient : τό πλάτος ἦ παραθολή, le quotient de
la division. II, lxvi, 194.

πλάτος, εος-ους, τό, latitude. III, passim.

πλευρά, ἦ, facteur, racine carrée ou cubique.

 INDEX

πλωθίς, ἱδος, ἴ, plinthe (carreau), parallélépipède rectangle qui a deux côtés égaux et le troisième plus petit que chacun des deux autres, I, xxix, 70.

πολικακέσικεςκεράς, ἵ, polycéphale, rapport de la forme fractionnaire \(a + \frac{m}{m+n} \), II, xxvi, 126.

πολικακέσικεςκόρος, ἵ, polycéphale, rapport de la forme \(a + \frac{1}{m} \), II, xxvi, 126.

* πολυσεaría, ἴ, assemblage de sphères. III, xli, 326.

προήγερες, εως, ἴ, mouvement d'une planète en avant, c'est-à-dire vers les signes qui passent avant elle au méridien. C'est le mouvement qu'on nomme maintenant rétrogradation, le mouvement direct d'une planète étant contraire au mouvement diurne.

προγούμενα (σημεῖα), points précédents : points qui passent avant un astre au méridien. Eiς τὰ προγούμενα, vers l'occident. III, passim.

προμήκης (ἀριθμός), nombre proméche, produit de deux nombres différents, c'est-à-dire de la forme \(m (m+n) \). I, xvii, 50.

προσακραζονομη (γόνος), prosalambanomène, corde additionnelle de la lyre, donnant le son le plus grave du système parfait.

σείρη, τιμω, ἴ, planète : « Platon dit que sur les cercles sont assis des sirènes ; c'est ainsi que quelques-uns désignent les planètes elles-mêmes du mot σείραξαν, briller. » III, xvi, 238.

σείραξα, brûler, briller. Id.

σείριος (ἀστήρ), étoile ou planète remarquable par son éclat.

τεματερᾶς, κατὰ τυμβ., par quelque effet qui est une conséquence.

III, passim.

συμμηκτικά, ἴ, 6ν, mensuel, de chaque mois. III, xxxviii, 344.

σύνθες, s.-ent. ἄριθμος, somme : καὶ τῶν γενόμενον παρελθισέν παρὰ τῶν συνθεσέων ἐκ τῶν ἄκρων. Il faut diviser le produit par la somme des extrêmes. II, lxi, 496.

σφαίροειδής (ἀριθμός), nombre sphérique : nombre dont les puissances ont la même terminaison que lui. I, xxiv, 64.

τετράχορον, τά, tétracorde, système de quatre cordes ou de quatre sons qui formait la base de la musique grecque. Les deux cordes extrêmes sonnaient la quarte; on les appelait immuables ou fixes, parce que leur accord ne changeait jamais. Les deux cordes intermédiaires étaient appelées mobiles ou changeantes,
parce qu'elles recevaient différents degrés de tension suivant le genre. Les sons, en montant, correspondaient, dans le genre diatonique, à \textit{mi} fa sol la, dans le chromatique, à \textit{mi} fa fa dieze la, et dans l'enharmonique, à \textit{mi} mi quart de ton fa la.

\textit{γριγμιτονικιόν}, ι, ον, d'un intervalle de trihémiton, c'est-à-dire d'un ton et demi ou trois demi-tons. III, xv, 230.

\textit{ὑπεπιμερής}, ι, hypépimère, rapport inverse du rapport épimère. II, xxv, 126.

\textit{ὑπεπιτέταρτος}, ι, sous-sesquiquarte, rapport inverse de celui de 3 à 4, c'est-à-dire rapport de 4 à 5, égal à 4/5 ou 1 — 1/5.

\textit{ὑπεπιτετραπόδος}, ι, sous-sesquiquarte, rapport inverse de celui de 4 à 3, c'est-à-dire rapport de 3 à 4, égal à 3/4 ou 1 — 1/4.

\textit{ὑπεπιπάγοδος}, ι, sous-sesquioctave, rapport inverse de celui de 9 à 8, c'est-à-dire rapport de 8 à 9 égal à 8/9 ou 1 — 1/9.

\textit{ὑπερτέλειος}, (ἁρμόδιος), nombre abondant : nombre dont la somme des parties aliquotes est plus grande que le nombre lui-même. I, xxxii, 74.

\textit{ὑπόλειψις}, οὐς, οὖ, abandon apparent d'une planète dans le mouvement diurne apparent de l'univers d'orient en occident, et par conséquent mouvement vers l'orient : la planète est en quelque sorte laissée en arrière, \textit{ὑπολέιπται}. III, passim.

\textit{ὑπεμοίλιος}, ι, sous-sesquialtère, rapport inverse de celui de 3 à 2, c'est-à-dire rapport de 2 à 3 ou 2/3 égal à 1 — 1/3.

\textit{χλοικτικοσωκοντακλασίων}, ι, οὐ, 1880 fois. III, xxxix, 318.

\textit{χρωματικός}, ι, οὐ, \textit{ἁρμονία}, harmonie chromatique qui procède, dans chaque tétracorde, en allant de l'aigu au grave, par un trihémiton (intervalle non divisé d'un ton et demi), puis deux demi-tons. II, x, 92.
INDEX DES MOTS FRANÇAIS

Traduits du texte de Théon, qu'on ne trouve pas dans les dictionnaires.
— Les mots qui manquent au Dictionnaire de la langue française de Littré (éd. Hachette) sont précédés d'une étoile (*).

* Antiphonie, ἀντιφωνία (voix contre voix), accord de deux voix à l'octave ou à la double octave.
* Bomisque, βομίσκος (petit autel), parallélépipède rectangle dont les trois côtés sont inégaux.
* Dadouchie, δαδούχια (de δάδος torche, ἐχω avoir) procession aux flambeaux : l'une des cérémonies de l'initiation aux mystères.
* Déficient, δεфициенς, ἀληθῆς. Nombre () : nombre dont la somme des parties aliquotes est moindre que le nombre lui-même.
* Diagramme, διάγραμμα, ἀπος, τό, tableau ou modèle présentant l'étendue générale de tous les sons d'un système.
* Diésis, δίεσις, le plus petit intervalle dans chaque genre : par conséquent, quart de ton dans le genre enharmonique et demi-ton dans les deux autres (le diatonique et le chromatique).
* Diton, δίτονος, intervalle de deux tons non divisé.
* Dicéde, δικεσίς, ἱδος (poutrelle), parallélépipède rectangle ayant deux côtés égaux et le troisième plus grand.
* Épimère, ἐπιμέρης. Rapport () : rapport de la forme 1 + \(\frac{m}{m+n} \).
* Épitrite, ἐπιτρίτους, ou sesquitierce. Rapport () : rapport de 4 à 3.
 Il mesure la consonance de quarte.
* Euthymétrique, εὐθυμετρικός. Nombre () : nombre qui se mesure en longueur seulement, c'est-à-dire nombre premier.
* Hémiole, ἕμιολος, ou sesquialtère : rapport de 3 à 2. Il mesure la consonance de quinte.

(*) Pour mieux comprendre l'explication de quelques termes relatifs à la musique, on peut voir la note XII, p. 343, sur le système musical parfait formé de deux octaves, et surtout le tableau qui termine cette note.
• Hétéromèque, ἥτερομοήτης. Nombre () produit de deux facteurs qui diffèrent d’une unité.

• Hiérophantie, ἱεροφαντία (de ἱερός sacré, et φανέροι révéler) : explication des mystères, l’une des cérémonies de l’initiation.

Hyraphe, ὑπάτη, sous-entendu γραφή. Tétracorde des () : le plus grave des tetracordes du système parfait. L’() des () était la plus basse corde du tétracorde des (), elle était plus élevée d’un ton que la proslambanomène. L’() des mèses était la plus grave du tétracorde des mèses et servait aussi de finale aiguë au tétracorde des ().

• Hygémèbre, ὑπερμερής : rapport inverse du rapport épimèbre.

• Hyperbolée, ὑπερβολίας. Tétracorde des () : le plus aigu des tetracordes du système parfait.

• Hypo-polyèmèbre, ὑποπολυπλασιαμερής, rapport inverse du rapport polyèmèbre.

• Lichane λίχανς, corde indicatrice du genre (diatonique, chromatique ou enharmonique). () des hypates : c’est l’hyperhy¬pate. () des mèses : corde au-dessous de la mèse.

• Limna, λιμνα, στοι, τό, excès de la quarte sur le double ton.

• Médité, medietas, μεσότης, proportion formée de trois nombres, telle que l’excès du premier sur le second est à l’excès du second sur le troisième, comme le premier est à lui-même, au second ou au troisième, ou comme le second est au troisième, ou inversement.

• Mèse, μέτη, corde ainsi nommée parce que, dans le système parfait, elle est à distance d’octave des extrêmes (la pros¬lambanomène et la nète des hyperbolées).

• Multisuperpartiel, πολλαπλασιαμέροις, nombre fractionnaire de la forme \(a + \frac{1}{m} \).

• Nète, νετή, dernière corde, en montant, de chacun des deux derniers tetracordes du système parfait.

Octacorde, ὀκτάχορδον, lyre à huit cordes communément attribuée à Pythagore ; elle comprenait deux tetracordes disjoints, c’est-à-dire séparés par un ton.

Paramèse παραμίσθη, corde voisine de la mèse.

Paranète, παρανήτη, corde voisine de la nète.
Paraphonie, παραφωνία, consonance résultant, comme la quarte et la quinte, de deux sons qui ne sont ni à l’unisson ni à l’octave.

Parhypate, παράπτατη, corde voisine de l’hypate.

Plinthe, πλίνθυς (carreau), parallelepipede rectangle ayant deux côtés égaux et le troisième plus petit.

* Polyépimèbre, πολλαπλασιασμερής, nombre fractionnaire de la forme $a + \frac{m}{m+n}$.

* Promèque, προμέχυς, produit de deux nombres différents.

* Proslambanomène, προσλαμβανόμενη, corde ajoutée, rendant le son le plus grave du système parfait.

* Sesquioctave, sesquioctavus, ἑπτάγόος, un huitième en plus de l’unité, c’est-à-dire $1 + \frac{1}{8}$.

* Sesquipartiel ou superpartiel, superpartiens, ἑπταμόρφος. Rapport () : rapport contenant une partie en plus de l’unité, c’est-à-dire de la forme $1 + \frac{1}{m}$.

* Sesquiquarte, sesquiquartus, ἑπτάτεταρτος, un quart en plus de l’unité, c’est-à-dire $1 + \frac{1}{4}$.

* Sesquiquinte, ἑπταπέμπτος, un cinquième en plus de l’unité, c’est-à-dire $1 + \frac{1}{5}$.

Sesquitierce, sesquitertius, ἑπτάκτις, un tiers en plus de l’unité, c’est-à-dire $1 + \frac{1}{3}$.

* Sous-sesquioctave, ὑπατάγόος, rapport de 8 à 9 inverse du rapport sesquioctave 9/8.

* Sous-sesquipartiel, ὑπεπιμόριος, rapport inverse du rapport sesquipartiel.

* Sous-sesquiquarte, ὑπεπτάτεταρτος, rapport de 4 à 5 inverse du rapport sesquiquarte 5/4.

* Superpartiel, voy. sesquipartiel.

* Trihémiton, τριχεμίτων, intervalle d’un ton et demi non divisé.

* Trite, τρίτη, sous-entendu χορδή, troisième corde du tétracorde des hyperbolées et du tétracorde disjoint, en allant de l’aigu au grave.
ÉPILOGUE

LE NOMBRE

GÉOMÉTRIQUE

DE PLATON

(MÉMOIRE DÉFINITIF)
LE NOMBRE GÉOMÉTRIQUE

DE PLATON

I. Introduction.

La lecture des œuvres de quelques anciens auteurs grecs (Jamblique, Nicomaque de Gérase, Proclus et surtout Plutarque) nous a conduit incidemment, dès 1880, à nous occuper d’un passage des œuvres de Platon où il est question du Nombre géométrique (République, VIII, p. 546 BC). Après un premier essai infructueux, nous avons publié, en 1882, à la librairie Hachette, une solution à peu près complète du problème et nous avons annoncé que le nombre de Platon est 76 myriades, c’est-à-dire en langage moderne 760 000 (*)

Un fragment inédit du commentaire de Proclus sur le passage qui nous occupait a été publié à Berlin en 1886, dans le second volume des Anecdota varia graeca et latina, sous ce titre : Μελέτες εἰς τὸν ἐν Πολιτείᾳ λόγον τῶν Μουσῶν. Nous avons lu attentivement ce commentaire : il est tout philosophique, et nous n’y avons rien trouvé qui puisse infirmer notre solution, au contraire. Nous venons la résumer, pour la dernière fois, en y apportant quelques modifications de détail et quel-

ques renseignements tout à fait nouveaux. Nous espérons avoir éclairci les dernières difficultés. Nous ne parlons que de l'interprétation mathématique, laissant aux philosophes l'explication de la rêverie poétique de Platon.

Nous allons d'abord exposer l'état de la question.

II. Exposition du sujet.

Les anciens philosophes nommaient grande année, ou année parfaite, l'espace de temps après lequel les astres — qu'ils connaissaient — devaient se retrouver aux mêmes points du ciel. « Le nombre parfait du temps est rempli, dit Platon dans le Timée (p. 39 D), la grande année parfaite est complète, lorsque les huit révolutions de vitesses différentes, venant à s'achever ensemble, se retrouvent comme au premier point de départ. » Ces huit révolutions étaient celles de la lune, du soleil, de Mercure, de Vénus, de Mars, de Jupiter, de Saturne et des étoiles fixes. La conception de cette grande année est attribuée par Théon à Énopide de Chio. Voy. Théon, III, xl, 321.

Les philosophes croyaient aussi que l'humanité a des retours périodiques comme le monde planétaire, c'est-à-dire qu'après un certain temps, tous les événements humains, par une force invincible, doivent se reproduire dans le même ordre. Plutarque, commentant le passage précédent du Timée, dans le livre Du Destin (§ 3), s'exprime ainsi sur la grande année de l'humanité : « Dans cet espace de temps qui est déterminé et que perçoit notre intelligence, ce qui, au ciel et sur la terre, subsiste en vertu d'une nécessité primordiale, sera constitué dans le même état et de nouveau toutes choses seront exactement rétablies selon leurs anciennes conditions.... Supposons, afin de rendre la chose plus claire en ce qui nous regarde, que ce soit par l'effet d'une disposition céleste que je vous écris en ce moment ces lignes et que vous faites ce que
vous vous trouvez à faire à cette heure, eh bien ! quand sera revenue la même cause, avec elle reviendront les mêmes effets, et nous reparaîtrons pour accomplir les mêmes actes. Ainsi il en sera également pour tous les hommes. »

Dans cet ordre d'idées, les deux périodes ne formaient qu'une seule et même grande année.

Platon n'a pas désigné le nombre qui, dans sa pensée, représentait la grande année humaine et qui, d'après lui, exerçait une influence sur les mariages et sur les naissances. Il le voile en quelque sorte et fait intervenir les Muses qui, « moitié sérieusement, moitié en badinant », indiquent la suite des opérations à faire pour l'obtenir. On était persuadé que la science doit se couvrir d'un voile qui donne plus d'attraits aux trésors qu'il recèle (*) et il pouvait y avoir quelque inconvénient à enseigner ouvertement certaine doctrine. Il y avait d'ailleurs alors deux enseignements, l'un exotérique ou extérieur, à l'usage de la foule, l'autre esotérique ou intérieur professé aux seuls adeptes et qui ne leur était communiqué qu'orale-ment. Il est très probable que la valeur du nombre géométrique n'a été révélée qu'aux seuls adeptes.

III. Texte du « lieu ».

Opinions de Schleiermacher et de Cousin.

Voici le texte du lieu, d'après l'édition de Platon publiée par les soins d'Ernest Schneider dans la collection Didot. Nous respectons scrupuleusement ce texte qui nous paraît avoir été bien inutilement tourmenté par plusieurs commentateurs.

(*) Cf. J.-J. Barthélémy, Voyage du jeune Anacharsis en Grèce, ch. lxxv; Entretien sur l'Institut de Pythagore:
Dans ce passage, il est question de deux périodes, l'une relative au divin engendré (les astres), l'autre relative à l'humain engendré. Platon ne s'occupe que de la seconde période.

La phrase qui la définit devait être claire pour les contemporains de Platon, car le lieu n’est commenté scientifiquement, d’une manière suivie, par aucun des auteurs anciens qui en font mention : ils se bornent en général à philosopher sur le passage. Aristote en a paraphrasé les deux mots τρις αὐξηθείς. « Dans la République, dit-il, Socrate parle des révolutions, mais il n’en parle pas très bien ;... à son avis, elles viennent de ce que rien ne dure et que tout change périodiquement. Il ajoute que la base des révolutions périodiques est le fond épitrite joint à cinq (c’est-à-dire 4/3 + 3 ou 19/3) qui offre deux harmonies, quand le nombre décrit, qui est un produit, a été obtenu (mot à mot, quand le nombre de cette description est devenu solide) : ‘Et de τη Πολιτεία λέγεται μέν περί τῶν μεταβολῶν ύπό τοῦ Σωκράτους, οὐ μέντοι λέγεται καλῶς,... ψηλὸ γὰρ αὐτῶν εἶναι τὸ μὴ μένειν μηθὲν ἄλλῃ ἐν τοῖς περίοδοι μεταβάλλειν, ἀρχὴν δ’ εἶναι τοῦτον ὅν ἐπίτριτοσ ὑπῆρθην πεμπτάδι συζυγεῖς δύο ἀριμνίας παρέχεται, λέγων ὅτιν ὁ τοῦ δια-
γράμματος ἀριθμὸς τοῦτο γένηται στερεός,... » (La Politique, V, x, 4.)

Parmi les commentateurs modernes, depuis le xvi° siècle jusqu’à nos jours, les uns, après avoir trouvé un nombre qui satisfait à l’explication de quelques termes du texte, sont prisonniers dans le cercle de leur pensée et torturent le sens
des autres termes. Les autres refusent tout sens au passage ; leur conclusion se résume généralement ainsi : _atque de sensu quidem desperandum videtur._

Parmi les philosophes modernes qui n'ont pas désespéré, nous citerons Schleiermacher et Cousin.

Schleiermacher, célèbre philologue allemand (1768-1834), déclare, dans ses notes sur la _République_, que c'est l'impossibilité d'entendre ce passage et l'espérance toujours renouvelée et toujours trompée de finir par l'entendre, avec le secours des autres et par ses propres efforts souvent renouvelés, qui lui ont fait interrompre pendant douze années entières sa traduction de Platon ('). « Toujours est-il certain, dit-il, que Platon a choisi un nombre remarquable par sa construction, au moyen duquel il pouvait indiquer aux connaisseurs quelque chose qu'il préférerait ne pas énoncer directement ; car je ne puis en aucune façon admettre qu'il ait voulu tourmenter ses lecteurs et faire en sorte qu'après avoir pris beaucoup de peine, ils fussent condamnés à rester à la fin dans l'embarras. J'aimerais bien mieux croire qu'avec notre connaissance passablement défectueuse de la langue mathématique des Grecs, nous ne sommes peut-être pas en état d'arriver ici à quelque chose de certain. » Après avoir discuté la question — sans succès — jusqu'à τολεωτί, il termine ainsi : « Quant au reste, je n'y entends rien et ne veux point passer pour y rien entendre. Ainsi, que ce problème demeure encore réservé à la bonne fortune de quelqu'un autre ; pour moi, je ne puis le considérer comme résolu par les travaux tentés jusqu'ici ; et je me trouverais heureux si les soupçons que je viens d'énoncer donnent lieu à quelque nouvelle tentative de la part d'un connaisseur. » (**)

Nous donnons plus loin (IX, viii) la traduction française littérale de la version allemande de Schleiermacher.

(*) _Platons Werke_, Berlin, 1817-28 ; œuvre inachevée.
Victor Cousin (1792-1867) n'a pas traduit le passage, n'y trouvant pas un sens qui le satisfasse ; il renvoie le lecteur à une note dont voici le début : « Ce qui me confond le plus dans cette phrase, d'une obscurité devenue proverbiale, c'est qu'elle n'ait pas plus tourmenté les philosophes grecs, venus après Platon, et qu'ils la citent, la critiquent, la commentent, en n'ayant pas l'air de n'y rien comprendre. » Puis, s'adressant à ceux qui pensent se tirer d'affaire en affirmant qu'il y a là quelque extravagance mystique et que Platon ne se comprenait pas lui-même, il dit : « Je déclare humblement que cette manière d'interpréter les passages difficiles des grands penseurs de l'antiquité est au-dessus de ma portée, et je demeure très convaincu qu'une phrase écrite par Platon et commentée par Aristote, est fort intelligible en elle-même, alors même qu'elle ne le serait plus pour nous... La langue de la géométrie ancienne ne nous est point assez bien connue pour que nous ayons une idée exacte de la valeur précise de tous les mots techniques de la phrase de Platon et du résumé d'Aristote..... Il n'appartient donc qu'à des hommes qui ont fait une étude particulière de la géométrie ancienne d'aborder la présente difficulté avec quelque chance de succès ; et, comme je ne suis nullement dans ce cas, l'inutilité de mes efforts n'est pas une raison pour moi de désespérer qu'avec le temps et une connaissance plus approfondie de la géométrie des Grecs, de plus habiles ne viennent à bout de résoudre ce nœud embarrassé (*) »

IV. Raisons qui ont pu déterminer le choix de Platon.

Avant de traduire mot à mot le langage des Muses, nous allons essayer de trouver certains éléments probables du nombre mystérieux, afin de préparer le lecteur.

(*) Œuvres de Platon, traduites par Victor Cousin, t. X, même note.
Tout en badinant, Platon ne peut avoir pris au hasard les éléments de ce nombre. Il était philosophe et géomètre. Pour lui, la grande année embrassant la totalité des événements humains, est nécessairement un multiple commun des périodes inférieures — réelles ou hypothétiques — connues de son temps et se rapportant à la vie humaine. Il n’est pas admissible que cette vérité mathématique ait été méconnue du philosophe qui affirmait que les connaissances géométriques étaient indispensables à son auditoire et avait inscrit sur la porte de son école :

« Que nul n’entre ici s’il n’est géomètre. »

« Μη δεις ἄγεωμέτρητος εἰσίτω. »

Or d’abord, dans le Phèdre (p. 248 E), Platon qui croyait à la transmigration des âmes, s’exprime ainsi : « L’âme qui a vécu selon la justice échange sa condition contre une condition meilleure ; celle qui a vécu dans l’injustice échange la sienne contre une plus malheureuse, et aucune âme ne revient au point de départ qu’après dix mille ans. » Ainsi le retour de chaque âme au lieu de départ se fait, d’après Platon, au bout de 10 000 années. Le nombre mystérieux est donc certainement un multiple de 10 000.

De plus, quand Platon vint au monde (430 ans avant J.-C.), l’athénien Méton venait de découvrir qu’après 19 ans, qui correspondent à 235 lunaisons, le soleil et la lune se retrouvent ensemble aux mêmes points du ciel ; donc la grande année astronomique devait, pour Platon, être un multiple de 19 ; mais les mêmes événements humains devant se reproduire dans les mêmes conditions astronomiques, il devait croire que la grande année de l’humanité est un multiple de la grande année astronomique (*) et par conséquent un multiple de 19 ; et, comme elle est déjà, sans aucun doute, un multiple de 10 000, elle est un multiple de $19 \times 10 000$ ou

19 myriades, donc le nombre de Platon doit être 19 myriades, ou 2 fois 19 myriades, ou 3 fois, ou 4 fois,... c'est-à-dire 19 myriades, ou 38 myriades, ou 57 myriades, ou 76 myriades,... La traduction littérale du texte nous apprend que c'est 76 myriades (*).

Pythagore avait découvert que, dans tout triangle rectangle, le carré de l'hypoténuse égale la somme des carrés des deux autres côtés; et il avait étudié spécialement le triangle rectangle dont les côtés sont 3, 4 et 5. Or, d'après le témoignage de Plutarque et d'Aristide Quintilien, ce triangle entre dans la formation du nombre de Platon. Plutarque l'appelle « le plus beau des triangles rectangles », et il ajoute : « c'est de ce triangle que Platon semble s'être servi dans la République pour former le nombre nuptial : ον καὶ Πλάτων ἐν τῇ Πολιτείᾳ δοξαὶ τοῦτῳ προσκεχαζομαι τῷ γαμήλιον διάγραμμα συντάττων. » (Sur Isis et Osiris, 56.) Cette citation montre que l'interprétation complète du lieu de Platon était probablement inconnue de Plutarque.

Le témoignage d'Aristide Quintilien est plus précis et plus affirmatif. On lit, en effet, au livre III de son traité Sur la musique : « Les côtés de ce triangle étant 3, 4, 5, comme je l'ai dit, si on en fait la somme on obtient le nombre 12 ;... les côtés de l'angle droit sont dans le rapport épitrite (c'est-à-dire 4/3), et c'est du fond de l'épitrite ajouté à 5 (c'est-à-dire 4/3 + 5) que parle Platon (dans la République) : τοῦ δὲ τοιούτου τριγώνου συνεστῶτος, ὡς ἔφη, ἐὰν τριῶν, καὶ τεσσάρων, καὶ πέντε, εἰ τὰς πλευρὰς ἀριθμητικῶς συνθεῖμεν, ἢ τῶν δώδεκα πληροῦται ποσότης... εἰ δὲ τὴν ὀρθὴν περιέχουσιν ἐκλοῦσι τὸν ἐπίτριτον, τοῦτον δὴ καὶ Πλάτων φησίν ἐπίτριτον πωμένα πεντάκοντα συζυγίνετα (**). »

Aristide Quintilien nous apprend donc, comme Aristote,

(*) Cette remarque, à savoir qu'on peut, pour ainsi dire, affirmer a priori que le nombre de Platon est un multiple de 19 myriades, est de M. Auguste Bercault. Voy. la fin de la préface de notre traduction de Théon.

(**) Antiquœ musicae auctores septem, éd. de Meybaun, t. II, pp. 151-152.
que la somme $4/3 + 5$, ou $19/3$, entre dans la formation du nombre géométrique. Remarquons que le cycle de Méton est un multiple de cette somme, il la contient exactement 3 fois.

Pythagore a fait une découverte encore plus éclatante que la propriété du triangle rectangle : Si on tend une corde sonore, et si on fait vibrer successivement la corde entière, puis la moitié, les deux tiers et les trois quarts, on a, quel que soit le son rendu par la corde entière, avec la moitié l’octave, avec les deux tiers la quinte et avec les trois quarts la quarte. Les longueurs de corde qui donnent l’octave, la quinte et la quarte, sont donc comme 1 est à 2 pour l’octave, comme 2 est à 3 pour la quinte et comme 3 est à 4 pour la quarte. « Pythagore, dit Diogène Laerté, découvrit le rapport numérique des sons rendus par une seule corde : τὸν τὸ κυκλών τὸν ἐκ μιᾶς γραμμῆς εὐρέων (*)» (VIII, 12).

L’importance de cette première découverte d’une loi mathématique fit donner aux nombres 1, 2, 3, 4 le nom de sacré quaternaire, et comme on avait déjà remarqué la régularité périodique du mouvement des corps célestes, Pythagore, dominant par l’idée d’une harmonie universelle, enseigna, non pas que tout est nombre, mais que tout est ordonné suivant les nombres : ὁ δὲ (Πυθαγόρας) οὐκ ἐξ ἄριθμοῦ κατά δὲ ἄριθμον ἔλεγεν πάντα γίγνεσθαι. (Stobée, Eclogae physicae, I, 11, 13.)

De plus, la somme des termes du sacré quaternaire 1, 2, 3, 4, étant égale à 10, ce nombre 10 devint le plus parfait de

Que Pythagore ait découvert la loi mathématique des consonances d’octave, de quinte et de quarte, en pesant d’abord les différents cordes, avec lesquels les ouvriers d’une forge battaient un fer chaud — ou en tendant une corde avec des poids différents — ou en mesurant les longueurs successives d’une corde également tendue..., peu importe. Il est certain qu’il a découvert la loi mathématique des sons ; cela résulte du témoignage des auteurs que nous venons de citer. Le serment des Pythagoriciens — dont nous allons parler — en est une nouvelle preuve.
tous. La centaine, carré de 10, était une harmonie parfaite ;
et la myriade, ou 10 000, carré de 100, était une harmonie
supérieure. On lit dans le commentaire de Proclus sur le lan-
gage des muses : « La myriade qui est une harmonie supé-
rieure, produite par la centaine multipliée par elle-même
(mot à mot, produite par la monade élevée au troisième rang,
revenant sur elle-même), marque le retour de l’âme qui a
achévé son œuvre et qui revient au point de départ, comme
le dit Socrate dans Phèdre : « ἡ μὲν γε μυριάς, ἥτις ἐστὶν ἁρμονία
χρείττων, ἐκ τῆς τριῳδουμένης (*) γενομένη μονάδος ἐπιστραφέτις
εἰς ἑκατόν, ἀποκαταστατική τις ἑστὶν καὶ τελεσθουργῆς τῆς ὑψήλης,
ἐπεκάνγουσα πεντάτευχον εἰς τὴν ὁλησθήν πάλιν θέν ᾧ κεί δεύρο, καθάπερ
φησίν ὁ ἐν Φιλόδρῳ Σωκράτης. » (Anecdota graeca et latina,
vol. II, p. 25, ligne 9-12.)

Les Pythagoriciens jurèrent par l'Auteur de la découverte
dont le quaternaire 1, 2, 3, 4 est le symbole. La formule de
leur serment nous a été conservée dans les vers dorés de
Pythagore : « J'en jure par Celui qui a transmis dans nos âmes
le sacré quaternaire, source de la nature éternelle (**) ». Celui
qui a transmis..., c'est Pythagore. « Par respect, dit Jambli-
que, ils ne nommaient pas Pythagore, parce qu'ils étaient
très réservés à appeler les dieux par leurs noms; mais ils le
nommaient assez clairement, en désignant l'auteur de la dé-

(*) Cf. Jamblique, In Nicomachi Arithmeticam : p. 124 de l'éd. de Samuel
Tennusius, Arnheim, 1668, in-4°, on lit : « ὁ ρ' ἀριθμὸς... μονάς τριῳδουμένη καλου-
μενος πρὸς τῶν Πυθαγόρειων, ὅπερ καὶ ἡ δεκαίς διετριβωμένη μονάς, καὶ χιλίας
tριῳδουμένη μονάς. La centaine est nommée par les Pythagoriciens unité du
troisième rang, comme la dizaine est l'unité du second rang et le mille l'unité
du quatrième rang. » Ces deux passages de Proclus et de Jamblique se rap-
portent évidemment à la vraie Table de Pythagore qui consistait en un tableau
formé de colonnes verticales : les neuf premiers nombres figurés par les carac-
tères α β γ δ ε ζ η θ représentaient des unités, des dizaines, des centaines,
des mille, des myriades..., suivant qu'ils étaient inscrits dans la 1ère colonne,
la 2e, la 3e, la 4e ou la 5e... — C'est notre système de numération, moins le
zéro dont l'invention devait amener la suppression des colonnes, devenues
dés lors inutiles.

(**) Vers 47 et 48. Voy. aussi Stobée, Eclogae Physicae, I, xi, 12 et Théon,
II, xxxviii. — Les vers dorés ne sont pas de Pythagore, mais ils expriment
les traditions de son enseignement.
couverte du quaternaire, διὰ δὲ τῆς εὐρέσεως τῆς τετρακτύος ὑλούντων τὸν ἀνθράκτιον. » Hiérocles, commentant le serment, dit que le quaternaire est le principe de l'arrangement éternel du monde, καὶ τὴν τετράδα τηρήν τῆς ἁίδου διακοσμήσεως (**)». Il dit encore que « de toutes les connaissances (enseignées par Pythagore) la plus merveilleuse est celle du quaternaire véritable demiurge, μέγιστον δὲ τούτων (μαθημάτων) ἢ τῆς δημιουργικῆς τετρακτύος γνώσεως (***) ». Citons encore le témoignage de Sextus Empiricus. Après avoir donné la formule du serment, il ajoute : « Celui qui a transmis dans nos âmes, c’est Pythagore ; ils (les Pythagoriens) le considéraient comme un dieu. Quant au quaternaire, c’est l’ensemble des quatre premiers nombres dont la somme constitue le nombre le plus parfait dix, car on a $4 + 2 + 3 + 4 = 10$. C’est ce nombre qui est le premier quaternaire. Τῶν μὲν παραδόντα λέγοντες Πυθαγόραν, τούτων γὰρ ἔθεσαν, τετρακτυν δὲ ἀριθμὸν τινα, δὲ ἐκ τεσσάρων τῶν πρώτων ἀριθμῶν τυχείμενος, τὸν τελείωταν ἀπηρτίζεν, ὡσπερ τὸν δέκα : ἐν γὰρ καὶ ὅσο καὶ τρία καὶ τέσσαρα, δέκα γινεται : ἐστι δὲ οὗτος ἀριθμὸς πρώτη τετρακτύος (***) ». On comprend l’hommage rendu par les Pythagoriens à la découverte du maître qu’ils considéraient comme un dieu. Il faut, en effet, traverser toute l’antiquité et tout le moyen âge et arriver à Galilée et à Descartes pour voir de nouvelles découvertes dans les sciences physiques. Et Pythagore jugeait sans doute lui-même que la loi numérique des consonances contenues dans l’octave était la plus glorieuse de ses découvertes, car « on raconte que mourant, il recommanda à ses amis l’usage du moncorde : διὸ καὶ Πυθαγόραν φασί, τὴν ἐντεῦθεν ἀπαλλαγὴν πουσύμενον, μονοχορδίζειν τοῖς ἑκα- (*) Jamblique, Vie de Pythagore, xxvii, 150.
(***) Id., p. 466.
Le divin engendré, — ce sont les astres. Théon les appelle souvent θεῖα. Le soleil, la lune et tous les autres astres sont des dieux, dit aussi Diogène Laertè : ἦλιον τε καὶ σελήνην καὶ τοὺς ἀλλούς ἀστέρας εἶναι θεοὺς (**). Etc...

B) Une période qu’un nombre parfait embrasse, c’est la grande année ou grande révolution, marquée par le retour du soleil, de la lune et des planètes à leurs points de départ. Elle doit comprendre un nombre exact de révolutions de

(**) Diogène Laertè, VIII, Pythagore, § 27.
chacun de ces astres. Le nombre qui l’exprime est parfait parce qu’il a la propriété d’embrasser la période (*)

C) Mais pour l’humain il y a un premier nombre dans lequel des accroissements générateurs et dominés, comprenant trois intervalles et quatre termes, —δύναται: signifie pouvoir, être capable de, et δυνατεύων dominer, gouverner. Le passif δυνατεύομαι est évidemment opposé au moyen δυναται, donc il doit exprimer le contraire. Les deux participes δυνάμε- ναι et δυνατούσιναι signifient donc produisant et produits, générateurs et engendrés. Les accroissements ναξίς sont donc certainement les termes d’une progression; car dans les progressions chaque terme, augmenté de la raison ou multiplié par la raison, produit le terme suivant, et il est produit par le terme précédent, augmenté de la raison ou multiplié par la raison (**).

D) De ceux qui donnent des choses semblables ou dissemblables....

(**) D’après Alexandre d’Aphrodias, l’hypoténuse du triangle rectangle de Pythagore est appelée δυναμήν, parce que son carré est égal à la somme des carrés des côtés, et les côtés sont appelés δυνατεύομαι. Le carré de l’hypoténuse produisant les carrés des deux autres côtés, il n’y a aucune contradiction entre le sens attribué par Alexandre à δυναμήν, et δυνατεύομαι: et le sens plus général « produisant et produits » que nous leur attribuons. D’ailleurs, l’expression τῶν μὲν δυναμένων τῶν δὲ δυνατεύομένων se trouve dans un passage de Proclus In Euclidem où il fait allusion au langage des Muses. « Il y a, dit-il, des figures qu’on appelle semblables et d’autres qu’on appelle dissemblables, et de même il y a des nombres semblables et des nombres dissemblables; et tout ce qui concerne les puissances convient de même à toutes les études tant de nombres produisant que de nombre produits. Socrate, dans la République, a prêté aux Muses à ce sujet un langage plein d’élevation: καὶ γὰρ σχέσεις τὰ μὲν ἡμοῖς τᾶ δὲ ἀνομία λέγωμεν καὶ ἀριθμοὶ ὡστέως τοῖς μὲν ὁμοίους τοὺς δὲ ἀνομοίους, καὶ ὅτι κατὰ τὰς δυνάμεις ἀνισορροίνεται πάσιν ἡμοῖς προστίθηκε μικρότεροί τῶν μὲν δυναμένων τῶν δὲ δυνατεύομένων. δὲ δι’ αὐτὰ καὶ ἐν Πολι- τείᾳ Σωκράτης ταῖς Μούσαις ψυχολογουμέναις ἀναθηκεν... (Prologues, I, p. 8, lignes 10-16 de l’éd. Teubner, Leipzig, 1873.) Il s’agit évidemment, dans cette phrase de Proclus, de nombres en progression, et non de l’hypoténuse et des côtés du triangle de Pythagore comme paraît le croire Zeller. (La philosophie des Grecs, trad. par Bouloux, t. I, p. 384, n. 2.)
Le sacré quaternaire 1, 2, 3, 4, dont la somme des termes est 10, satisfait, comme nous allons le voir, à toutes les conditions du langage des Muses. Les termes sont, en effet, générateurs et engendrés : chacun d’eux produit le suivant par l’addition d’une unité et est produit par le précédent augmenté d’une unité. Ils donnent trois intervalles 2, 3/2, 4/3, qui représentent les consonances d’octave, de quinte et de quarte. Ils sont croissants ou décroissants, car la progression peut s’énoncer 1, 2, 3, 4 ou 4, 3, 2, 1 à volonté. Ils donnent des choses semblables ou dissemblables, car si l’on a une corde sonore donnant un son quelconque, et si l’on prend deux cordes identiques d’ailleurs et également tendues, mais l’une de longueur double et l’autre de longueur quadruple, ces deux cordes donneront l’octave et la double octave du son de la première corde, c’est-à-dire des sons semblables ; et si l’on prend une corde de longueur triple, elle rendra un son qui sera la réplique de la quinte du premier son, c’est-à-dire un son dissemblable. Donc les nombres 1, 2, 3, 4, en tant que longueur des cordes qu’ils représentent dans le sacré quaternaire sont de ceux qui donnent des choses semblables ou dissemblables (†).

Enfin tous les rapports de ces nombres sont rationnels et ils ont de l’analogie, car les six intervalles différents, qu’on obtient en divisant de toutes les manières possibles les termes de deux à deux, sont 1, 4/3, 3/2, 2, 3 et 4 qui représentent l’unisson, la quarte, la quinte, l’octave, la réplique de la quinte et la double octave, c’est-à-dire des consonances musicales.

(†) Cf. Ptolémée, « les sons de hauteur différente, dit-il, sont divisés en trois classes : la première, par ordre de dignité, ἑπτὰ ἑνὲκ, est celle des homophones, ἀμφωνόν; la seconde, celle des symphonies, συμφωνόν; la troisième, celle des mélodiques, ἐμφωνόν. Car l’octave et la double octave diffèrent manifestement des autres consonances, de même que celles-ci diffèrent des mélodiques; aussi sont-elles nommées avec raison homophonies. En effet, les sons de cette espèce produits simultanément donnent à l’ouie la perception d’un son unique, tels sont ceux qui constituent l’octave et ses répliques, ὅς οἱ δὲια παύζον καὶ οἱ ἐκ πυξῶν συντεθείμενοι ». (Ptolémée, Harmoniques, 1, vi.)
La première phrase du lieu de Platon est donc une énigme, au sens précis du mot, et la solution de cette énigme est le sacré quaternaire 1, 2, 3, 4, dont la somme des termes est le nombre parfait 10, et dont les trois intervalles 2, 3/2, 4/3 mesurent, d'après la merveilleuse découverte de Pythagore, les intervalles d'octave, de quinte et de quarte. Mais cette énigme était bien facile à deviner au temps de Platon, le sacré quaternaire, qui entrait dans la formule du serment solennel des Pythagoriciens, étant dans toutes les mémoires.

VI. Traduction littérale et interprétation de la seconde phrase.

ϕιν ἐπίτροπος πυθμῆν
συζυγεῖς πεμπάδι,
παρέχομαι δύο ἀρμονίες,
τὴν μὲν ἑκάστην ἑστην,
τὴν δὲ Ἰσομήκη μὲν τῇ,
προμήκη δὲ,
ἐκτὸς μὲν ἀριθμῶν ἀπὸ
διαμέτρων ἑκάστων πεμπάδος,
θεομενον ἑκάστων ἐνός,

<διαμέτρων> ἀφόγτων δὲ
<θεομενον ἑκάστων> οὐείν,
ἐκτὸς δὲ κύδων σφέδος.
οὗτος δὲ ἀριθμὸς γεωμετρικὸς
ζύμπας,
τοιούτου κύριος,
γενέσεων ἀμεινύνον τε καὶ
γειρόνων.

desquels rapports le fond épitrite (c.-a.-d. quatre tiers).
ajouté à cinq, E)
trois fois augmenté, F)
donne deux harmonies, l'une également égale,
centautant defois, G)
l'autre de même longueur dans un sens, H)
mais allongée dans l'autre sens de cent carrés des diagonales rationnelles de cinq,
cest carrés étant diminués chacun d'une unité,
ou de cent carrés des diagonales irrationnelles, ces carrés étant diminués chacun de deux,
et de cent cubes de trois. I)
Ce nombre géométrique tout entier K)
est maître, de cette manière, des générations meilleures ou pires.
E) Desquels rapports le fond épitrite ajouté à 5. — Le fond d'un rapport est la plus simple expression de ce rapport (*); et le rapport épitrite, ou sesquitierce, est un tiers en plus de l'unité, c'est-à-dire $1 + 4/3$ ou $4/3$ (**), et en général c'est $\frac{4m}{3m}$, quel que soit m; donc le fond épitrite est $4/3$, les deux termes 3 et 4 étant premiers entre eux.

« Prenez, disent les Muses, le rapport irréductible $4/3$ parmi les intervalles des termes de la progression. » Cette condition vient confirmer que la progression est bien le quaternaire 1, 2, 3, 4, si cher aux Pythagoriciens. Il faut ajouter $4/3$ à 5, la somme égale 19/3.

F) Trois fois augmenté, donne deux harmonies — 19/3 trois fois augmenté (c'est-à-dire après trois multiplications) donne deux harmonies : soient x, y, z, les trois facteurs, la suite de l'interprétation va nous faire connaître les deux harmonies; en divisant leur somme par 19/3, on aura la valeur du produit xyz.

G) L'une également égale, cent autant de fois — c'est-à-dire l'une carrée égale à cent fois cent ou dix mille.

H) L'autre de même longueur dans un sens — donc un côté de la seconde harmonie vaut cent.

I) Mais allongée dans l'autre sens, de cent carrés des diagonales rationnelles de 5........... et de cent cubes de 3. — Une conséquence du théorème de Pythagore, c'est que le carré fait sur la diagonale d'un carré est double de ce carré. Quand le côté du carré égale 5, le carré vaut 25 et le carré de sa diagonale vaut $25 + 25 = 50$. La racine carrée de 50, c'est-à-dire la diagonale du carré de 5, ne peut être exprimée, ni à l'aide d'unités ni à l'aide de parties égales de l'unité, Platon la nomme la diagonale irrationnelle ($τ\deltaττ\tauσνς$) du carré de 5 (***).

Et le plus grand carré contenu dans 50 étant 49 dont la racine

(*) Cf. Théon, I, xxix, p. 131.
(**) L'épitrite est défini dans le commentaire de Macrobe, Sur le somne de Scipion, II, 1.
(***) Les lignes irrationnelles étaient connues de Platon; cf. les Lois, VII, p. 819, t. VIII, p. 78 de la traduction de Cousin.
est 7, Platon appelle 7 la diagonale rationnelle (*ηγον*) du carré de 5. Mais l'expression ὁ ἀπὸ ᾧθοιὸ, pour désigner le carré d'un nombre, est classique, donc ἔκκατον ἤθοιὸν ἀπὸ ἕκατερος c'est cent fois le carré des diagonales. Cent carrés des diagonales rationnelles, ces carrés étant diminués d'une unité, ou cent carrés des diagonales irrationnelles, ces carrés étant diminués de deux unités, c'est 100 fois (19 — 1) ou 100 fois (50 — 2) = 4800. C'est la première partie du facteur allongé de la seconde harmonie.

La seconde partie vaut cent cubes de 3 ou 2700.

Donc le facteur allongé de la seconde harmonie vaut 4800 + 2700 ou 7500, et puisque l'autre facteur est 100, l'harmonie elle-même vaut 7500 × 100 = 750 000.

K) Le nombre géométrique tout entier..... — Le mot ξύμπλως montre que, dans la pensée de Platon, les deux harmonies doivent être réunies en un seul nombre.

Or 10 000 + 750 000 = 760 000.

DONC LE NOMBRE DE PLATON EST 76 MYRIADES.

Mais 76 = 4 fois 19, donc le nombre géométrique peut être considéré comme un produit de trois facteurs dont l'un, 4, rappelle le sacré quaternaire, le second, 19, rappelle le cycle de Méton et le troisième, 10 000, rappelle la période que Platon assigne dans le Phèdre à la transmigration des âmes.

Les Muses nous disent que la somme (4/3 + 5) ou 19/3, trois fois multipliée, ἡς ἄμιξες donnent deux harmonies, 10 000 et 750 000, dont la somme 760 000 est le nombre géométrique. Donc par « trois fois multipliée » on ne peut entendre ni une multiplication par 3, ni une élévation au cube, car on a 19/3 × 3 = 19 et (19/3)³ = 6859/27 = 254 1/27.

Il faut entendre « après trois multiplications successives ». Soient x, y, z, les trois facteurs successifs, le produit xyz est inconnu, mais c'est la seule inconnue du problème : puisque 19/3 × xyz = 76 myriades, on aura la valeur du produit xyz en divisant 76 myriades par 19/3, ou 3 fois 76 myriades par 19, le quotient est 12 myriades. Pour trouver ensuite x,
y et z, on a une nouvelle énigme à deviner, mais elle ne paraît pas difficile. En prenant, en effet, 49 unités, au lieu de 49 tiers, on multiplie par 3 ; en prenant ensuite 76 unités, au lieu de 49 unités, on multiplie par 4 ; et en prenant enfin 76 myriades, au lieu de 76 unités, on multiplie par 10 000 ; de sorte que les trois facteurs de 12 myriades qui s’offrent naturellement à l’esprit, de préférence à d’autres, sont 3, 4 et 10 000.

La seconde phrase du lieu, depuis εἰπότεινος πωθήκη, suffit à la détermination du nombre géométrique. Cela explique pourquoi Aristote, dans son interprétation du passage, néglige ce qui précède ; et le mot στερεός exprimant un produit de trois facteurs au moins, il y a concordance entre les mots τρις αυξηθεῖς de Platon et la paraphrase d’Aristote, λέγων δεκα τοῦ διαγράμματος ἄριθμος τούτου γένηται στερεός (voy. pag. 368) : d’après Platon, le fond épitrète ajouté à 3 (c’est-à-dire 4/3 + 5) offre deux harmonies après trois multiplications successives ; et d’après Aristote, 4/3 + 5 offre deux harmonies (il va sans dire λέγων), quand le nombre décrit, qui est un produit, est obtenu.

VII. Platon a-t-il voulu être obscur ?

On dit généralement que l’obscurité du « lieu » de Platon est préméditée ; et plusieurs traducteurs évitent, disent-ils, d’être clairs, pour ne pas s’écarter entièrement de la couleur du style et de l’intention de l’auteur.

Le lieu est incontestablement obscur : la langue mathématique des Grecs était alors imparfaite, et les termes scientifiques employés par les Muses sont difficiles à interpréter ; mais il nous paraît facile d’éviter la circonstance aggravante de préméditation.

Entrons, en effet, dans la pensée de Platon. Il choisit le nombre 76 myriades, produit des nombres 4, 49 et 10 000 :
le facteur 4 représente le quaternaire pythagoricien 1, 2, 3, 4 ;
le facteur 19 représente le cycle luni-solaire de Méton, nommé
aussi nombre d’or, parce qu’on le fit graver en lettres d’or sur
des tables d’airain ; et 10 000 est, pour Platon, la période de
transmigration des âmes.

On a

\[760 000 = 10 000 + 750 000. \]

c’est-à-dire 76 myriades = 100 × 100 + 7 500 × 100

Donc le nombre de Platon offre deux harmonies, l’une carrée,
cent fois cent (την μὲν ἵστας ἰσόταχος, ἔκτων τοσσουτάχος), l’autre de
même longueur, cent (την δὲ ἴσομήκε μὲν τῆς). Le côté allongé
est 7 500. Suivons bien la pensée de Platon ; il remarque
évidemment qu’on a 75 = 3 fois 25, mais 25 = 16 + 9, puis-
que dans le triangle rectangle (de côtés 3, 4, 5) de Pytha-
gore, le carré de l’hypoténuse égale la somme des carrés des
deux autres côtés. Multiplions par 3 les deux membres de la
dernière égalité, puis par 100 les deux membres de l’égalité
résultante, on a

\[75 = 48 + 27 \text{ puis } 7 500 = 4 800 + 2 700 \]

D’une part, 2 700 égale 100 fois le cube de trois (ἔκτων δὲ
χύτων τριάκοντα). Et d’autre part,

\[4 800 = 100 	ext{ fois } (49 - 1) = 100 	ext{ fois } (50 - 2) \]

mais 49 est le carré de la diagonale rationnelle 7 du carré
de 5, et 50 est le carré de la diagonale irrationnelle (voy.
p. 380) ; donc 4 800 égale cent carrés des diagonales ra-
tionnelles de 5, ces carrés étant diminués d’une unité (ἔκτων
μὲν ἄρθρων ἀπὸ διαμέτρων ῥητῶν πεμτάκος, διαμεμένων ἐνὸς ἕκα-
τον), ou cent carrés des diagonales irrationnelles de 5, ces
carrés étant diminués de deux unités (ἀρχηγῶν δὲ, δυεῖν).

Il ne faudrait pas croire que Platon, en indiquant deux
modes de formation du nombre 4 800, ait voulu être obscur.
Il donne le premier mode 100 fois (49 - 1), alors que le second
100 fois (50 - 2) eût suffi, afin de faire figurer le nombre 7
parmi les éléments du nombre géométrique qui ne le com-
prend pas comme facteur, puisqu’on a
76 myriades $= 4 \times 19 \times 10000$.

Le culte des *sept* planètes (la lune, le soleil, Mercure, Vénus, Mars, Jupiter et Saturne) est de la plus haute antiquité. Les hommes, persuadés que le mouvement n’appartient qu’aux êtres vivants, pensèrent que les astres qui se meuvent eux-mêmes dans l'espèce étaient animés par des intelligences supérieures, et ils les adorèrent comme des divinités. Et c’est du nombre des sept planètes, considérées comme des dieux, que naquit la superstition des nations pour le septenaire. Voilà pourquoi Platon se croit obligé de faire entrer ce nombre sacré-saint dans la formation du nombre géométrique.

Il chercha en outre probablement s’il existait une relation simple entre le nombre 19 et les côtés 3, 4, 5 du triangle de Pythagore, et il trouva que 19 est le triple de $(4/3 + 3)$; 4/3, rapport des côtés de l’angle droit du triangle de Pythagore, représente en même temps l’intervalle de quarte, et notons que la quarte était la consonance souveraine, c’était d’elle que décollaient les autres : κυριωτάτη δὲ πατῶν ἡ διὰ τεσσάρων συμφωνία, ἐκ γὰρ ταύτης καὶ αἱ λοιπαὶ εὐρίσκονται (*). Les canonistes définissaient, en effet, la quinte l’excès de l’octave sur la quarte, et le ton l’excès de la quinte sur la quarte.

Or on sait quelle importance Platon attribuait à la musique dans l’éducation de la jeunesse : cette éducation consistait surtout à former le corps par la gymnastique et l’âme par la musique (*République*, II, p. 376 E). Nous ne sommes donc pas étonné de voir Platon prendre le rapport 4/3 parmi les intervalles musicaux du quaternaire 1, 2, 3, 4 ; et s’il fait parler les *Muses*, c’est peut-être parce qu’elles présidaient aux connaissances relatives à la musique et aux autres arts de l’esprit.

Mais 4/3, ou 4/3 en plus de l’unité, s’appelait épitritle, ἐπίτριτος, et comme c’est un rapport irréductible, les deux

termes 3 et 4 étant premiers entre eux, on l’appelait un fond, \(\pi\upsilon\theta\mu\nu'\gamma', \) donc \(4/3 \) est le fond épître, et \(4/3 + 5 \) est le fond épître joint à 5, \(\varepsilon\iota\tau\iota\rho\iota \upsilon\theta\mu\nu'\gamma' \pi\varepsilon\mu\nu\alpha\delta \iota \tau\iota\nu' \gamma' \varepsilon \iota \zeta. \) En multipliant cette somme par 3, puis le produit 19 par 4, et le nouveau produit 76 par 10 000, on obtient 76 myriades ; donc le total \((4/3 + 5) \) ou \(19/3 \), trois fois multiplié, \(\tau\phi\iota \varsigma \alpha\upsilon\xi\zeta \theta\varepsilon \iota \zeta \), donne le nombre géométrique, somme des deux harmonies 10 000 et 750 000.

Ainsi, en prenant pour nombre de Platon le résultat 76 myriades fourni par l’analyse rigoureuse de la seconde phrase du lieu, et en traduisant synthétiquement la pensée de l’auteur, on obtient naturellement, sans effort, le texte qu’il nous a laissé. Donc, si c’est avec raison que le passage nous paraît obscur, parce qu’il est très difficile, l’obscurité n’est pas préméditée. Il n’y a que la difficulté du sujet qui est écrit en caractères mathématiques : Platon voulait sans doute que son lecteur fût d’abord géomètre.

Quant à l’énigme qui constitue la première phrase du lieu, elle n’est devenue obscure que parce que la tradition de la belle découverte de Pythagore ne s’est pas conservée dans toute sa pureté : il avait trouvé que les rapports des cordes vibrantes donnant l’octave, la quinte et la quarte sont respectivement \(1/2, 2/3, 3/4 \); ce sont ces trois rapports, c’est ce ternaire qu’il a eu la gloire de découvrir. Or ces trois rapports sont les intervalles successifs des termes de la progression 1, 2, 3, 4, de sorte que ce quaternaire symbolise sa découverte.

Des membres de l’école aimèrent à ranger les choses par séries de quatre, comme on en rangeait déjà par séries de sept à cause des sept planètes. Il y eut les quatre éléments enseignés pour la première fois par Empédocle (*) ; les quatre

(*) Aristote attribue expressément cette hypothèse au pythagoricien Empédocle. « Parmi les philosophes, dit-il, les uns prétendent que la matière est formée d’un seul élément, et ils supposent que c’est l’air ou le feu ou quelque corps intermédiaire... D’autres croient qu’il y a plus d’un seul élément, et ils admettent alors simultanément ceux-ci, le feu et la terre, et ceux-là, l’air en
âges de la vie (enfance, adolescence, virilité, vieillesse); les quatre degrés de la société, (l'homme, la famille, le bourg, l'État); les quatre facultés de connaître (l'entendement, la science, l'opinion, le sentiment) (*); les quatre principes de l'être pensant, τοῦ ζῷου τοῦ λογικοῦ (l'encéphale, le cœur, le nombril et les parties sexuelles, ἑγκέφαλος, κρέδια, ὀμφαλὸς, ξιδῶτον); etc. (**). C'est ainsi que les philosophes voulant ajouter des quaternaires à celui qui symbolisait une découverte digne de l'admiration de tous les siècles, l'ont enveloppé de ténèbres si épaisses qu'on le reconnaît à peine dans le serment solennel des Pythagoriciens et dans la première phrase du lieu de Platon. Montucla trouve ingénieuse la conjecture de Barrow qui croit voir dans la tétractys les quatre parties des mathématiques (arithmétique, géométrie, astronomie, musique) et qui explique ainsi le serment pythagoricien: « je le jure par celui qui nous a instruits des quatre parties des mathématiques. » Montucla ajoute: il y a quelque vraisemblance dans ce dénouement (Histoire des mathématiques, I, m, p. 421, t. I).

Ajoutons que c'est seulement après la grande découverte de Pythagore que les philosophes se livrèrent à l'étude des propriétés mystiques des nombres autres que le septenaire.

VIII. Variantes des manuscrits

La Bibliothèque nationale de Paris possède trois manuscrits des œuvres de Platon, inscrits sous les n°s 1642, 1807 et 1810, ancien fonds. Les deux mss. 1642 et 1810 et beaucoup de
manuscrits étrangers, notamment deux mss. de la Bibliothèque Laurentienne de Florence et un ms. de la Vaticane à Rome ont, au lieu de προμίκην δέ, ligne 7 de notre texte, la leçon προμίκηκει δέ avec laquelle il faudrait sous entendre πλέυσσε. Quelle que soit la leçon adoptée, l'interprétation doit être la même : la première harmonie vaut 100 fois 100, et la seconde est de même longueur d'une part, et allongée, d'autre part, de 100 carrés... et de 100 cubes, c'est-à-dire que l'un des côtés vaut 100 et que l'autre vaut 100 carrés... et 100 cubes. Avec la leçon προμίκην δέ que nous préférons parce que la phrase est alors grammaticalement claire, ce n'est pas la seconde harmonie tout entière qui vaut 100 carrés... et 100 cubes, c'est-à-dire 4800 + 2700 ou 7500 ; car le nombre géométrique, somme des deux harmonies, vaudrait alors 10 000 + 7 500 ou 17 500, nombre inadmissible pour plusieurs raisons dont voici les principales :

1° Ce nombre 17 500 n'est pas un multiple de la période palingénésique 10 000 : cette période ne serait pas accomplie au moment ou recommencerais la grande année de l'humanité.

2° Ce nombre n'est pas non plus un multiple du cycle 19 : le cycle ne serait pas accompli au moment où recommencerait la grande année de l'humanité ; et l'on aurait un nombre fractionnaire pour produit xyz des trois facteurs successifs par lesquels il faudrait multiplier (4/3 + 3) ou 19/3 pour avoir 17 500, car de

\[
\frac{19}{3} \times xyz = 17 500
\]
on tirerait

\[
xyz = 2763 + 3/19
\]

3° Ce nombre 17 500 ne vise aucune autre période connue du temps de Platon, aucun nombre remarquable.

4° Les Muses nous disent que la première harmonie vaut 100 fois 100 et que la seconde est de même longueur, donc logiquement ce qui reste à déterminer c'est l'autre dimension de l'harmonie et non l'harmonie tout entière.

Plusieurs manuscrits et quelques anciennes éditions de Platon contiennent encore d'autres variantes, comme πρεῖσ.
Le texte de ce passage, qui nous est parvenu assez corrompu après les ténèbres du moyen âge, a été successivement amélioré par les hellénistes ; nous croyons que celui de l'édition Didot est irréprochable, nous y ajoutons cependant une virgule devant ἰερωμένων, pour indiquer que ce participe ne se rapporte pas au mot voisin ἰερωμέτρων, mais au mot antérieur ἱερώμον, et qu'il faut par conséquent diminuer d'une unité, non pas les diagonales, mais les carrés des diagonales. Cette virgule se trouve du reste dans quelques éditions et dans plusieurs manuscrits de Platon.

IX. Interprétation du lieu par quelques auteurs

Plutarque, Nicomaque de Gérase, Jamblique, Boèce, désignent le nombre géométrique sous le nom de nombre nuptial (*). Cette dénomination impropre montre qu'ils avaient surtout en vue, dans le problème énoncé par Platon, l'influence que pouvait exercer le nombre géométrique sur les mariages et sur les naissances : ils ne connaissaient certainement pas la valeur numérique attribuée par Platon à la période.

Depuis le xvie siècle, on a fait des tentatives nombreuses pour expliquer le lieu, nous allons donner les titres de quelques dissertations ou des ouvrages qui les contiennent. Nous choisissons en général les meilleures interprétations, et nous en indiquons les points les plus remarquables.

DE PLATON

Le titre indique ce que pense Barozzi de la difficulté du lieu. Parmi les auteurs qui ont cherché à en expliquer quelqu'une partie, il cite Jamblique, Thermaecides le pythagoréen, Sébastien Fox, Raphaël Volterratus (Maffei), saint Thomas, Donatus Acciaiulus et Jacques Lefebvre d'Étapes.

Puis, après avoir parlé de l'obscurité du passage, il ajoute :
« Quapropter immortales à nobis Deo Opt. Max. habendae sunt gratiae, quod tandem eius intelligentia nos donare voluerit (*) ».

Pour lui, la valeur de la période est 1728, cube de 12 :
« Geometrica itaque numerorum vocat Plato ipsum cuba mille septingenta viginti octo (**)... »

Un très grand nombre de commentateurs ont cru voir, comme Barozzi, dans le fond épîtrite le nombre septenaire 3 + 4. Ce fond, ajouté à 5, serait 3 + 4 + 5 ou 12, qui, élevé au cube (τ2ις x τ2ις y τ2ις), donne 1728.

La dissertation de Barozzi est une des plus soignées. La version latine littérale du lieu est une des meilleures (***)

René Herpin est un homme de la ville d'Angers. Bodin se sert du nom d'Herpin pour faire en liberté son apologie lui-même. Il répond à des auteurs qui ont écrit contre lui.

«Puisque ce grand Dieu de nature a tout composé d'une sagesse esmerueillable par certains nombres, poids et mesures : et que les iours, les ans, les heures et moments des

(*) Feuillet 5, recto, ligne 19.
(**) Feuillet 17, verso, ligne 32.
hommes sont déterminez, qui doute que les ages des Républiques ne soient aussi déterminées? Car mesmes Platon n'ayât ny le don de prophétie, ny la connoissance des influences, ny mesmes des mouvements célestes, pour iuger de la chute et ruine des Républiques, il s'est arresté aux nôbres, vray est qu'il a si bien couuert son ieu, qu'il n'y eut onques personne qui peut deuiner ce qu'il a voulu dire quâd il escrit que les périodes des choses diuines sont limitees en nombres parfaicts. Et quant aux choses humaines, il dit que le nombre de leurs périodes est celuy qui a en ses accroissemens actifs et passifs trois distances et quatre limites, qui comprenent raisons semblables et différentes entre elles, en multipliant et diminuant, qui se peuët nommer et représenter, desquels le fonds sesquitierce conioiunt au nombre de cinq fait deux accords trois fois multipliez, l'vn esgal en tout sens de cent fois cent : l'autre esgal d'vn part, et plus long de l'autre part, et chacun nombre cömensurable en diamètres certains, moins d'vn quinte pour chacun, et deux incommensurables de cent cubes moins d'vn ternaire. Tout ce nôbre géométrique contient la force des heureuses et malheureuses origines des choses humaines. Voilà de mot à mot en françois ce que Platon a escrit en grec, que ie mettray, parce qu'il n'y a pas vn interprete qui ne soit fort différent à l'autre, et que les vns ont leu ἐκατόν au lieu de ἑκατόν, et au contraire (*).....

Ici se trouve le texte grec avec les leçons :

anaxartastaseis, au lieu de ἀποστάσεις,
αὐξηνότων, — αὐξόντων,
προμήχλει, — προμήχλη.
ἐκατόν μὲν ἀριθμὸν, — ἐκατόν μὲν ἀριθμόν,
πεμπάδος, — πεμπάδος.

René Herpin, c'est-à-dire Jean Bodin, ajoute : « Aristote

(*) Apologie de René Harpin, feuillet 41 recto, lignes 3-30.
aux Politiques, parlant de ces nôbres de Platon est demeuré court, au lieu qu'il a de coutume de reprendre Platon à tous propos. Aussi ne s'est-il jamais trouvé personne qui ait peu entendre ces nôbres. Marsille Ficin, le plus grand Platonicque qui ait écrit, confesse qu'il ny entend rien, et non sans cause Ciceron disoit qu'il n'y auroit rië plus difficile que les nôbres de Platon. Et Theon Smyrnean, des plus illustres Mathématiciens entre les Academiques, interprétant la République de Platon, n'a aucunement touché ce passage. Procle Academicien, ayant doctement interprété les sept premiers liures de la République de Platon, est demeuré à l'huictiesme, où il est question de ces nôbres. Et quoy que Jamblique se soit esforcé d'esclaircir ce passage, si est ce qu'il a encore plus obscurcy (*)... » Bodin ne propose aucun nombre.

III. Les devins ou Commentaire des principales sortes de devinations, distingué en quinze liures, esquels les ruses et impostures de Satan sont découvertes, solidement refusées et séparées d'avec les saintes Prophéties et d'avec les prédications naturelles. Écrit en latin par M. Gaspar Peucer, très docte philosophe, mathématicien et médecin de nostre temps; nouvellement tourné en francois par S. G. S. (**) En Anvers, 1584.

On lit au chapitre VIII du livre IX :

« Proportions des nombres étendus aux choses politiques... Ils (les premiers maîtres) firent servir les proportions des nombres aux choses politiques, et commencèrent à philoso-

phier profondément des périodes, établissements, siècles et changemens des monarchies, principautéz et gouvermens du monde : monstrans quelles proportions redressent, estab-

lissent, affermissent les États ; quelles proportions les font florir et durer : quelles les despècent et renversent : brief de quelles périodes sont limitez les temps de leur durée.

(*) Apologie, même feuillet, verso, lignes 2-18.
(**) Simon Goulart, Sculisien.
« Prévision arithmétique de Platon. — Il y a dedans Platon au huitième livre de la République une prévision arithmétique touchant les périodes des gouvemements publics.
Il y a (dit-il) une période ou circuit aux œuvres de Dieu, c'est-à-dire aux causes naturelles créées de Dieu, lequel circuit est embrassé par un nombre parfait. Es afaires humains ou lon remarque des acroissement (sic) de causes dominantes et dominées, on void quatre limites de choses semblables et différentes, de croissantes et décroissantes : de l'efficace diverse desquels limites toutes choses comprises en l'enclos de l'univers sont composées par un moyen esgal et se rapportent de l'un à l'autre, en telle sorte toutesfois que chascune chose a sa nature distincte.

« Aristote contraire à Platon. — Aristote au cinquième livre des Politiques, disputant des périodes, interprète et recitete ce passage de son maître : Platon maintient (dit-il) que la cause des changemens vient de ce que Nature porte cela que rien ne demeure ferme, ains que toutes choses se changent en certaine revolution du temps. Elles prenent commencement quand le cube sesquoners conjoint au nombre quinaire fait deux harmonies et lorsque le nombre de cette description devient solide, nature produisant des hommes meschans et la bonne instruction (produisant) des gens de bien. »

Dans l'édition latine originale, Peucer cite en grec le lieu de Platon et le commentaire d'Aristote, de sorte que les versions précédentes du lieu et du commentaire sont traduites du grec par Goulart.

IV. Traité de l'harmonie universelle par le sieur de Ser.
nes (*) Paris, 1627 ; t. II, théorème xii, p. 430.

Le P. Mersenne croit que « le nombre platonique est 729 » qu'il obtient en faisant une faute de calcul : « Les cent

(*) Le P. Mersenne, religieux Minime.
nombres des diamètres comparables peuvent s'entendre de 3 et 4, qui, estant multipliez par 100 font 700, à qui le cube du ternaire, c'est-à-dire 29 (sic) estant ajouté, fait 729, qui est le nombre qui a servy d'énigme à Platon. »

V. *Theoretic Arithmetic*, in three books, containing the substance of all that has been written on this subject by Theo of Smyrna, Nicomachus, Iamblichus, and Boetius... by Thomas Taylor. Londres, 1816, in-8.

L'auteur consacre un chapitre à l'étude du nombre géométrique. Il croit que les deux harmonies sont 10 000 et 1 000 000 et que le « nombre géométrique tout entier est un million : *and the whole geometric number is a million (\(^*\))*.

Le savant professeur adopte les leçons τρεῖς ἀποκαταστάσεις au lieu de τ. ἀποστάσεις, puis προμήχει δέ, au lieu de προμή-χη δέ et πεμπάδων, au lieu de πεμπάδος. Voici sa traduction : « La révolution périodique assignée aux créatures divines est un nombre parfait; celle des créatures humaines est renfermée dans un nombre qui a d'abord des accroissements successifs, puis trois retours nécessaires sur lui-même, où quatre termes sont admis, l'égalité, la différence, le plus, le moins, et qui peuvent se comparer et se mesurer ensemble. Leur racine cubique, jointe à cinq, et multipliée par trois, produit deux accords, l'un qui égale le nombre lui-même et autant de fois cent; l'autre, d'une figure équilatérale, mais qui, dans toute son étendue, nous fait voir d'abord cent nombres formés de cinq diamètres égaux, à l'unité près, et de deux inégaux; ensuite, cent cubes du ter-

naire. Voilà le nombre géométrique, dont le pouvoir préside au bonheur ou au malheur de la naissance. » M. Le Clerc n’explique pas sa traduction et ne propose aucun nombre.

VII. De numero Platonis commentationes duae. Quarum prior novam ejus explicationem continet, posterior aliorum de eo opiniones recenset. Scripsit C. E. Chr. Schneider. Breslau, MDCCCXXI, in-4°, de 34 et 53 pages.

Ces deux dissertations de Schneider sont très soignées. La première est une thèse : disputatio. L’auteur croit, avec raison, qu’il est question de deux nombres et qu’avec 6ν commence la description du second, le véritable numerus fatalis; et il est convaincu que συζυγεῖς marque une addition. Comme Barozzi, il reconnaît que par ἐκπτὸν ἀριθμὸν ἀπὸ διαμετρῶν, il faut entendre cent carrés des diagonales et non cent diagonales. Il croit que le nombre fatal contient les facteurs 8 et 27, derniers termes des deux progressions 1, 2, 4, 8 et 1, 3, 9, 27, mais que Platon a laissé à dessein incomplète l’indication des données nécessaires pour trouver ce nombre. La seconde dissertation contient les opinions de précédents commentateurs : Barozzi, Boulliau, Jérôme Cardan, Gaspar Peucer, Philippe Melanchthon, Matthias Lauterwald, Bartholomée Bredell, Bodin, Kleuker, Lefebvre d'Étaples, etc.

Nous avons déjà signalé au § III, p. 369, l’opinion de Schleiermacher sur le lieu de Platon. Voici la traduction française littérale de sa version allemande. Nous indiquons les contresens en italiques (*).

(*) V. Cousin a reproduit la version allemande de Schleiermacher dans son intéressante note, déjà citée, sur le nombre géométrique. Voy. Œuvres de Platon, t. X, p. 327.
« Mais il y a pour le divin engendré une période qu'un nombre parfait embrasse, et pour l'humain un nombre dans lequel, comme premier, des puissances produisantes et produites, comprenant trois intervalles et quatre termes, qui rendent semblable et dissemblable, abondant et déficient (*), ne présentent que des rapports simples et exprimables, les uns par rapport aux autres.

« De cela le fond du rapport 4/3 joint au quinaire, multiplié trois fois, donne deux harmonies, l'une également égale, cent autant de fois, l'autre de même longueur, mais par le côté allongé de cent nombres des diamètres exprimables du quinaire, raccourcis chacun d'une unité, les deux diamètres étant inexprimables, et de cent cubes de trois.

Cette traduction est certainement une des meilleures publiées en Allemagne.

M. Cousin avait ce philosophe en haute estime : après Schleiermacher, dit-il dans plus d'une note, je n'ai trouvé aucun épi à glaner. « Notre guide accoutumé, dit-il encore dans ses notes sur le Timée, nous a manqué. La mort a empêché ce grand critique de terminer le plus durable monument qui ait été élevé de notre temps à la philosophie platonicienne. »

M. Vincent remplace ἀνθρωπεῖα ὄν par ἄνθρ. τέ, et ἔκκατον ὄν κόμων τρίχος par ἔκτον ὄν κόμων τρ. Voici son interprétation :

« Il y a, pour les générations divines, comme pour les générations humaines, une période qu'embrasse un nombre parfait, dans lequel (il faut considérer) en premier lieu certaines puissances successives portées jusqu'au quatrième terme et

(*) Un nombre est abondant ou déficient, suivant que la somme de ses parties aliquotes est supérieure ou inférieure au nombre. Théon, I, xxxu, 75-77.
présentant trois intervalles. La comparaison de ces diverses puissances entre elles, soit semblables, soit dissemblables, croissantes ou décroissantes, met en évidence leurs relations et leurs rapports mutuels. Or, si l'on multiplie ce nombre par le rapport du quaternaire au ternaire, et que l'on réunisse au moyen du quinaire, on obtiendra trois produits qui, par un double assemblage, donneront deux figures, l'une carrée, l'autre oblongue; de telle sorte que la première figure aura pour mesure son côté multiplié par lui-même, et la seconde ce même côté multiplié par cent; (ce qui fait d'une autre manière) cent nombres égaux, à une unité près, au diamètre rationnel du quinaire, deux unités en surplus, et six fois le cube du ternaire. C'est ce nombre géométrique dont le pouvoir prèside aux bonnes et aux mauvaises générations. »

M. Vincent tâche ensuite de justifier sa traduction, et il conclut ainsi : « En résumé, le mot de l'espèce d'énigme proposée par Platon est le nombre 216, cube de 6, et quatrième terme de la proportion 1 : 8 = 27 : 216. » Il prend d'ailleurs 216, ou 3 fois 72, comme petit côté d'un triangle rectangle dont les deux autres sont 4 fois 72 et 5 fois 72; le périmètre 12 fois 72 ou 864 lui paraît satisfaire aux conditions de l'énoncé, pourvu qu'on adopte les corrections qu'il a proposées.

La seconde livraison étant introuvable dans les bibliothè-
ques publiques, nous croyons qu'elle n'a pas été publiée. Minoïde Mynas, philologue grec, est mort en 1860. Dans l'avertissement, il dit que la solution du théorème de Platon lui est plus précieuse que la découverte de Babrias (qu'il avait faite en 1840 dans un monastère du mont Athos). Voici cette solution (p. 419 du mémoire):

« La création du monde, progéniture divine, est comprise dans un nombre parfait; pour celle de l'homme, il en est autrement : dans le début de son accroissement elle passe, sous l'influence des astres dominants et dominés, par les trois dimensions qui, combinées avec les quatre éléments en affinité et en opposition plus ou moins grandes, mettent en proportion et en harmonie toutes les parties de l'être naissant. En effet, le premier épitrite quaternaire, joint au quinaire et triplé, présente deux harmonies, l'une, en rapport double parfaitement égale, va jusqu'à cent et tant ; l'autre en rapport triple combinée proportionnellement avec la première. Chaque (cent) terme de cette harmonie a pour diamètres (facteurs) des chiffres ronds du quinaire, les uns moins grands que les autres d'une unité. Parmi ces termes qui donnent cent cubes trinaires (sic), il y en a deux incommensurables. Tout ce nombre étant en proportion géométrique, indique le rapport des générations bonnes et mauvaises. »

L'explication des termes du passage, que Platon a voulu « obscurcir » (voyez p. 131), s'arête aux mots dominants et dominés (p. 159) qui, d'après le commentateur, se rapportent aux planètes.

La solution de Minoïde Mynas, qui était cependant un érudit, et qui savait encore mieux le grec que le français, est un exemple remarquable des étranges divagations auxquelles a donné lieu, même de nos jours, l'interprétation du nombre de Platon.

XI. Die Philosophie der Griechen in ihrer geschichtlichen Entwicklung dargestellt, par le Dr Édouard Zeller. Tubingue, 1839, t. II, 1re partie, p. 546, note 1.
Dans ce très remarquable ouvrage, le célèbre historien de la philosophie des Grecs admet que la période cosmique est de 10 000 années, et qu'elle est les $\frac{4}{3}$ de la période politique, de sorte que celle-ci serait les $\frac{3}{4}$ de la première et vaudrait par conséquent 7 500 ans.

Weber cite d'abord quelques précédentes dissertations :
1) Celle de Schneider ;
2) « Indices lectionum, quae in Academia Marburgensi per semestre aestivum a. MDCCCXXXIX habendae proponuntur. » Inest C. Fr. Hermanni de numero Platonis disputatio ;
3) Prolegomena ad Platonis Rempublicam scripsit G.-F. Rettig. Bernae MDCCCXLV, p. 296-326 ;
4) La dissertation de A.-J.-H. Vincent ;
5) Celle de Th.-H. Martin ;
6) « Die genetische Entwicklung der Platonischen Philosophie » von Dr. Franz Susemihl, t. II, i. Leipzig, 1837, p. 216-226 ;
7) La philosophie des Grecs d'Éd. Zeller.

Puis, en discutant le problème, il critique avec une certaine amertume les interprétations de Vincent et d'Henri Martin. Ainsi celui-ci, comparant au triangle rectangle dont les côtés sont 3, 4, 5, et la surface 6, le triangle dont les côtés sont 72 fois plus grands, donne à ce dernier triangle pour surface 6×72, alors qu'elle est 6×72^2, puisque les surfaces des triangles semblables sont entre elles comme les carrés des côtés homologues, Weber relève ce lapsus en disant : « Aream trianguli rectanguli, cuius latera sunt 216, 280, 360, non 432, sed 72×432, vel $72^2 \times 6$ valere, nemo nisi primorum mathematicae elementorum imperitus nescit... ! »

Il croit, comme Hermann et Rettig, et contrairement à
DE PLATON

H. Martin, que ἀφρήτων δὲ οὐείν est mis pour ἀφρήτων δὲ δομένων οὐείν ἐκάτων. Vincent et H. Martin ayant fait rapporter ἄτην ἱστήκις à la première harmonie et ἐκάτων τοσκυτάκις à la seconde, il trouve cette interprétation mauvaise : pessimam. Il croit avec raison que ἐκάτων τοσκυτάκις est mis pour ἐκάτων ἐκατοντάκις. Il admet pour harmonies les deux nombres 10 000 et 7 500, avec la leçon προμῆκη δὲ ; mais il ne tire de là aucune conclusion arithmétique.

Il fait, vers la fin de sa dissertation, cette observation qui nous paraît juste : « Hic fere unus estat locus, qui ad artis mathematicae conditionem, qualis ante Euclidem apud Graecos fuit, illustrandam aliquantum affert lucis ». Etc... etc...

X. Conclusion. — Traductions du lieu.

Voici les versions définitives, latine et française, que nous proposons. Nous respectons scrupuleusement le texte de Schneider (édition Didot), et nous renfermons entre des crochets obliques les nombres que les Muses donnent à calculer, ainsi que le quaternaire qu’elles désignent énigmatiquement et qu’elles laissent par conséquent à deviner.

« Est autem ei quod divinitus est genitum (scilicet astra), circuitus quem numerus continet perfectus; humano vero is, in quo primo 〈10〉 incrementa generantia et generata, tria intervalla atque quatuor terminos 〈1, 2, 3, 4〉 cum accereperint, assimilantium et dissimilantium, crescentium et decrescentium, cuncta congruentia et rationalia inter se effecerunt.

« Quorum sesquitertia radix quinario conjuncta 〈4/3 + 5 = 19/3〉 duas harmonias praebet ter aucta 〈per 3, 4, 10 000〉 unam quidem aequalem aequoliter, centum toties (10 000) alteram aequalis quidem longitudinis (100), sed ablóngam, centum numerorum quadratorum ex diametris rationalibus quinarii, indigentium uno singulorum 〈100 (49—1) = 4 800〉...
vel quadratorum ex diametris irrationalibus, indigentium duo-
bus \(<100 \ (50 - 2) = 4800\), centumque cuborum ternarii (2700). Universus autem hic numerus geometricus
\(<10000 + 100 \ (4800 + 2700) = 10000 + 750000 = 760000\>
talem auctoritatem habens potiores deterioresque regit gene-
rationes... »

« Il y a pour le divin engendré (c’est-à-dire les astres) une
période qu’un nombre parfait embrasse; pour l’humain, il y
a un premier nombre \(<10\rangle\), somme de quantités généra-
trices et engendrées, comprenant trois intervalles et quatre
termes \(<1, 2, 3, 4\rangle\) de ceux qui donnent des choses sem-
blables ou dissemblables, qui croissent ou qui décroissent, et
ne présentent que des rapports analogues et rationnels.

« Le fond épitrite (c’est-à-dire l’intervalle irréductible \(4/3\))
pris parmi ces rapports, ajouté à 5, donne une somme
\((4/3 + 5 = 19/3\)) qui, trois fois multipliée \(<\text{par } 3, 4, 10000\rangle\),
offre deux harmonies, l’une carrée égale à 100 fois 100 (c’est-
à-dire 10000), l’autre de même longueur (100) dans un sens
et allongée dans l’autre sens, de 100 cubes de 3 (c’est-à-dire
2700) et de 100 carrés des diagonales rationnelles de 5, ces
carrés étant diminués chacun d’une unité \(<\text{c’est-à-dire}
100 \ \text{fois} \ (49 - 1) = 4800\rangle\) ou de 100 carrés des diagonales
irrationnelles, ces carrés étant diminués chacun de 2 unités
\(<\ c’est-à-dire\ 100 \ \text{fois} \ (50 - 2) = 4800\rangle\). C’est ce nombre
géométrique tout entier
\(<10000 + 100 \ (2700 + 4800) = 10000 + 750000 = 760000\>
qui a la vertu de présider aux générations meilleures ou
pires... »

L’interprétation complète de ce passage montre combien
est considérable, dans l’histoire des sciences, la place du
philosophe qui eut assez de modestie pour préférer au titre
de sage celui d’ami de la sagesse, et que l’on considérait
encore, au temps de Platon, comme un être intermédiaire
entre l’homme et la divinité.
TABLE GÉNÉRALE DES MATIÈRES

PRÉFACE ... v
Table alphabétique des auteurs cités par Théon et des principales ma-
tières ... xiii
Explication des abréviations et des signes ... xxviii

PREMIÈRE PARTIE

Introduction

De l'utilité des mathématiques ... 3

Arithmétique

De l'ordre dans lequel on doit étudier les mathématiques 25
De l'in et de la monade ... 29
Du nombre pair et du nombre impair ... 35
Du nombre premier ou incomposé .. 37
Du nombre composé ... 39
Des diverses sortes de nombres pairs ... 41
Des nombres carrés, hétéromèques, parallélogrammes 43
Des nombres promèques .. 51
Des nombres triangulaires, de la manière dont ils s'obtiennent et des
autres nombres polygones ... 53
Des nombres pyramidaux .. 71
Des nombres latéraux et des nombres diagonaux 71
Des nombres parfaits, abondants, déficients ... 75

DEUXIEME PARTIE

Lois numériques de la musique

Introduction ... 79
Du son et de la voix enharmonique ... 81
Des intervalles et de l'harmonie ... 81
Des consonances ... 83
Du ton et du demi-ton .. 89
Du genre diatonique, du genre chromatique et du genre enharmonique. 91

<table>
<thead>
<tr>
<th>Topic</th>
<th>Page</th>
</tr>
</thead>
<tbody>
<tr>
<td>Du dièses</td>
<td>93</td>
</tr>
<tr>
<td>De la découverte des lois numériques des consonances</td>
<td>93</td>
</tr>
<tr>
<td>De l'addition et de la soustraction des consonances</td>
<td>101</td>
</tr>
<tr>
<td>Du limma</td>
<td>107</td>
</tr>
<tr>
<td>En combien de sens se prend le mot λόγος</td>
<td>117</td>
</tr>
<tr>
<td>De la raison de proportion</td>
<td>119</td>
</tr>
<tr>
<td>Du rapport superpartiel ou sesquipartiel</td>
<td>125</td>
</tr>
<tr>
<td>Du rapport épimère</td>
<td>127</td>
</tr>
<tr>
<td>Du rapport multisuperpartiel et du rapport polyépimère</td>
<td>127</td>
</tr>
<tr>
<td>Du fond d'un rapport</td>
<td>131</td>
</tr>
<tr>
<td>En quoi diffèrent l'intervalle et le rapport</td>
<td>133</td>
</tr>
<tr>
<td>Des proportions</td>
<td>139</td>
</tr>
<tr>
<td>De la division du canon harmonique</td>
<td>143</td>
</tr>
<tr>
<td>Des quaternaires et de la décade</td>
<td></td>
</tr>
<tr>
<td>Du quaternaire de la décade</td>
<td>153</td>
</tr>
<tr>
<td>Combien il y a de quaternaires</td>
<td>155</td>
</tr>
<tr>
<td>Dê la décade</td>
<td>163</td>
</tr>
<tr>
<td>Propriétés des nombres contenus dans la décade</td>
<td>165</td>
</tr>
<tr>
<td>Des médiétés et des figures</td>
<td></td>
</tr>
<tr>
<td>Des médiétés</td>
<td>175</td>
</tr>
<tr>
<td>Des figures</td>
<td>183</td>
</tr>
<tr>
<td>Propriétés des médiétés</td>
<td>187</td>
</tr>
<tr>
<td>Comment on trouve les moyens termes des médiétés</td>
<td>193</td>
</tr>
<tr>
<td>TROISIÈME PARTIE</td>
<td></td>
</tr>
<tr>
<td>Astronomie</td>
<td></td>
</tr>
<tr>
<td>Forme sphérique de la terre</td>
<td>199</td>
</tr>
<tr>
<td>Cercles célestes</td>
<td>213</td>
</tr>
<tr>
<td>Des étoiles</td>
<td>221</td>
</tr>
<tr>
<td>Des planètes</td>
<td>221</td>
</tr>
<tr>
<td>De l'ordre des planètes et du concert céleste</td>
<td>227</td>
</tr>
<tr>
<td>Mythe du Pamphylien dans la République de Platon</td>
<td>233</td>
</tr>
<tr>
<td>Mouvement des planètes</td>
<td>239</td>
</tr>
<tr>
<td>Mouvement du soleil</td>
<td>247</td>
</tr>
<tr>
<td>De l'excentrique</td>
<td>253</td>
</tr>
<tr>
<td>De l'épicycle</td>
<td>257</td>
</tr>
<tr>
<td>Moyennes distances des planètes</td>
<td>309</td>
</tr>
<tr>
<td>Des conjonctions, des occultations et des éclipses</td>
<td>311</td>
</tr>
<tr>
<td>Éclipses de soleil et de lune</td>
<td>313</td>
</tr>
<tr>
<td>Des découvertes astronomiques et de leurs auteurs</td>
<td>321</td>
</tr>
<tr>
<td>Des hypothèses de l'astronomie</td>
<td>323</td>
</tr>
</tbody>
</table>
NOTES

1. Problème de la duplication du cube. — Solution mécanique de Platon

2. Sur le sophisme : Un, en tant qu’un, est sans parties et indivisible. — Problème d’Achille et de la tortue

3. Sur les nombres hétéromèques

4. Sur les nombres carrés

5. Des nombres polygones

6. Des nombres pyramidaux

7. Des nombres latéraux et des nombres diamétraux

8. De la perfection du nombre dix

9. Sur l’addition et la soustraction des consonances

10. Le diagramme musical de Platon comprend quatre octaves, une quinte et un ton

11. De la valeur du demi-ton

12. Du système musical parfait formé de deux octaves

13. Diagramme musical de Platon. — Erreur probablement volontaire de Timée de Locres

14. Pourquoi le nombre six était appelé mariage

15. Sur les euripes

16. Sur la détermination de la moyenne harmonique entre deux nombres donnés

17. Sur la mesure du volume de la terre

18. Sur le Mythe du Pamphylien dans la République

Index

Index des mots grecs qu’on ne trouve pas dans les dictionnaires, ou qu’on n’y trouve pas avec le sens que leur attribue Théon

Index des mots français nouveaux

ÉPILOGUE

Le nombre géométrique de Platon

1. Introduction

2. Exposition du sujet

3. Texte du lieu. — Opinions de Schleiermacher et de Cousin

4. Raisons qui ont pu déterminer le choix de Platon

5. Traduction littérale et interprétation de la première phrase

6. Traduction littérale et interprétation de la seconde phrase

7. Platon a-t-il cherché à être obscur ?

8. Variantes des manuscrits

9. Interprétation du lieu par quelques auteurs

10. Conclusion. — Traduction du lieu

FIN
CORRIGENDA

<table>
<thead>
<tr>
<th>Page</th>
<th>ligne</th>
<th>lisez</th>
<th>note</th>
</tr>
</thead>
<tbody>
<tr>
<td>8</td>
<td>4</td>
<td>παραλητικά</td>
<td>on a en effet.</td>
</tr>
<tr>
<td>69</td>
<td>30</td>
<td>—</td>
<td>indemposé.</td>
</tr>
<tr>
<td>91</td>
<td>25 et 30</td>
<td>—</td>
<td>διαφράγματα.</td>
</tr>
<tr>
<td>100</td>
<td>21</td>
<td>—</td>
<td>et ainsi de suite.</td>
</tr>
<tr>
<td>123</td>
<td>33</td>
<td>—</td>
<td>elle diffère au lieu de elle est distante.</td>
</tr>
<tr>
<td>147</td>
<td>2 et 5</td>
<td>—</td>
<td>Boullian.</td>
</tr>
<tr>
<td>148</td>
<td>30</td>
<td>—</td>
<td>qu'elle.</td>
</tr>
<tr>
<td>151</td>
<td>27</td>
<td>—</td>
<td>ημετώνων.</td>
</tr>
<tr>
<td>155</td>
<td>34</td>
<td>rétablissez</td>
<td>p. 302 de l'éd. de (mots tombés pendant le tirage).</td>
</tr>
<tr>
<td>164</td>
<td>16</td>
<td>lisez</td>
<td>ἅλεττόνων αὐτῆς οὗ.</td>
</tr>
<tr>
<td>176</td>
<td>30</td>
<td>—</td>
<td>17 et 26.</td>
</tr>
<tr>
<td>237</td>
<td>15-28</td>
<td>—</td>
<td>Cet alinéa contenant la suite du récit d'Arméno, le Pamphylien, doit être guillemeté.</td>
</tr>
<tr>
<td>237</td>
<td>33</td>
<td>ajoutez</td>
<td>voyez note xviii.</td>
</tr>
<tr>
<td>283</td>
<td>7</td>
<td>lisez</td>
<td>stationnaires.</td>
</tr>
<tr>
<td>300</td>
<td>3</td>
<td>mettez</td>
<td>avant ίβα: la virgule qui est après.</td>
</tr>
</tbody>
</table>

Le Puy-en-Velay, — Imprimerie Marchessou fils, boulevard Saint-Laurent, 23.